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CHAPTER 1

INTRODUCTION

In two dimensions the uniformisation theorem classifies oriented Riemann surfaces
into conformally elliptic, parabolic and hyperbolic classes based on their universal
covers: the Riemann sphere, the complex plane and the hyperbolic disk. The exis-
tence of isothermal coordinates in two dimensions says that every surface is locally
conformally flat, hence the only obstruction to global flatness is topological.

A map f: ) — R" is conformal if it satisfies the n-dimensional Beltrami equation:

(1.1) J"DfIDf =1

almost everywhere. Liouville’s theorem [IM01, Theorem 5.1.1] says that for n > 3
every conformal map f € WH"(Q,R") from an open set Q C R™ is a Mdbius map
i.e. is of the form
aA(x — )

|z — xole
where b,zp € R", a € Rt ¢ € {0,2} and A € SO(n). A subsequent question then
arises: can we relax the geometric rigidity of these maps and still get some kind of
control on the global topology along the lines of the uniformisation theorem?

If © is given a Riemannian metric g represented by a symmetric positive definite
matrix, then f: (€, g) — R" is conformal if and only if

g=ADf'Df

for some scalar function A : Q — R. If G = g(det g)~'/", then f is conformal with
respect to g if and only if

(1.2) G =J;”"Df'Df.

T b+

Hence, given a measurable conformal class of metrics specified by a symmetric
positive definite matrix field G with determinant 1 almost everywhere, one would
like to know whether it locally arises as a scalar multiple of the pull back of the
Euclidean metric i.e. whether or not G is integrable. If the manifold and metric are
sufficiently smooth, this is answered by the Weyl-Schouten theorem [HJ03, P.5.1]:
for n > 4 G is locally conformally flat if and only if the Weyl tensor vanishes and
for n = 3 G is locally conformally flat if and only if the antisymmetric component of

V(Ric — Q(Sﬁll) g) vanishes [Pet06, Theorem 3.132].
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Conformal maps are very rigid. However, we can reduce geometric rigidity and
consider quasiregular maps. For 1 < K < oo, a K-quasiregular map between n-
manifolds is a continuous map f between Riemannian manifolds (N, g) and (M, h)
such that f € WL (N, M) and satisfies

loc
[DfI*(x) < KJy(x)

for almost every x € N, where J; is the Jacobian determinant of f. If f is a
homeomorphism, it is said to be quasiconformal. If f is Lipschitz and Jy is bounded
away from 0, then f is said to be of bounded length distortion. If N' and M are
domains in R", then conformality is equivalent to

(1.3) T D! (@) H(f(2))Df () = G(x),

for almost every € N, where G = gdet¢g™*/" and H = hdeth™ /™. This is
the Beltrami system for the distortion tensors G and H. Another way of saying
this is that every quasiconformal map is conformal for the right metric. Hence the
existence of quasiconformal maps with a given distortion tensor is equivalent to asking
whether the distortion tensor is integrable. The naive smoothness assumption for the
Weyl-Schouten theorem is that g is C®, but interesting topological behaviour, like
branching, only emerges if a solution to (1.3) is a priori W in which case G and
H are only measurable. It is not clear how the Weyl-Schouten theorem could be
applied to such a non-smooth scenario.

If we suppose some given strong geometric conditions are integrable, e.g. a given
metric with vanishing Weyl tensor, then low regularity will be difficult to handle.
Sullivan in [Sul95| suggested that one could stipulate a geometric condition on an
object that behaves like the derivative of a coordinate chart on a manifold, in this
case a co-frame of one-forms, and apply an approximate integrability condition: that
the co-frame’s exterior derivative is essentially bounded. Doing so, he constructed
maps whose derivatives approximate his geometric condition nicely.

A natural question to ask is, can this be extended to a global setting? Given maps
f: N — M, what is the natural generalisation of the co-frame that Sullivan used?
An answer lies in the concept of an Ehresmann connection, which is a sub-bundle
H C T(N x M) such that the differential of the Cartesian projection my : N'x M —
N’

Dyt My : Hay) = TN

is an isomorphism for every (z,y) € N x M [Ehr51]. In Ehresmann’s original
definition, such a connection was assumed to be complete, that is every smooth path
v :[0,1] = N has for any y € M, a lift 7 : [0, 1] — M satisfying

d 5
d—t(v(t)m(t)) € My 50)-

and 7(0) = y.
Ehresmann connections generalise several notions of connection, such as affine
and principal connections. A principle G-bundle over a manifold N has a principal

connection locally given by a g-valued connection one-form A € C*(Q, g ® A'Q). In
this case the associated Ehresmann connection is given on the local trivialisation by

Hog={X+9g Az, X): X € T,Q2}
where Q C N.
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An Ehresmann connection is said to be integrable if for any (zq,yo) € N x M
there exists f : NV — M such that

Hatay ={X®Df(x) - X : X € LN}

and f(zo) = yo.

Whereas a sharp integrability condition for a one-form is that its exterior derivative
vanishes, the corresponding integrability condition for an Ehresmann connection H
is Frobenius’ integrability condition

H,H] CH,

originally proven for systems of differential equations by Frobenius in [Fro77]. If
this holds then H is locally given by the tangent planes of the graph of a function
f: N — M. If N is simply connected, then the lift along H of any loop is also a
loop (the start and endpoints of the lifted path are the same).

The appropriate regularity conditions for Frobenius’ theorem are a natural sub-
ject of interest in the context of Sullivan’s work. Is there anything like an essentially
bounded Frobenius condition? Simié¢ in [Sim96| very elegantly showed that the hyper-
plane distribution need only be Lipschitz continuous for this integrability condition
to be necessary and sufficient. However, his distributions are still continuous, unlike
the derivative of a quasiregular map. Nonetheless the theory of commutators of Lip-
schitz vector fields is interesting in its own right and has been extended further, for
instance in [RS07, Ram07].

For N = Q C R" we consider an Ehresmann connection form p : Q x M —
TM ® A'Q) associated to an Ehresmann connection H C T(2 x M). We say that
an Ehresmann connection form p is in A(2 x M) if p is essentially bounded, there
is a number C such that for almost every = € {2 the map y — p,, is C-Lipschitz,
and p has an essentially bounded exterior derivative with respect to 2. If the Ehres-
mann connection is a principal connection, then this is equivalent to the connection
one-form being a Whitney form (i.e. essentially bounded with essentially bounded
exterior derivative).

We say an Ehresmann connection form p is in Aj.(©2 X M) if there is a number
C' such that for almost every x € € the map y — p,, is C-Lipschitz, the exterior
derivative of p with respect to € is locally essentially bounded, and there isa U C M
such that p|(Q2 x U) € A(Q x U). See §2.2 for discussion. For this regularity class
we can define the curvature of p to be a section

F,: Qx M —TM® AQ
by
FP(X7 Y) = (vp(X)p)(Y) - (vp(Y)p)(X) + de(X7 Y)?
where dqp is the exterior derivative with respect to the coordinates of {2 and XY €
TS).

In the event that p is a principal connection form, this coincides with the usual
curvature

1
Fy=5loApl +dp.
Consequently if p is smooth (and in fact Lipschitz) then
[H,H] C H if and only if F, = 0.

If p is only Lipschitz continuous then this equivalence only holds almost everywhere.
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We can define the holonomy for an Ehresmann connection about a point to be
the distance of the start and endpoints of a lift along p about a closed loop. If
p arises from an integrable connection then the holonomy is zero. We prove the
following quantitative estimate for the holonomy of an Ehresmann connection form
in A(Q x U) using a similar estimate for smooth connections and an adapted smooth
approximation.

THEOREM 1.1. Let © and U in R™ be smooth bounded domains, and let U' CC U
be a domain. Let p € A(Q x U) be an Ehresmann connection form. Let ro <
d(U",0U)/(4]lplles)- There is a constant C' = C(p,ro) such that for everyy € U’, and
To, T1, Ty € Q, if dist(y, OU’) > 12r¢]|pllec and |z; — x;| < ro for every i,j =0,1,2,
then

Holu(p, (0, x0),y) < C(p, o) | Fpllo| Al

where A is the triangle given by the convex hull of xg,x1 and x4, OA is the boundary
of this triangle and |A| its area.

With this and a homotopy lifting lemma (Lemma 2.52) we can prove the following
theorem for connections with zero curvature.
THEOREM 1.2. Let (M, g) be a smooth complete Riemannian manifold, and @ C R™
a connected and simply connected domain, and let p € A(Q x M) be an Ehresmann
connection form with zero curvature, that is

F

» = 0 almost everywhere.

Then for every y € M and xy € €0, there is a unique Lipschitz map v, : @ — M
such that

DYy = Py (@)
Yy(T0) = .

Frobenius’ theorem for Lipschitz distributions follows from this in Corollary 2.54.

Ehresmann connections arise naturally also in the case when they are completely
non-integrable, that is, if their curvature is of maximal rank. In this case they provide
interesting examples of sub-Riemannian geometries [Mon02, Chapter 11]. Naturally
one would like to extend these regularity properties to connections whose curvature
has maximal rank almost everywhere in some sense. This is an interesting potential
subject of research to which the methods developed herein could be extended.

We return now to Sullivan’s investigations into the smoothability of Lipschitz man-
ifolds. Sullivan supposed that a co-frame p = (p!,...,p"), called a Cartan—Whitney
presentation, was given by forms p* € L°°(§, A'Q) satisfying

essinf x p! A= A p" > 0.

Furthermore, he supposed the approximate integrability condition dp’ € L>(£2, A%Q).
He showed that associated to every Cartan—Whitney presentation p there is an upper
semicontinuous local degree function deg, : € — Z which depends continuously on
the L*°-norm of p.

He further showed that if a Lipschitz manifold has a measurable vector bundle
isomorphism from its measurable tangent bundle to a Lipschitz vector bundle given
locally by a Cartan-Whitney presentation p with local degree 1 everywhere then the
manifold has a smooth structure provided that dp = A A p, where A :€ L>(£, s0,, ®
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A'Q) is an antisymmetric-matrix valued one-form with essentially bounded exterior
derivative.

Heinonen and Sullivan subsequently applied Cartan—Whitney presentations to in-
vestigate metric gauges, that is topological spaces considered with a family of bi-
Lipschitz—equivalent metrics [HS02]. Under suitable topological assumptions these
can be characterised with Cartan—-Whitney presentations.

Heinonen and Keith then continued this topic of investigation and discovered a
more analytic condition for the smoothability of a Cartan—Whitney presentation
[HK11]; see also [HKO00].

It is not surprising that Heinonen chose to investigate generalisations of Cartan—
Whitney presentations to the quasiconformal category. Similar to the notion of a
metric gauge, there is the concept of a conformal gauge [Hei01, Chapter 15], that is
a topological space X with a family of metrics such that for any two metrics d and
d' the map

Idy : (X,d) — (X,d)

is an n-quasisymmetric map in the sense of Tukia and Viisala [Hei01, Chapter 10].
Along with co-authors Pankka and Rajala in [HPR10] Heinonen introduced the
notion of a quasiconformal frame (caveat lector in this thesis we refer to the same
objects as quasiconformal co-frames). A quasiconformal frame on a domain € is an
n-tuple of one-forms p = (p', ..., p"), satisfying for some p > n/2 and some K > n"/?

ph e L"(Q,A'Q), dp' € LP(Q,A*Q)
fori=1,...,n and
p|" < <Kpt A--- A p"

almost everywhere, where | - | is the non-normalised Hilbert-Schmidt norm. Under
suitable geometric conditions, the authors derived a local degree for the frame. They
were, however, unable to find an approximate quasiregular function which would
potentially allow for the characterisation of locally Euclidean (and possibly branched-
Euclidean) conformal gauges.

Pankka and Rajala in [PR11] continued investigations into quasiconformal frames,
and using variational methods, constructed interesting examples. In particular for
Q = B(0,7")\ B(0,7) they managed to show that minimisers of the energy functional

| ol @z
Q

exist in the class of all K-quasiconformal frames p for which

/0|B(0,r) = dx and P|1Rn\B(o,r/) =df

for some fixed quasiregular map f : R® — R". Furthermore, they showed a lower
bound for the minimiser based on the degree of the function f.

By considering the variation p — (1 + h)p where h € C3°(Q2), they showed that
minimisers also satisfy a weak reverse Holder inequality.

In this vein, we seek to examine quasiconformal co-frames minimising the p-integral
of their exterior derivative. Let 1 < p < oo, and let py € W4P(Q,R" @ A*¥Q) (cf.
§1.1.2) be a quasiconformal co-frame. The space CO? (€2) is called the space of
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quasiconformal co-frames with conformal class pg, and is defined to be

COP () :={o e W™ (QR"®A'Q)NL"(QR" @ A'Q):
0 — po € WEHP(Q,R™ @ A'Q), there exists
A : Q — COg (n) measurable such that o = Apg}.

The space SOF (2) is called the space of quasiconformal co-frames with orthogonal
class py and is defined to be

e d, n n n .
SO () = {o € W™ (Q,R RAQ)NL"(QR"®AQ) :
0— po € Wg’p(Q, R™ ® A'QQ), there exists
R : Q2 — SO(n) measurable such that o = Rpo}.

Intuitively one could say that these are the spaces of forms which are a multiples of
Po, respectively by conformal and orthogonal matrix fields, with the same boundary
values. Indeed one can construct simple non-trivial examples by starting with an
exact frame df for quasiregular map f, then taking any essentially bounded map
s € Wh(Q, M,,x,) with determinant bounded away from 0. Then set py := sdf.
It follows that any for any o € W™ (Q, SO(n)) with o equal to I on the boundary
of Q in the trace sense satisfies opy € S(’)ZO/Q(Q). If p > n/2 and p* denotes the
Sobolev conjugate of p, then for any o € W"(Q, COZ) equal to I on the boundary
in the trace sense, op € COY (€2). Whether all such co-frames can be given in such a
manner is an interesting question, relating to weighted Sobolev spaces and differential
inclusions.
We define the exterior energy of p to be

(1.4) o) = [ laop iz

We are able to show that minimisers for the exterior energy exist in these classes.
THEOREM 1.3. Let p > n/2, let Q@ C R" be a smooth bounded domain such that the
space of harmonic 1-fields with vanishing tangential component Hr(Q, A1Q) is trivial
ie. Hr(Q,AQ) = {0}, and let py be a quasiconformal co-frame in WeP(Q, R" @
AQ) N LMQ,R" @ A'Q). Then there is a minimiser of &, in the space COP (€2).

Nota bene the condition Hz(92, A'Q) = 0 is equivalent to the topological condi-

tion that H'(Q,9Q) = 0 see [DS52, Theorem 3|. The proof of the theorem is an
application of the compensated compactness theorem [IL93, Theorem 5.1|. With a
small modification of the originial compensated compactness theorem we are able to
extend the proof in the orthogonal class. If we assume that py € LP(2, R" @ A'Q) for
some p > n, then we can construct a minimiser of &,, for some ¢ below the critical
exponent of integrability for two-forms, n/2.
THEOREM 1.4. Let p > n and ¢ > np/((n+ 1)p — n(n — 1)). Let Q@ C R" be
a smooth bounded domain and let py € Lt (Q,R" ® A'Q) be a quasiconformal co-
frame. Suppose dpy € LI(Q,R" @ A*Q). Then there exists a minimiser of &, in
SO1 (Q).

In particular, np/((n + 1)p —n(n — 1)) < n/2, that is below the critical exponent
of n/2.
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We say that p € COP () is a local minimiser of &, if there is an ¢ > 0 such
that for any o € CO? (§2) satisfying |p — ollmax{pm} + ldp — do||, < € it holds that
Ex(p) < &,(p). Naturally local minimisers satisfy Euler-Lagrange equations.
THEOREM 1.5. Let, 1 < p < oo. If p € LP(Q,R" ® A'Q) is a local minimiser of
& 1 COY (1) — R, then it satisfies the Euler-Lagrange equations

(15) [ ol 2dp. ) dz =0
Q

and

(16) [ dol=2ap.un ) iz .
Q

where u € C§°(R2, s0,,) and A € C§(Q).

We call (1.5) the scalar Euler-Lagrange equations with exponent p and (1.6) the
orthogonal Euler—Lagrange equations with exponent p.

A combination of Theorems 1.3, 1.4, 1.5 and the higher integrability result of
Pankka and Rajala [PR11, Corollary 7.8] yields the following nice existence theorem
THEOREM 1.6. Letp > n/2 and let Q be a bounded smooth domain with Hr (2, A'Q) =
0. Suppose po € L"(,R" @ A'Q) is a K-quasiconformal co-frame and dp, €
LP(Q,R" @ A%Q) then there exists a qo = qo(n, K) < n/2 such that for every q > qq
there is a p € CO% () satisfying (1.6) with ezponent q.

Quasiconformal maps have interesting morphism properties for so called A-harmonic
equations, cf. §3.2.2 and [HKMO06, §14.35]. That is, if u € Wh™(Q') satisfies the A-
harmonic equation

div(A(z,du)) =0

or in weak form
//(A(x, du(x)), dv(z)) dz =0

for every v € C3°(€?), and f : Q — Q' is quasiconformal, then u o f satisfies another
A-harmonic equation

/Q(.A’(x, d(u o f(q;)))’dv(m» dr =0

for every v € C5°(Q). In particular, if w is n-harmonic, then u o f is A-harmonic
[HKMO06, Theorem 14.39].
Equation (1.6) can be written in divergence form

div(A(z, A(z)) det p/"(z)) = 0
where A : Q — s0,, ® A'Q is the essentially unique measurable map satisfying
dp = AN (det p)~Y"p.

and A : Q X 50, @ A'Q — s0, ® A'Q is a monotone map of growth p. (cf. §3.2.2. By
the quasiconformality of p, and Proposition 3.2 A € L?(Q, s0,, ® A'Q).

It is tempting to ask if the Euler-Lagrange equations have a similar A-harmonic
morphism property under quasiconformal maps. Indeed if we examine quasiconformal
frames in the class of an exact frame, we get the following theorem.
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THEOREM 1.7. Let f : Q — Q' be a quasiconformal map and o : Q@ — SO(n) be a
measurable map such that & = o o f~1 € WYYV, SO(n)). If odf € W2(Q,R" ®
A'Q) then 6 € WHV2(QY,SO(n)). If odf is a solution to (1.6) for p = n/2, then
there is a monotone A : Q) x 80, ®R" — s0,, @R", of growth n/2 such that & satisfies
the A-harmonic equation

(1.7) /I(A(y, 67'd5), 67 duc) dy = 0

for all u € C§°(£2, s0,,).

The monotone function A is given by (3.11).

In analogy to the distinction between the Lagrangian description (reference config-
uration) and Eulerian description (current configuration) in elasticity theorey [MH94|
Theorem 1.7 illustrates how a different configuration (i.e. coordinate frame) can crit-
ically simplify the the Euler-Lagrange equations.

In Section 3.4 we examine a modest modification to our functional to yield an even
simpler equation. We consider an energy functional &, : CO? (§2) — R,

&) = [ 1 ldp)p de

where 21, satisfies
CYdp| < [A,dp| < Cldpl.

Analogues of Theorems 1.3 and 1.4 hold for this energy. Crucially, the A-harmonic
morphism behaviour simplifies nicely, yielding the following analogue to Theorem
1.7.

THEOREM 1.8. Let f : Q — € be a quasiconformal map with inverse h : Q' — €.
Let o : Q — SO(n) be a measurable map satisfying ¢ = o o h € WH1(', SO(n)).
Suppose d(odf) € L™?(Q,R" @ A%Q), then & is in WI™/2(QY, SO(n)). Furthermore
there is a monotone map A : 0, @ A'R™ — s0,, @ A'R"™ of growth n/2 such that if
odf is a local minimiser of ‘%/2 then ¢ satisfies the equation

(1.8) / /<A(DL6), 6 'dus) dy =0

for all w € C3°(SY, SO(n)).

Equation (1.8) can be written in divergence form
div(6 A(Dp5)s ') =0

In particular the monotone function A4 is independent of y € ' hence equation (1.8) is
the Euler-Lagrange equation for a functional with C! integrand which is proportional
to the Dirichlet n/2-energy for maps o € W'™/2(Q2, SO(n)). As such, existing higher
regularity theory [HL87| can be applied, yielding the following corollary.
COROLLARY 1.9. Let o be as in Theorem 1.8. Then there is a set ¥ C ' of Hausdorff
dimension, less than [n/2] — 1, such that o o f~' € CL¥(Q\ ¥).

loc

Proof. This follows by applying Theorem 1.8 and Corollary 3.10 U



NON-SMOOTH CURVATURE AND THE ENERGY OF FRAMES 15

1.1. PRELIMINARIES

We work on oriented C* Riemannian manifolds possibly with boundary. When
working on domains 2 C R", they will be considered as smooth submanifolds with
boundary of R”, unless otherwise stated. We use the Einstein summation convention,
where if an index is repeated as both a subscript and a superscript, then summation
over the appropriate dimensions is implied, unless otherwise stated.

Much of the material deals with differential forms on domains, which are sections
of the exterior algebra of the cotangent bundle: « : Q@ — AFQ. Because  is a
domain, T*Q) can be identified with  x R™. Consequently A*Q can be identified
with Q x AFR™, and sections of A*Q) can be identified with functions @ — A*R™.

Differential forms are equipped with the wedge product

A A ) AFQ — AR
For o € A'Q and B € A¥Q) it satisfies
ahf=(-1)*3Aa.

For every X € R" and a € A¥Q), we can define the interior product X_a € A¥~1Q)
by

(XI_O[)(Xl, ce ,Xk_l) . Oé(X, Xl, PN ,Xk_l),
for X1,...,X;_1 € R™. For k > 0, we can equip A*Q with the following inner product:
for[:{il,...,ik}, il <i2< <ik, andJ:{jl,...,jk},jl <j2 < - <jk,
, : . , 1, I=J
(dx™ N« Ndx™ da?* N Nda?F) =<7 )
0, otherwise.
Let 0 <k < n. The Hodge star is a map
* 0 AFQ — A"TRQ
defined by
aAxB = {a, B)dx' A--- Ada™.
The exterior derivative d is a linear map
d: C>®(Q,AFQ) — C=(Q, A"Q).
It is defined for f € C*(Q2) by

df = -dz"
f Ezj o rda,
and extended to higher order forms via the relations
d(a A B) = (da) A B+ (=1)Fa AdB and d*a = 0

for a € C®°(Q, A*¥Q) and 8 € C=(Q, A'Q).
The co-exterior derivative is the linear map

d*: C™(Q,A*Q) — C=(Q, A" 1Q)

given by d* = (—1)" 1 « dx.
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DEFINITION 1.10. A finite dimensional smooth manifold G is a Lie group, if there
exists a group structure on GG such that the maps

GxG—G, (g,h)— gh
and
G—G, gr—gt
are smooth.

The tangent space T.G of a Lie group G at the identity element e € GG is called a
Lie algebra.

A vector field X : G — TG is said to be left-invariant if for every g € G, the
map l, : G — G, h — gh fixes X, that is Dl,(h)(X(h)) = X(gh). The value of
a left-invariant vector field at the identity specifies the value at any other point by
X(g) = Dly(e)(X(e)). For X,Y € T.G, let DI, X and DI,;Y denote the corresponding
left-invariant vector fields. Their commutator [DI, X, DI,Y] is a left-invariant vector
field. This defines a Lie bracket on T.G, by

[X.Y]:= [DIl,X,DIl,Y](e).
This is antisymmetric and satisfies the Jacobi identity:
(X, Y Z]] + [V, [Z, X]] + [Z,[X, Y]] =0

for every X,Y, Z € T.G |Lee03, Chap. 15].

Let G be a Lie group and g its Lie algebra. The adjoint action of G on g is a map

Ad:Gxg—g
given by
Ad(g,v) = D®,(e)(v)

where @, : G — G is the map h — g 'hg and e € G is the identity element. The
adjoint action Ad(g,v) is denoted by Ad,(v).

1.1.1. Vector-valued forms. Let V be a finite dimensional vector space. A function
a:Q — V®AQis called a V-valued form on €.

Suppose U and W are also finite dimensional vector spaces, and B: U x V — W
a bilinear map. Let k,l € {1,...,n},andlet a: Q - U®@A*Qand 3: Q — V@ AQ
be U- and V- valued forms, respectively. Then define B(a A ) : Q — W ® A*Q by

B(anB)(p)( Xy, ..., Xi1) =
> sign(0) B(a(p)(Xo)s - - Xor): BO) Koty - - Xotiin))-
[ SI

for p € €2 and vectors X, ..., X;; € R", where ¥, is the set of permutations on n
elements preserving the order of the first k elements and the last n — k elements. In
particular for u € U, v € V, a € A¥Q and 5 € AIQ,

Bu®@aAv® f) = Bu,v)®@aAp.
For example, let A : Q — M5, @ A*¥Q be an (m x n)-matrix-valued k-form over
Q, and let p : Q — R" ® A'Q be an R"-valued I-form over 2. Then
Al L. gl p!
A= : : and p=1|: |,
Aml ... AMmn pn
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where p' and AV are I- and k-forms, respectively. In this case AAp : Q — R™ @ AMQ
is an R™-valued (k + [)-form given by

LAY A
ANp= !
YL AT A p
We can extend the Hodge star = : A*QQ — A" *Q to a map x : V ® AFQ —
V @ A"*Q, by identifying * with Idy ® . If V has an inner product (-,-)y, then
define an inner product on V ® A¥Q by
(1.9) (a, B) = +{a NxB)v,
where o, 8 € V ® AFQ.
Let a, 8 € R® @ A'Q), then
O[1 61
o=\ : and =1\ |,
aTL /BTL
where o, 8 € A'Q. Let
al = A;dxj and (' = B;-dxj.

We can identify a with the matrix A whose elements are given by Aé», and [ can be
identified with B whose elements are given by B; In this way a, 8 € R"* @ A'Q are
identified with (n x n)-matrices.

PROPOSITION 1.11. Let o, B € R* @ A'Q and let A and B denote the corresponding
matrices, then the inner product on R™ @ A*Q given by

{a, B) = x{a A xB)gn

satisfies

Proof. We calculate

D)W
i=1 j=1

=tr (A'B).
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PROPOSITION 1.12. Let (V,(-,-)v) be a finite dimensional inner product space. Let
AV — V be an antisymmetric linear map on V. Then the induced map A" :=
ARId : V@ AQ — V @ A*Q, is antisymmetric for the inner product defined in
(1.9), that is for every o, B € V @ AFQ

(1.10) (a, A'B) = — (A, B).
In particular

(a, Aa) = 0,
for every a € V @ AFQ.

Proof. 1t is sufficient to examine this for simple elements of the form v ® o where
v €V and a € A*Q. Let a, 8 € A¥Q, and let v, w be elements of V. Then

(wea, A'(lwep)) =*(v, A(w))y(a AxB)
= —x (A(v),w)y(a A *p)
=—(A(v®a),wep).
[

PROPOSITION 1.13. Let R € SO(n). Let R = R®1d : R" ® A*Q — R" @ A*Q.
Then, for every a € R* @ AFQ)

(1.11) |R'a| = |a.

Proof. 1t is sufficient to check for simple elements v ® 8 where v € R" and 3 € A¥Q.
We have

[R(vep)|* = (R(vep),Rvep))
= (R(v) @ 8, R(v) ® f)
= (R(v), R(v))rn x (B A *P)
= [v]*8]”
= v g%
]

In the future if it is unambiguous, we will denote A ® Id and R ® Id by A and R
respectively.

We call an R™-valued one-form p : Q — R*"®AQ a co-frame on . More concretely,
a co-frame on € is a vector

p:

V2

where the elements p’ are one-forms. The determinant of p is
det p:=xp" A+ A p™.
We call the frame dx : Q — R" @ A'Q given by
da!
dx = :
dz"

the standard Cartesian co-frame. It satisfies |dx| = |I| = /n.
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Given an (n x n)-matrix A, we define A% : A¥Q — A¥Q by
(A#(X>(X17 s 7Xk) = a(AXlu s 7AX/€)7

for « € AFQ and X1,..., X;, € R N.b. for X € R, (A\A)# : A*Q — A*Q is equal to
NE(AT).

Let V be a finite dimensional vector space. Given an (n x n)-matrix A, we identify
Idy ® A* with A%. We also extend the exterior derivative to V-valued forms, by
identifying C>(Q,V @ A*Q) with V @ C*°(Q, A*Q), and identifying d with Idy ® d.
In this way we get a map

d: C®(Q,V @ A*Q) = C(Q,V @ AFQ)

cf. IMT97, §16,17]. We define d* : C®(Q,V @ Ak¥Q) — C>(Q,V @ A¥71Q) similarly
by identifying d* with Id, ® d*.

1.1.2. LP spaces of differential forms. We say a form o : Q@ — V ® A*Q is
measurable if for every open subset U C V ® A*¥Q, a=1(U) is a Lebesgue measurable
set in 2.

Given an inner product space V and induced inner product and norm on V ® A*Q),
we can define LP-spaces of V-valued forms for 1 < p < oo by

LP(Q,V @ A*Q) = {a : Q — A*Q| a is measurable ; / la|P dx < oo}
Q

For p = oo we define
L0,V @ AFQ) = {a: Q — V ® A*Q| a measurable, ess sup |a| < co}.

These are equivalent to saying that the coefficients are in LP(2) for 1 < p < oo.

We say forms are equal almost everywhere if they are equal outside of a set of
measure zero. After passing to equivalence classes as usual for 1 < p < oo the spaces
(LP(Q,V @ A*Q), || - ||,) are Banach spaces where

1/p
ol = ([ ol ) o 1 << 0 o = esup .
Q

The local LP-spaces LP (2, V@A*Q) are defined to be the set of measurable functions

a: Q) — V ®A*V for which for every x € € there is an open set U CC §) containing
z such that a|y € LP(U,V @ A*Q). As such, for 1 < p < ¢ < oo we have

LL (Q, V@ AQ) C LF (Q,V @ A*Q).

loc loc

Let v € Li, (Q,V ® A*Q), ¢ € C(Q,V @ AFQ), and n € CF(Q,V @ A"FQ).

loc
Then we can define evaluations

(a, ) = /Q<a,<p> dx and (e A7) = /Q(a AN)y.

These evaluations make « a linear functional on the spaces C5°(Q, V @ A*Q)) and
Cse (9, V @ A"*Q). We call continuous linear functionals

C(Q, Ve AMQ) - R

distributional V -valued k-forms on (), and we denote the space of these functionals
by 2'(Q,V @ A*Q). For a € 2'(Q,V @ A*Q) and p € C°(,V @ A*¥Q), we denote
the evaluation of « at ¢ by (o, ¢).
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We extend d and d* to the space of distributional vector valued forms: for a €
2'(Q,V @ AFQ)
(da, ) == (o, d*p) and (d*a, ) := («, di))
for every p € C3°(Q,V @ AF1Q) and ¢ € C°(Q,V @ A*1Q).
PROPOSITION 1.14. Let 1 <p<o0,1<qg<o0,p =p/(p—1) and ¢ = q/(q—1).
Let U, V, and W be finite dimensional inner-product spaces and let B :' V x W — U

be a bilinear map. Suppose a € LP (Q,V ® A*Q) 8 € LL (QW @ A'Q), da €
L (Q,V @ AM1Q), and dB € LY (Q, W @ A'Q). If p > ¢/, then

d(B(a A B)) = B(da A B) + (=1)*B(a A dp)
and d(B(a A B)) € LL (Q,U @ AHHEHQ),

loc

Proof. This is a standard application of smooth approximations [Eva98]|,[ISS|. O

We define the exterior Sobolev space WP(Q,V @ AFQ) (also called the partial
Sobolev space), cf. [ISS], to be

We(Q,V @ A*Q) = {a € LP(Q,V @ A*Q) : da € LP(Q,V @ AFTQ)}.
We equip this space with the norm
lallwes = lall, + lldall,
The subspace of WaP(Q,V @ A*Q) consisting of forms a € WaP(Q,V @ A*Q)

satisfying
/(md*@ dr = /(da,@ dx
Q Q

for every ¢ € C™(Q,V @ AF*1Q) is denoted WP (Q,V @ A*Q).
Similarly we define W4 ?(Q,V ® A*¥Q) to be
WP (Q,V @ AQ) = {a € LP(Q,V @ AFQ) : d*a € LP(Q,V @ AF1Q}.
We equip this space with the norm
lllwao = llall, + |l all,.
The subspace of W4 P(Q, V @ A*¥Q) consisting of forms a € W P satisfying
/(a, dp) dz = /<d*a, ) dx
Q Q
for every ¢ € C™(Q,V ® A¥1Q) is denoted W5 7(, V @ AFQ).
It follows from elementary algebra of the Hodge star operator that
*: W(QV @ AFQ) — WP(Q,V @ A"7FQ)

is an isometry.

PROPOSITION 1.15. The norms || - ||was and || - ||yar make WEP(QV @ AFQ)
and WEP(QV @ A"*Q), respectively Banach spaces. Furthermore W}l’p(Q,V ®
ARQ) and WEP(Q,V @ A¥) are, respectively closed subspaces. Furthermore the sub-
space C=(Q,V @ A*Q) is dense in WEP(Q,V @ A*Q) and W P(Q,V @ AkQ), while
Cs°(Q,V ® A*Q) is dense in WEP(Q,V @ A*Q) and WL P(Q,V @ AFQ).

Proof. This is proven for WP(Q A*Q) and W4 (2, A*Q) in [ISS, Corollaries 3.6-

3.8]. It is elementary to extend the proof to vector valued forms, by fixing a basis in
V', and considering forms taking values in the span of each basis element. 0
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We define the spaces
WP(Q, AFQ) == {a € LP(Q,A*Q) : O, € LP(Q,A*Q) for i = 1,... n}.
And
WAP(Q, AFQ) = WP (Q, AFQ) N WS P(Q, A*Q),
WEP(Q, AFQ) = WP(Q, AFQ) N WWEP(Q, AFQ),
HP(Q, A*Q) == {a € LP(Q,A*Q) : da = 0, d*a = 0},
Ho(Q, AFQ) = HY(Q, APQ) N WEHQ, AFQ),
and
Hy (Q, AFQ) = HY(Q, APQ) n WL (Q, A*Q).
A significant point is that provided € is a smooth bounded domain, H (2, A*Q) and
Hr (2, A*Q) are finite dimensional spaces of forms whose derivatives to all orders
are continuous up to the boundary, while H?(2, A¥Q) is a space of forms which are
smooth on the interior of €2.

An important tool that we make use of is the Hodge decomposition for differential
forms [ISS, (1.2)]. It says that for a smooth bounded domain 2 C R™

LP(, AFQ) = d(WHP(Q, A*1Q)) @ d* (WP(Q, AFQ)) @ Hp(Q, AF

LP(Q, A*Q) = d(WP(Q, A*1Q)) @ d*(WIP(Q, A*Q)) @ Hy(Q, A

LP(Q, A*Q) = d(W;P(Q, AM1Q)) @ d (WP (Q, AFQ)) & HP (2, AFQ

We extend this to vector valued forms by identifying LP(Q,V ® A¥Q
LP(Q, AFQ).

REMARK 1.16. Similarly for 1 < p < oo we define the spaces LP(N, E ® A*\) and

LY (N, E ® A*N) of vector bundle valued forms, where E — N is a vector bundle

over the Riemannian manifold (N, (-, -)xr) with metric (-, )g. In this case £ @ A*N)
has the Riemannian metric (-,-)g ® (-, -)a; ¢f. [MT97, §16].

Q)?
Q),
).
)=V ®

1.1.3. Bundle-valued forms.

DEFINITION 1.17. Let E — X and F' — ) be vector bundles over distinct manifolds
X and Y with fibres E, and F, at the points z € X and y € ), respectively. By
EdF — X x Y we mean the vector bundle over X x ) whose total space is given by

E®F ={(z,y,u,0) EXxYXExF:zeX, yeY, uc E,veF,},

and whose projection map is given by the Cartesian projection onto the first two
coordinates. The fibres (E & F),, are naturally isomorphic to E, & F),.

If E — X is a smooth vector bundle, we denote the smooth sections of E by I'(E).
The set of such sections which are compactly supported is denoted I'y(E).

Using this notation the bundle T'(©2 x M) is canonically isomorphic to TQ? & T'M
via the natural inclusion maps: for y € M TQ — TQ x {y} C T(Q2 x M), and for
r€QTM—={z} xTMCT(QxM).

For a given topological space X we define the 0-bundle over X, 0y — X with total
space

Ox = {0} x &,
and projection given by the Cartesian projection onto X.

Consequently T'(€2x M) is isomorphic to (TQB0r ) B (0BT ). In what follows we
identify these two bundles. Let [Ty : T(Q2 x M) — 0 & TM and Il : T(Q2 x M) —
T & 0 denote the projections under this direct sum decomposition.
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DEFINITION 1.18. The vector bundle TM ® AFQ — M x Q is defined to be the
bundle with total space

TMeAQ:= | ] (T,M) & A",
yeM
and natural projection TM @ A*Q — M x Q. For y € M and z € , it has fibre
(TM @ A Q)0 = TuM @ AEQ = T, M @ AFR™

CONVENTION. For notational convenience we identify the bundles TM ® A*Q —
M x Q and TM @ A*Q — Q x M with the map (z,y) — (y,x). For every (z,y) €
Q x M we note that (TM ® A*Q) ., = T,M ® AkQ.

Let (-,-), denote the metric tensor of M at y. Then it is an inner product on
T,M, and we define

(€, x) = *{€ Axx)y and (€] = \/(£, )

for £, x € T,M @ A*Q.
DEFINITION 1.19. Let o € T(TM ® A*Q). For every x € €, define the section
aly : M — TM® AQ by
alg 1y = alz,y).
For every y € M, define the section a|? : Q@ — T, M ® A*Q by
= alx,y).

The exterior derivative dg : T(TM @ AF¥Q) — T(TM @ AF1Q) is the linear map
which takes a € T'(TM ® A*Q) to the section

doo : Qx M = TM@AQ,  (2,y) — d(a]!)(x).

The co-exterior derivative dfy : T(TM @ A¥Q) — T'(TM ® A¥1Q) is the linear map
which takes v € (T M ® A*Q) to the section

dho - QX M = TM@ATIQ, (2,y) = d* (oY) (z).
Let V denote the Levi-Civita connection for the product Riemannian metric:
V:T(Qx M) = A Qx M)@T(Q x M).

The bundles 0, & T M and T2 @ 0, are parallel sub-bundles under the connection
(because of the product structure), so for any vector field X € I'(Q2 x M)

Let p € T(TM ® A'Q). For any vector X € T(Q2 x M), the covariant derivative
of p, denoted by Vxp, is
(Vxp)(Y) = Vx(p(Y)) = p(VxY),

where Y € T'(TQ @ Opq). This is well defined because VxY € I'(TQ @ 0,) and
Vx(p(Y)) €T(0q®TM), so Vxp e T(TM @ A'Q).

DEFINITION 1.20. We define the wertical covariant derivative of p VMp to be a
section 2 x M — (TM @ A'Q)) @ AY(Q x M)

VY = Vauxp,
where X € T(Q x M).
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We can also describe the exterior derivative of p using the covariant derivative:

dop(X,Y) = (Vxp)(Y) = (Vyp)(X),
for X and Y in TQ2® 0. This can be easily verified using the fact that for a one-form
#, and vector fields X and Y,

(Vx0)(Y) := X(0(Y)) = 0(VxY).

Let N = Q x M. Then TM @ A*Q) can be identified with a subset of TN ® A*N
as an isometric embedding. Consequently, for 1 < p < oo we define the space
LP(Q x M, TM @ A*Q) to be the subset of LP(N, TN ® A*N) taking values almost
everywhere in TM @ AFQ, where LP(N, TN ®@ A*Q)) was defined in Remark 1.16. We
define the space L} (Q x M, TM ® A*Q) similarly.

Similarly we define distributions 2(Q x M, TM ® A¥Q) to be the set of a €
DN, TN @ A*N) such that

(@, 8) =0
for all 8 € T((TM @ A*Q)L). We have similarly, that

LL (X M, TM® A*Q) C 2(Q2 x M, TM @ A*Q).

For p € Li (2 x M,TM ® A'Q), if there is a constant C' > 0 such that for
every triple of smooth compactly supported vector fields X € T'o(0p @ T€2) and
Z,Y € To(TM & 0q)

/Q M(ﬂ(X)7VZY> +{p(VzX),Y) dafdy‘ < Ol X ool Zlso Y []1-

The smallest such C for which this holds is defined to be ||[VMp||w.

DEFINITION 1.21. Let A be a finite dimensional vector space, U C R™ a domain, 9’
the coordinates of R™, and f : 2 x U — A a smooth compactly supported function.
Define the differential operator VYV by VUf: Q x U — A ®@ R™,

V=Y 0ufedy.
i=1

We define the formal adjoint of VY to be the operator (VV)* : C*°(Qx U, AQR™) —
C>(Q x U, A) for which

/Q U((VU)*¢,9> dedy = / (6, VV0) dady

QxU
for all C§° test functions 0 : Q x U — A.
Let 0 € 2'(Q x U,A® AQ) and let ¢ € C°(Q x U, A ® A'Q @ R™). Then
VY0 e 2'(Q x U, A® A'Q @ R™) is given by the evaluation

(V70,0) = (0,(V")"9).






CHAPTER 2

THE CURVATURE OF NON-SMOOTH CONNECTIONS

Ehresmann first developed his notion of connection in [Ehr51]. His connections gen-
eralise both affine and principal connections. Although Ehresmann connections can
be specified for more general fibre bundles, we will only be interested in the local
case, that is, a product 2 x M, where M is a smooth m-dimensional manifold and
2 C R" is a smooth domain.
DEFINITION 2.1. Let X be a smooth m-manifold. A sub-bundle of TX H is a
hyperplane distribution of rank k on X if it is a rank k sub-bundle of the tangent
bundle. That is H, := HNT,X is a k-dimensional subspace of T,X for every p € X.
We say that H is smooth if it is a smooth manifold and the inclusion map H — T'X
is a smooth vector bundle homomorphism.
DEFINITION 2.2. Let X be a smooth m-manifold, and H a smooth rank & hyperplane
distribution. The distribution H is said to be integrable about a point = € X if there
is a neighbourhood U of x, and a diffeomorphism ¢ : U — V C R* x R™* such that
D¢;(1I))|Rk><{0} is an isomorphism onto H, for all p € U. The distribution #H is said to
be completely integrable if it is integrable about every point.

We denote by I'(H) the set of smooth vector fields v : X — T'X’ such that v(p) € H,,
for every p € X.
THEOREM 2.3 (Frobenius’ integrability condition). Let X' be a smooth manifold and
H a smooth hyperplane distribution in X. Then H is completely integrable if and
only if for every pair of smooth vector fields X,Y € T'(H), we have

(X, Y] e T(H).

Theorem 2.3 is proved in many differential geometry text books cf. [Lee03, Theo-
rem 14.5]. Subsequently this condition will be expressed as:

(2.1) (1, H] C H.

DEFINITION 2.4. An Ehresmann connection H on the product 2 x M over 2 is a
smooth vector sub-bundle of T(Q x M) satistying

TOAXM)=HoV,
where V is the bundle V = 0q & T M.
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We now make more explicit some facts about Ehresmann connections. Let g
denote the Cartesian projection onto €2, and let my, denote the projection onto M:

T : A XM—=>0Q and 7y QXM= M.

LEMMA 2.5. Let H be a smooth n-dimensional hyperplane distribution on £ x M.
Then H is a smooth Ehresmann connection if and only if for every (z,y) € Q x M,
DWQ\HW : Hay — T8 is a linear isomorphism.

Proof. Assume H is an Ehresmann connection; H is a smooth distribution such that
HBYV =T(Q x M). The map mg : @ X M —  is a submersion, that is, the
differential of the map D, ,mq : Ty, (2 x M) — T, is a surjection for every z € Q
and y € M, and V = ker Drg. So Dn|H is a fibrewise isomorphism from #,, to
T,.

For the converse we observe that, since V = ker Drg, and H N ker Dmg = Ogx .,
we have that H ®V =T(Q2 x M). O

A section
P:OAXM—=>TMeAQ

is called an Ehresmann connection form.

LEMMA 2.6. Let H C T'(2 x M) be an n-dimensional hyperplane distribution. Then
H is a smooth Ehresmann connection if and only if there is a smooth Ehresmann
connection form p: Q x M — TM @ AQ such that

H=(id+ p)(TQ D Opn).

Proof. First, to clarify, we identify TM @ A*Q with Hom(T'Q @ 04, 0q T M) canon-
ically. Now given an Ehresmann connection we have, by Lemma 2.5, that Dmqly :
H — T is an isomorphism on fibres. We define the bundle map Il : H — TQ®H 0
by

o (V) = (Dayma(V),0),
for V€ H,, and (z,y) € Q x M. Because H is a smooth Ehresmann connection,

the map Il is a smooth vector bundle isomorphism from H to T2 & 0. Similarly
we define a map Il : H — 0q & T M by

m(V) = (0, Dy yTm V),

where V' € H,,. We note that, in general, this map is not an isomorphism.
Let p := [y oll". Since 0o ®TM and TQ® 0, form a direct sum decomposition
of T(Q x M), we have that for any V' € H,

V =Ia(V)+Ium(V)
= Tlo(V) + Ty o g (Ta(V'))
= Ho(V) + p(Ila(V)).
In particular we have that H is of the form W + p(W) for W in TQ & Opy;
H={W+p(W)eT(QxM): W eTQ&® 0}

Given a section p : Q@ x M — TM @ AQ such that H = (id + p)(TQ & 0p), we
have that the natural projection Dmg|y : H — T is a fibrewise isomorphism, since
p(TQ®0p) C 0 ®TM = ker Drrg. Hence H is an Ehresmann connection. 0
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2.1. SMOOTH CONNECTIONS AND CURVATURE

We define the curvature of p € T(TM @ A'Q) to be the section of TM @ A*Q
given by:

(2.2) F(X,Y) :=dap(X,Y) + (V,x)p)(Y) = (V,r)p) (X),

where X, Y € TQ @ 0.
REMARK 2.7. The curvature is equivalent to the following expansion

(2.3) FX,Y) = (Vxspx)P)(Y) = (Vyspr)p) (X).

This can be verified by expanding the exterior derivative of p.

LEMMA 2.8. Let p: Qx M — TM® A'Q be a smooth Ehresmann connection form.
Let X and'Y be smooth vector fields on 2 x M, taking values in TQ @ O0p¢. The
curvature F(X,Y") is the unique vector field valued in V), such that

(2.4) (X 4+ p(X),Y +pY)] - F(X,Y) e '(H).
Proof. Denote by W the commutator
W :=[X+p(X),Y + p(Y)].

First we show uniqueness. Because V & H = T(Q2 x M), we have that there is a
unique direct sum decomposition of W

W =Wy + Wy,

where Wy € H and Wy, € V. Thus there is a unique vector field W), such that
W —-Wy eH.
Now we must show that F/(X,Y) = W,,. We may write

W=H+YV
where H € TQ P 0y and V € 0o @ TM = V. Then
W =H+p(H)—p(H)+ V.
Now H + p(H) € H and p(H) € Vso V — p(H) € V, as such
Wy=H+p(H) and Wy, =V —p(H).

In order to prove the result we must show that F'(X,Y) =V — p(H).
We use the torsion-free property of the Levi—Civita connection to write

W = Vxipx) (Y +p(Y)) = Vyspr) (X + p(X)).

Since V is a Levi-Civita connection for the product metric, for any vector fields
X el(TQ®0pm) and U € T'(0g & TM), and vector Z € T(2 x M)

VzXeTQ@® 0y ViU €0qdTM.
Consequently
H=Vxix)Y = VyimX, and V= Viyx)(0(Y)) = Vyipr)(p(X)).
Then
V= p(H) = Vxipx)(p(Y)) = p(Vxipx)Y)
= Vv (p(X)) + p(Vy o) X)

= (Vx1p00)(Y) = (Vyp0r)p)(X)
= F(X,Y),
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and F(X,Y) statisfies the claim of the Lemma. O

COROLLARY 2.9. Let p: Q x M — TM ® A*Q be a smooth Ehresmann connection
form and F : Q x M — TM @ A?Q the curvature of p. Then idg @ p(TQ @ 0pq) is
integrable if and only if

(2.5) F(X,Y)=0

for all smooth vector fields X,Y € T'(TQ @ 0p).
This is essentially a restatement of the classical Frobenius theorem in the context
of Ehresmann connections

Proof. Let H =idq@p(TQ260,0). Let X and Y be smooth vector fields taking values
in H. Then by Lemma 2.8 [X + p(X),Y + p(Y)] € H if and only if F(X,Y) = 0.
Subsequently [H, H| C H if and only if F/(X,Y) =0forall X and Y in ['(TQ & 0m).
Consequently by Theorem 2.3, H is integrable if and only if F/(X,Y") = 0. d

REMARK 2.10. Because of Lemma 2.8, the curvature is independent of the choice of
torsion-free covariant derivative. As such it is also independent of the metric. See
[MT97, §17| for more details.

The curvature of p can be expressed in coordinates as well. Let y : U C M — V C
R™ be a coordinate chart. Let x = (x!,..., 2") denote the standard coordinates in €.

In this case, using the summation convention and using the expressions X = X0,
and Y = Y'0,:, we have
p = POy ® de’, p(X) = ?Xjaya and p(Y) = p?Yjaya,

and the curvature is given by

opy  Opt op} op? ok
2.6 F= o _ SPiy alPk 0Ol 5o dat A da
(2.6) <&ﬂ Gur T PG~ Py ) dp @ Ada

DEFINITION 2.11. Let p € T(TM ® A'Q). Define [VMp|: @ x M — R by

(z,y) = sup{[Vyp(X)| : ¥V € T M X € R"[Y] < 1 [X] < 1}
Let ¢: 2 — R be a function. We say p is vertically Lipschitz with respect to c, if for
every (z,y) € Q x M

VMol (2, ) < ).
DEFINITION 2.12. Let p be a smooth Ehresmann connection and o : [0,1] — Q an
absolutely continuous curve starting at xo and ending at x;. A lift of o along p
starting at yo € M is an absolutely continuous curve v : [0,1] — Q x M for which
7(0) = (5607 y0)7 TQ o7y =0, and
V() = () + powy) - (1)

for almost every ¢ € [0, 1].
REMARK 2.13. If v : [0,1] — Q x M is a lift of ¢ : [0, 1] — Q starting at yo, then
is a solution to the initial value problem

¥ =0+ p(o)

and
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To minimise notation, we identify the lift v : [0,1] — Q x M with it’s projection
onto M where convenient. If v : [0, 1] — M is said to be a lift of o : [0,1] — €, then
it is to be understood that

t = (o(t), (1))
is a lift of o in the sense previously defined.
REMARK 2.14. Let ¢ : Q — R. If M is complete and p is vertically Lipschitz with
respect to ¢, then for any C! curve o for which c o ¢ is locally integrable and any
starting point gy, there exists a unique lift of v starting at yo. This is because v is
the unique solution of an initial value problem |[Lev55|.
LEMMA 2.15. Let V : R xR™ — R™ be a measurable family of Lipschitz vector fields
with uniform Lipschitz constant C, that is V; = V(t,-) : R™ — R™ is C-Lipschitz for
almost every t. Suppose fory € R™, , : [0,1] — R™ is a solution of the initial value
problem

Oy (t) = Vil (1))
7(0) = .
Then
ey —y'| < | (t) — W ()] < ey — ¥
In particular fort <1,
ey =y < (1) =9 (] < ely =y

Proof. Let y,y" € R™. Since v, and v,/ are absolutely continuous, ¢ — |7, (t) — 7, (t)|
is differentiable a.e. and

|07y () = 7 (D] < [0y (£) — Dy (1)
= [Vi(yy (1)) = Vilry (1))]
< Clyy(t) = vy (t)] for a.e. t € [0,1].
Thus multiplying by e=¢* yields
™Dy (1) — 1y (8)] — Ce™ |y (1) — 7 ()] <0,
and we obtain
0, (e (1) = 1 (B)]) < 0.
When we integrate both sides from 0 to 7, we arrive at
e_CThy(T) =Yy (T)] = [7(0) — 7, (0)] < 0.
Rearranging we obtain
[7y(7) = 7 (7)] < €971, (0) = 7 (0)]
<y —y|.
Similarly,
AUy (8) — 7 (1)] = 0.

We can again integrate to obtain

e Ty — | < (1) — vy (7).
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2.2. NON-SMOOTH CONNECTIONS

Considering an Ehresmann connection as a section of a vector bundle allows us to
work with measurable and distributional Ehresmann connections. For the rest of the
text, we assume M to be Riemannian and complete.

If p: QA x M — TM ® AQ is measurable, we call it a measurable Ehresmann
connection form. For every (z,y) € 2 x M it defines a subspace H (5 C T{(z4) (€2 %
M) C T(2 x M) given by

Hizy) = {X + pay)(X) : X € T,Q}.

Let
H= | HayTEOQxM).
(z,y)€QxM
This is the measurable Ehresmann connection associated to p.
DEFINITION 2.16. Let M be a smooth Riemannian manifold. We define A(Q2 x M)
to be the set of p € L=(Q x M, TM & A'Q) such that

(1) [[daplloe < o0 and
(2) [V*Mp]l < oo.

We define Ao (2 x M) to be the set of p € L2 (Q x M, TM ® A'Q) such that

loc
(1) p is uniformly vertically Lipschitz, i.e. ||VMp|loo < 00; n.b. this condition is
not local,
(2) dp € LS.(Q2 x M, TM ® A*Q), and

loc

(3) for every U C M, p|Q x U € L®(Q x U, TU @ A'Q).

PROPOSITION 2.17. Lety : U CC M — V C R™ be a coordinate chart smooth up
to the boundary and compactly contained in M. Let p: Q X M — TM ® € be a
measurable Ehresmann connection form. Then the coordinate transformation idg X 1
induces an Ehresmann connection form p: Q x V — TV @ A'Q satisfying

O x M —"5TM e AQ
idQXd)_lT TDwI@)idAlsz
QxV——TV 8 A

We call p a coordinate representation of p on (U, ).

Proof. Denote by & the diffeomorphism idg x ¢ : Q@ x U — Q x V. Then &, :
T(QxU) — T(Q2xV)is a vector bundle isomorphism. In particular, ®, : 00BTU —
0TV =R x (QxV).

Similarly &~ : A1(Q x U) — AY(Q x V) is a vector bundle isomorphism taking
T*Q @D OU to T2 ) Ov.

We combine these two maps to yield a map ¥ = &, @ &~ : TU @ A'Q —
TV ® A'Q. The new connection form p: Q x V — TV ® A'Q) is defined as

p=Vopod !
O

PROPOSITION 2.18. Let U CC M, v : U — V be a coordinate neighbourhood on M,
which is smooth up to the boundary of U. Let p € Ape(2 X M) be an Ehresmann
connection form, and let p: QxV — TV @ AQ denote its coordinate representation
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on (U,1). Suppose further that |dgp| is essentially bounded on Q x U. Then p €
AQ x U).

Proof. 1t is sufficient to verify this calculation in coordinates. First because U is
compactly contained in M, p is essentially bounded on U. Furthermore v, the
coordinate chart, is smooth and hence C'' up to the boundary. Hence p is essentially
bounded on €2 x V.

Now the vertical covariant derivative VMp is essentially bounded and given by
V3P = 0yep + Tpgpl
which rearranged yields

Byepl = V5" pf = Togpl.

where I'}; are the Christoffel symbols of the metric on M. Because ¢ is C! up to the
boundary of U, the summands are continuous up to the boundary of V. Consequently
Oyspf is the sum of two essentially bounded functions, and hence is itself essentially
bounded. The operator dg does not change under the coordinate transformation, so

dap is merely (U~1)*dgp. Hence dqp is essentially bounded. O
DEFINITION 2.19. Let p € Ajoc(2 x M). We define
F, € L2 (Q x M, TM ® A*Q)

by
F)(X,Y) = (VoY) = (Vi p)(X) + da(X,Y)
for XY € R™.

2.3. HOLONOMY BOUNDS FOR SMOOTH CONNECTIONS

An important notion for a connection is that of holonomy. Intuitively the holonomy
of a connection tells us how much the start and endpoints of a lift along a closed
loop differ. In this section we make more concrete the notion that “curvature is an
infinitesimal measure of holonomy”.

DEFINITION 2.20. Let o : [0,1] — Q be a closed absolutely continuous curve and
p € T(TM ® A'Q) a smooth Ehresmann connection form on € x M. The holonomy
along p about o starting at y € M is defined by

Hol(p, g, y) = d(’7y<0)7 ’)/y(l)),

where 7, is the lift of o along p starting at y. Note that this is independent of a
choice of parametrisation of o. Consequently if ¢[(0,1) is a homeomorphism and
0(0) = o(1) = o, we can define the holonomy about (S, z¢) along p starting at y to
be

HOl(p, (Sv xO)a y) = HOl(p, g, y),
where S = (][0, 1]).
LEMMA 2.21. Letc: Q — R be a continuous function and p : Qx M — TMAQ a
smooth Ehresmann connection form, vertically Lipschitz with respect to ¢ and bounded
by C. Suppose that o : [0,1] — Q is an absolutely continuous curve, and let R =
Cl(o), where £(o) is the length of 0. If y € M is such that B(y, R) CC M, then a
lift of o starting at y exists.
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Proof. This is a straightforward application of the existence and uniqueness of ODEs.
O

DEFINITION 2.22. We say that a continuous map o : [0, 1)> — Q is a null homotopy
if

e 5(0,t) = 0(0,0) for every t € [0,1]; and

e 0(s,0) =0(s,1) =0(0,0) for every s € [0, 1].
If for every s € [0, 1] the map t — o (s, t) is absolutely continuous, we say o is an AC
null homotopy.
DEFINITION 2.23. Let ¥ C  be a closed subset. We say that o : [0,1]* — Q is a
null-homotopic parametrisation of X if

e o is an AC null-homotopy,

e 0([0,1]*) =%, and

e 0/(0,1)?:(0,1)> = o((0,1)?) is a homeomorphism.
Given a null-homotopic parametrisation of X, we define the interior of ¥, Int(X) =
o((0,1)?).
DEFINITION 2.24. Let p € T(TM ® A'Q2) be a smooth Ehresmann connection form.
If o is an AC null homotopy, we say that vy : [0,1]*> — Q x M is a lift of o along p
starting at y € M if for every s € [0, 1], the map t — ~(s,t) is the lift of the curve
t — o(s,t) along p starting at y € M.
DEFINITION 2.25. Let p € T(TM ® A'Q) be a smooth Ehresmann connection form
and o : [0,1]2 — ¥ C Q be a null-homotopic parametrisation of 3. Let 7 : [0,1]*> —
Y X M be a lift of o along p starting at y € M. We say that h : Int(X) - M is a
height function on ¥ for ~ if

A(5,8) = (o5, 1), h(o (s, 1))

for every (s,t) € (0,1)%

LEMMA 2.26. Letc:Q — R be a continuous function and let p : Qx M — TMAQ
be a smooth Ehresmann connection form, vertically Lipschitz with respect to ¢ and
bounded by C. Let o : [0,1]> — Q be a null homotopy which is C* up to the boundary.
Let yo € M be a point such that B(yo, C supsep ) £(0s)) CC M, where o, : [0,1] — Q
is the curve t — o(s,t). Then there exists a lift vy : [0,1]> — Q x M of o along p
starting at yo and

(2.7) Hol(p, o1, 30) < /

[0,1]?

1
exp ( / c(o(#)) |91 dt’> IF, 0|00 A Do ds dt,
t

where F, is the curvature of p.

Proof. The condition on y, and Lemma 2.21 guarantee the existence of the lift  :
[0,1]2 — Q2 x M. The goal is to show that the holonomy of the extremal curve in
the null homotopy ¢ can be found by the s-derivative of the lift ~.

We embed M isometrically into some RY using a Nash embedding [Nas56]. In
this case we can embed £ x M in R" x RY = R"*V 50 we can identify vectors and
derivations.

Now o : [0,1]> — R™ and ~ : [0, 1]> — R™™. We identify vectors of R with those
of R"™" via the standard inclusion v — (v,0) € R” x RY = R™™. Furthermore, the
Levi-Civita connection is given by standard partial differentiation, so V now denotes
the gradient operator. Let S = 0,0 and T' = ;0. These are maps [0,1]* — R™ C
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R Since ¢ and v are C? we have 0,0,0 = 0,0,0 and 0,0,y = 0,0s7, and so
0,8 = 0,T. Since 7 is a lift o,

875’}/5 = 81505 + (p o 7) : atas
for all s € [0,1]. We have denoted by (po~) - 9,04 the vector field
(s,2) = p(v(s,1))(9r0s(1)).

By the chain rule
Vipory) =(Vvyp)on.

In particular

Os(po) = (Vanqp) o

and
di(poy) = (Va,p) oy
= (Vigwot(poy)a101P) © Y
= (Virs(poy)11p) ©7-
Let

E:=0y—(S+(pory)-9).

We examine the t derivative of E:

O E = 0,057y — 0,050 — (Oy(pory)) - 0s0 — (pory) - 0,0s0
= 050y — 05010 — (V14 (poy)11P) © V] - 050 — (p o y) - 0050
= 0sl(por) - 0] = [(Virt(poyymip) 071 - 0s0 = (p o) - D050
— [0u(p o) - 010+ (p07) - 000 — (Vs onymyp) 0] - Bu0
—(po7)-(9:9:0)
= [(Vasp) 0] T = [(Virspoyy1ip) ©7) - S
= [(Voyp) 0] - T = [(Vist(pomys1p) 0] - T
+ [(Viston-s10) 0 - T = [(Virs(poyy11p) 0 7] - 5
= [(Vioiy=5-(ooy)-510) 03] - T + (£, 07) (5, T)
= [(Vp) on](T) + (F, 07) (S, T).
For every s € [0, 1], the map ¢t — E(s,t) is absolutely continuous and hence |0, E|| <
|0 E| for almost every t € [0, 1]. Hence
|0 E]| < 0.
< [(Fp oS, T+ [((Vep) o)(T))
< |(Fp o) (S, T)[ + E[[T|(co0)
almost everywhere in [0,1]2. Let f : [0,1]> — R be the function |E|, and let us
introduce a function g : [0,1]* — (0,00) given by

(s,t) — exp(— i (coo)(s, t)|T| dt").
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Then 0,9 = —|T|(coo)g and |0, f| < |(F, 0ov)(S,T)| + |T|(coo) f, and hence
9(s,1)f(s,1)=g(s,0)f(s,0)

/at (s,t)f(s,t)] dt

g/o [Tl(co0) g f+ITlcoa) g f+|F,0x(S,T)|gdt

1
< [ 1B,0n(s.Dlg e
0

Now Oy and S are both zero for ¢ = 0, while S(s,1) = 0. Hence f(s,0) = 0 and
f(s,1) =109s7v(s,1)| for s € [0,1]. This yields

95, 1)[0s1(s,1)] < / g5, )| Fy 0 7(S,T)] dt

for every s € [0, 1]. Consequently

9(s,1)] < / 9D, o) (8,7)] db

19(3,1) 1
g/o exp (/t (coo)(s,t) |T| dt’>|(Fpoy)(5,T)\dt

for every s € [0, 1].
Because F), is antisymmetric, we have that |F,(S,T')| is bounded by |F,| |S A T|.
Hence when we integrate with respect to s from 0 to 1, we get

d(v(1,1), / |0sv(s,1)| ds
// exp (/ (coo)(s,)|T| dt’) IF, 0] S AT dt ds.
0,1]2 ¢
But 7(0,1) = v(1,0) = 7(0,0), from which the result follows. O

LEMMA 2.27. Let X C Q be a closed convex subset, contained in an affine two-
plane, which is homeomorphic to a closed disk. For O < r < 1 there exists a path
¢ :10,1] = X, and a null homotopy o” : [0,1]* — X, satisfying properties

(1) o' is a null-homotopic parametrisation of 3;

(2) (1][0,1) is an arc, and 0% = (;([0,1]);

(3) for 0 <r <1, 0" is a smooth embedding on (0,1)%;

(4) t — o"(1,t) is equal to (.;

(5) lim, 1 ||G — CifJ11 = 0;

(6) for r < 1, 0" is smooth up to the boundary of [0,1]%;

(7) for every 0 < s <1

1
lim [|o" (s, -) = o (s,)[l1.1 = 0,

Proof. Without loss of generality we may assume that ¥ C R? = C € R? x R"? and
that 0 € ¥. Suppose that B(0,¢) C ¥ C B(0, R). Since X is convex, 9% is Lipschitz
regular [Mor08, Lemma 3.4.1]. Let ¢ : S' — 0% be the bi-Lipschitz projection

eZTrit — R<t)€27rit7
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where R : R — [0,00) is a 1-periodic Lipschitz map.
Let ¢ : R — [0,00) be a smooth function compactly supported in [—1, 1] satisfying

p(z) = p(—2)

/ o(x)dr = 1.
R
Let a > ¢/||R||o- Define the map F' : [0,1] x R — [0, R] x R by

(r,t) — ([1 —a(l—r)] /R golL‘_”)R(t’) dt’,t) )

-Tr

which is smooth on [0,1) x R. Let F} and F, denote the coordinate functions of F,
i.e. F(r,t) = (Fi(r,t), F5(r,t)). Then

O,F\(r,t) = [1— a(l —r)] / ¢ () -1

R 1l—1r 1—7

—[1—a(1—7)] /R 20wy ar

1—r

R(t) dt’

So [0 1| < [ R || oo
Then

O, Fi(r, 1) :a/ # (=)

R 1—7

R(t") dt’

L= a(l—1)] /R R(Y) i;(éf)) (f/__:)g d
1= a(l—r)] /R R(#) Zi(_t—_:)l d'
_ a/ﬂ{}z(t’)ﬂ(tf/f) ' — 1= a(l— )] [ i R’(t')@% %

= a/RR(t/)(pl(%_T;)dt' +[1—a(l—7)] /RR’(t')wl(%T_;)%

It follows from this that |0, Fi(r,t)] < aR + [1 + a]||R/||cc. Furthermore, because
R(t) > ¢ for every t € R,

dt’.

|0, F(r,t)| > ac — |1 —a(l —1)]

Pty g
/R/(t/)(p(l—r)t tdt/
R

1—r 1—r
t+(1*’f‘) t'—t t/ _ t
> ac—[1—a(l—7r)| |R’(t’)|¢(1_r) dt’
t—(1—r) 1—T 1—T
1—r t’ /
90(17) t
>ac—[1—a(l— R~ u dt’
> ae—[1—all = nlIF [ 52|

>ae —[1—a(l—7)]||R s > 0.
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Hence there is a 6 > 0 such that for some 1/2 < ry < 1 and every r > 1y, § <
|0, Fy(r,t)|. Furthermore J; > 0 on [rg,1) X R, and so F' is a diffeomorphism on
[7’0, ].) x R.

The functions ¢ — F(r,t) converge, for every 1 < p < oo, in WP([0,1],R) to
t+— R(t) as r — 1 by standard results on convolution [Eva98, 5.3.1].

Let f :[0,1] — R be the map ¢t — F(ro,t) and let g be the map ¢t — 0,F(ro,t).
Assume F(r,t) > ¢ for all ¢t € [0,1] and r € [rg,1]. For every ¢t € [0,1] define a
piecewise linear function pj : [1/2,79] — R by

pi(1/2) =, p(1/2+0) =), pilro—0)=c(t), and pi(ro) = g(t).
Define p,(r) = ¢/2 + flr/Q p,(r") dr'. Then

pi(ro) = c(t)(ro = 1/2) + (e — ¢(t))d1/2 + (g(t) — ¢(t))61/2
Choose 0 < 61 < essinf , min{2f(t)/(g(t) +¢), (ro — 1/2)}, and set

(1) = [F(1) — (e + 9(0) L)ro — 1/2— 1)

Then pi(ro) = f(t), c¢(t) > 0 and ¢(t) is smooth for all ¢ € R. It follows pj(r) > 0 for
all t € Rand r € [1/2,1].
The function G : [0,1] x R — [0, R] x R

(er,t) r<1/2,
(T‘, t) = (pt(’l"),t) 1/2 <r <y,
(F(r,t),t) ro<r

is a uniformly Lipschitz homeomorphism onto its image, and is a C''-smooth diffeo-
morphism on [0,1) x R.

Define G : [0, 1] x R — [0, R] x R by taking a smooth function sufficiently C''-close
to G on [1/4,1/2 + /2], and equal to G on ([0,1/4) U (1/2 4 ro/2,1]) x R. Now G
is a C'*°-smooth diffeomorphism on [0, 1) x R.

Let @ : [0, R] x R — C be the map (r,t) — re*™ let G : B(0,1) — C be given
by ® o G and let g : [0,1]> — B(0,1) be the map (s,t) — se>™* + (1 — 5). For
r € [0,1] we define ¢, : [0,1] = C by t — G(re*™) and o, : [0,1] x [0,1] — R? by
(s,t) = G(rg(s,t)). Forr > 1/24r¢/2, G(r,t) = F(r,t), hence, for every 1 < p < o0,

llg% ||Cr - CIHLP = 0.

Fix 0 < s < 1. Let ¢ > 0. Let ¢, : [0,1] — B(0,1) denote the path t — rg(s,t).
There is an a > 0 such that the length of G(c,([0,a] U [l — «,1])) is less than ¢ for
every r < 1, and there is an R < 1 such that G(¢,((o, 1 — «))) C B(0, R).

Because G is a diffeomorphism on B(0, R), it follows that Goc,|(, 1 —a) converges
in Wh((a,1 - a),C) to G o ¢y|(ar,1 — @). Furthermore for any curve
Yl < 1Dl + vl
< 2[Dvlx + [ (0)]
< 20(y) + [7(0)].
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Hence
lo" (s, )= (s, )11
< ||G O C — 2G o ClHWLl(a,lfa)
+[lo"(s,) — 01(8, ')HWlJ((O,a)U(l—a,l))
< |G o, —2G o ct|lwii(ai—a) + 20(G(cr((0,0) U (1 — a, 1))))
+20(G(c1((0,0) U (1 = a,1)))) + (1 =)
< ||Goc, —Gocrllwiiai—a) +4e+1—r.
Now if we take the limit as r — 1 we get that

limsup [|o"(s,-) — o' (s, ) [l11 < 4de.
r—1

But € > 0 was arbitrary, and hence
lim ||0'T(8, ) — 01(8, ')||171 =0.
r—1
0J

We denote by H? the Hausdorff 2-measure normalised to be equal to the Lebesgue
2-measure.
LEMMA 2.28. Let U CC M be a coordinate neighbourhood and let ¥ C 2, be a
convex subset homeomorphic to a closed disk contained in an affine two-plane. Let
|033| denote the length of the boundary. Let p € T(TM®A'Q) be a smooth Ehresmann
connection form for which

lpl <C" and |VMp| < C on Q x U.

For 0 <r <1let( :[0,1] = X be a path and 0" : [0,1]*> = X be a null homotopic
parametrisation satisfying properties 1-7 of Lemma 2.27. If there is ay € U satisfying
dist(y,0U) > C'|0%| then for 0 < r < 1 there is a lift 4" : [0,1)> = X x U of o”
along p starting at y, such that

lim " (2) = 7' (2)

r—1
for every x € [0,1]%. Subsequently there exists a height function h : Int(X) — U for
~t given by

h=myoyo(a'(0,1)%)7",

satisfying

(25) Hol(p.¢',1) < < [ |Pla h(w))| a¥?(a).

Proof. Let aq,05 € WH1([0,1],%). Let ; denote the lift along p of o; starting at y.
Note that

|01(t) — o2(t)] < [lo1 — 02w,
and as such |y1(0) —12(0)]| < |o1(0) — 02(0)| < ||lo1 — 02]|1.1- Then
071 = el S o1+ poyi- 61— 02— pora- oy
<lo1—6Ga| +lpovi 1 —poye-dil+[porye-d1—pore- Gl
< |61 = Ga| + [IVMpllcld1][11 — 72l + [lollccl1 — 62
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Recall that ||pl < C" and ||[VMp|| < C. We can once again rearrange and multiply
with e=CJo 18" to arrive at

d, e—cfg |él|dt/|’¥1 _ 72’ < (1 1 C/)e_cfot |d1|dt/’&1 B (.72|
< (146 — 6.
When we integrate both sides from 0 to 7 < 1, we arrive at

eI 11y, (1) = 75(7)| = 11 (0) = 72(0)] < (1 + C)lon = 03ll,1-
Hence
(1) = ()] < V24 C)or — o1
Let o” : [0,1)> — ¥ and ¢, : [0,1] — ¥ be the null-homotopies and paths given by
Lemma 2.27. Let 4" : [0,1]> — X x U be the lift of ¢” along p starting at y. Then

[ (s, 8) =7 (s, )] < XM 4 o7 (s, ) = 0 (s, )1,
and .
(1, 8) =2 (L )] < e @2+ CNIG — Gl
We can now take the limit r — 1 to get lim, ;7" (s,t) = 7'(s,t).

Because for r < 1 the null-homotopies 0" are smooth (and hence C?) up to the
boundary, we can apply Lemma 2.26 and deduce that

Hol(p, Gi,y) = d(v'(1,0),7'(1, 1)) = lim d(y"(1,0),7"(1, 1))
= lim Hol(p, ¢;, y)

r—1

< lim e©4¢) /[01]2 |F, 07"||0s0" A\ Oyo"| dsdt

< eC1o%l /[01}2 |E, o v!|0s0" A Brot| dsdt,

where the last limit is taken using the Dominated Convergence Theorem, which can
be applied because F), is bounded and continuous, and " converges pointwise to v'.
Lastly, because ¢! is a null homotopic parametrisation of 3, we can change variables
using o!|(0,1)% : (0,1)? — Int(X), and we arrive at

Hol(p, (0. a0),) < % [ |F, o, ha))| d#7(a)
Int(X)

< (0% / (i, h(x)] dH2(z).
]

LEMMA 2.29. Let p: Qx M — TM®A'Q be a smooth Ehresmann connection form
satisfying
o] < C" and [V*p| < C,

Y C €, a convex subset of an affine two-plane in 1, which is homeomorphic to a
closed disk. Let 0% denote the boundary of ¥, and |0%]| its H' measure. Suppose
y € M is such that B(y,|0X|C") CC M. Then there is a Lipschitz null homotopic
parametrisation o : [0,1)> = Q of ¥ and a lift v : [0,1]> — M of o along p starting
at y satisfying

O |loco M oo
(1) = y(2)| < (eMP7N=IVT0 || F [l [ Dol oo + [|plloo) 21 — ]
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for every xy1, x5 € [0, 1],

Proof. Lemmata 2.27 and 2.28 guarantee the existence of ¢ and ~.
We define an Ehresmann connection form o*p : [0,1]2 x M — TM ® A'R? by

" p(ads 4+ b0,) = p(adso + bo,o).

The map o is smooth and Lipschitz up to the boundary. Consequently so is o*p.
Furthermore it satisfies

o7 pllee < 1D llollplloe
and
VM0 plloe < (D0 ]|oclIV*pllcc
and as such
1Foplloo < 1D]I5 M Eplloc-

Let z1 = (s1,t1) and 29 = (sg,t2) in (0,1)%. Let @ denote the quadrilateral which is
the convex hull of (so2,t2), (s2,0), (s1,0), (s1,%1).

Let ¢ : [0,1] — 0Q denote a closed piecewise linear path. Let ((0) = (s2,t2),
C(m1) = (82,0), ((12) = (s1,0) and ((73) = (s1,t1). Let 4 denote the lift of ¢ along

p starting at y(z2). Subsequently ¥(¢;) = y, ¥(t2) = v, and J(t3) = v(x1). Let
y' = 4(1). Then

Hol(c"p, ¢, v(z2)) = d(y', v(x2)).

Now

‘7(371)_7(1'2”
< |y(zy) = | + [y(22) — o
< Hol(0"p, ¢, v(22)) + |lo"pllos|z2 — 1]

< HTMpllse |Fye,

wo|T1 — o] max{ry, ro} + ||0*p|loc| T2 — 21|

M
< [1Da oo (e 1PNV F || Dol + llplloo) 1 = 2],

O

LEMMA 2.30. Let U CC M be a coordinate neighbourhood, and let A be the inter-
section of an affine two-plane with ). Let ¥ be a convex domain in A homeomorphic
to a closed disk with boundary length |0%|. Let p € T(TM @ A'Q) be a smooth
Ehresmann connection form satisfying

[VMpl < C and |p| < C'

on AxU. Let R >0, U C By, R) be open and dist(yo,0U) > C'|0%| + e“19%IR.
Let h : X — U’ denote a height function for a lift v : [0,1]* — ¥ x M, of o :
[0,1]> — X a null homotopic parametrisation of ¥ with o(0,0) = xq, and let B, :=
B(hy(z),e“19%IR). Then

29) [ Hollp 0% a)y)dy <m0 [ ey ayar,

¥ JB;
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Proof. We can integrate both sides of (2.8) with respect to y € U’ to yield

// Hol(p, (0%, x¢),y) dy < // /E OO P (2))] d dy
= /E/,ecaz‘p(x’hy(m))‘ dy dz.

By Lemma 2.15 the map f, : U — U, y — hy(x) is bi-Lipschitz with constant
e“19%l. By assumption U’ C B(yg, R) CC U and hence f,(U') C B(h(z), "9 R) =
B, CcC U. Furthermore the Jacobian determinant of f,, J;, : U" — R satisfies

e—mC\82| S me(y) S 6mC|62|.

Consequently

l/mwwxmmwsé/é“wmn@wwx

= [ e ) s ) dy s

< 6(’”“)0'82'// |F(z,y)| dy dz
s

< elmADC|ox| / |F(x,y)| dy dz.
s JB,

2.4. SMOOTH APPROXIMATION OF NON-SMOOTH
CONNECTIONS

For this section we let U be a smooth bounded open subset of R™, €2 be a smooth
bounded domain in R” and p : Q x U — TU @ A*Q be a locally integrable Ehresmann
connection form.

The main goal of this section is to construct a smooth approximation for p €
A(Q x U) with desirable convergence properties.

THEOREM 2.31. Let p € A2 x U). Lete >0

Us={y eU:dist(y,0U) > e} and Q° = {x € Q : dist(z,0Q) > £}.
For every e > 0 there is a p° € T(TU® @ A'Q°) such that for every K CC U and
Q' ccQ
(1) for 1 <p < oo

. : '
lim [ sup|p., — p5, " dz = 0;
e—0 Q yEK

(2) [17°lloo < llplloes lldepflloc < lldaplloc and [V p%]loo < VY pllocs
(3) for 1 <p< o0

lim lp — p°|P dxdy = lim |dap — dop®|P dxdy
e=0 Jorv i e=0 Jorv ik
= lim VYp — VY IP dady =0
e=0 Jarv ik

and
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(4) for 1 <p < oo

: P _
ll_r}(l) - |F, — Fpe|P dedy = 0.

Properties 2 and 3 hold for generic smooth approximations. In order to get prop-
erty 1 we define horizontal and vertical mollifications of p. Property 4 follows from
property 3.

Let ¢ : [0,00) — [0, 00) denote a smooth non-negative decreasing function, which
is constant on a neighbourhood of 0, is equal to 0 in [1,00), and satisfies

/Oooq;(t) dt = 1.

For every k € N we define ¢* : (0,00) — R by

e = ([ ot )
for € > 0.

For € > 0 let U® denote the set

U :={xz € U :dist(z,0U) > €}.
Let p: Qx U — R™® A'Q be measurable. Then define V¢(p) : Q x U* — R™ @ A'Q)
by

@) > [ paydlly = y1/2)e"(E) dy
U

Similarly set

OF = {x € Q: dist(z,00) > €},
and define H(p) : Q° x U — R™ ® A'Q by

H(p)ay = / Pyl — |/€)(e) da’

for (z,y) € Q° x U.
We apply both operators V¢ and H® simultaneously, yielding
p°=H(VE(p): QF x U° = R™® A'Q.
By Fubini’s theorem, p° = VE(H¢(p)) for every £ > 0. We have the following propo-
sition.
PROPOSITION 2.32. Let p: Qx U — R™®@A'Q be a locally integrable function. Then
p°:US x QF — R™ @ AYQ is smooth.

Proof. 1f we expand p°, we get

s = [ o (=)o (M) @t

for every (z,y) € QF x U¢, which is a convolution of p with the smooth compactly
supported function

(z,y) = o(|zl/e)¢(lyl /)" (€)™ (e).
Hence it is smooth [Eva98, C.4]. O



42 JAN CRISTINA
COROLLARY 2.33. Let p € A2 x U). Then

1 lloo < llplloc, ldap®lloo < lldaplls, and [|V7 0%l < IV pllocs

and for any Q' CC Q and K CC U

lim lp — p°|P dxdy = lim |dop — dap®|P dxdy
=0 QA'xK e—0 Q' xK
= lim VYp — VYo IP ddy = 0.

e—0 QU XK

Proof. This is a standard result of smooth approximations and linear differential
operators. |[Eva98, §5.3.2]. O

The most important aspect of the regularity condition ||VYp||ls < oo is that p €
A(£2 x U) restricts to a Lipschitz continuous function on {z} x U, for almost every
x € Q. This, along with the structure of our smooth approximations, allows us to
prove property 1 of Theorem 2.31.

LEMMA 2.34. Let p € A2 x U). Then for every Q' CC Q and K CC U

(2.10) / sup |05, — Payl” dz — 0
Q

yeK

as e — 0.

Proof. The proof of this statement mimics the proof of convergence of smooth ap-
proximations of L? functions through continuous approximations [Eva9d8, §C.4|. The
key step in this proof is to recognise p as a map from 2 to the space of continuous
vector valued forms p: Q — CO(U,R™ @ A'Q).

First we note that, for any test function ¢ € C§°(Q x U,R™ @ A'Q @ R™), we have
that

/Q U<px,y,(VU)*w(:v,y)> dx dy —/ (O, (2, y)) da dy,

QxU

where 6, ,, : QX M — R @ A'Q@R™ is an essentially bounded measurable function.

In terms of the partial derivative with respect to the coordinates y = (y',...,y™)
in U,

| e =0y0) dedy= [ (8:,.0) dudy
QxU QxU

for every ¢ € C5°(Q x U,R™ @ A'Q).

Let ¢, : U = R™ @ A'Q, k € N, be a collection of smooth compactly supported
functions which are dense in C} (U, R™"®A'Q). Let x € C5°(€) be a smooth compactly
supported function. Then for k& € N the map (z,y) — x(x)¢r(y) is compactly
supported in 2 x U, so

/ (Pryr =X ()0 Pk (y)) dx dy:/ (Pry» =0y (X(2)Pk(y))) d dy
QxU

QxU

:/ﬂ U(%,yax(w)m(y» dx dy.
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Then by Fubini’s Theorem

anéwwr@m@wwmzﬁmwéw@mw»@M.

But because x was arbitrary this implies that the function

wH/@mr@@w—@wmwy
U

is zero for almost every x € (). Hence there is a set 2, C € of full measure, such
that for every x € )

/U (Pay> =0y Pr) dy = /U (0, dr) dy.

Now for z € Q1 1= ﬂj €2;, and for every k € N we have

/ (Do — Oy i) dy = / (O, 60) dy.
U U

Suppose ¢ € C5°(U,R™ @ A'Q)). Then by relabelling we can assume ¢, — ¢ in C.
Hence, by the Dominated Convergence Theorem, for every xz € {0, and 1 < i <m

/<pw,y7 _ayi¢> dy = lim /<pz7y> _8yi¢k> dy
U k—o0 U

= lim <€;,y, o) dy

k—o00 U

= /U (62, 0) dy.

But |\ Q.| = 0, so for almost every x € Q and every ¢ € C°(U,R™ @ A'Q) @ R™)

[ e (@070 dy = [ (0100 oy

U
Furthermore for almost every x € 2 the map y — 6, , is essentially bounded. As a
result, for almost every z € Q the map p,. : U - R @ A'Q is in Wh*(Q x U,R™ ®
A'Q) and has a bounded Lipschitz continuous representative with Lipschitz constant
C =Vl Let € = ||p]lco-

Now we will proceed to create a simple approximation to p in the sense previously
outlined. Let K CC U be a compact subset. Consider the set of functions K —
R™® AQ with L>-norm bounded by C’ which are Lipschitz with Lipschitz constant
bounded by C'. By the Arzela—Ascoli Theorem this is a totally bounded subset of
the space CO(K,R™ @ A*Q)). Hence for any J > 0 this set has a finite d-net. Choose
0 >0,and let 6;, :=1,..., N, denote the corresponding net.

For i = 1,...,N let A; := {z € Q : sup ek |pey — 0i(y)| < 6}. The union
Ufil A; is a set of full measure in 2. Define inductively By = A;, and for i > 1,
Biy1 = A1 \ Up<iBy. Let f: Q — C°(K,R™ ® A'Q) be the simple function

ACEDICINE]
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where z € Q. It follows immediately that esssup{|p,, — fz(v)| : (z,y) € @ x K} <.
Our next step is to create a continuous approximation to our simple approximation.

To do this, we approximate the characteristic function xp, by continuous functions.
Fori=1,..., N, we fix ¢; : Q — [0, 1] such that

16 — xB.|l, < 0/(CN).

Then define g : Q — C°(K,R™ @ A'Q)) by

N

9:() = Y 0:(-) di(x)

i=1

for z € Q. It follows immediately from the triangle inequality that

(Awﬂﬁ@wﬂxw%mfmga

yeK

and hence

1/p
(/ SUP |pry = 9:(y)I" dw) < (1+19]Y7)6.
Q

yeK

The map (z,y) — g.(y) is continuous on {2x K and can be extended to a continuous
map Qx U — R™®AQ by extending the function 4, ..., 0y to compactly supported
functions in U. As such we can take a smooth approximation as in Proposition 2.32.
Denote this approximation by g¢°.

Now for ¢ < min{dist(K, 0U), dist(£?’, 02)}

1/p 1/p
( / SUP | ey — 05, d:v> < ( / sup |pey — 92 (y)[? dﬂf)
Q' yeK QO yeK

+(Amm%@—@wwmfm

ryeK

1/p
+(/mmmwwwaww).
Q' yeK

The first term on the right hand side was shown to be less than (1 4 [Q2|*/?). The
second term is the difference of a uniformly continuous function and its smooth
approximation and converges to 0 as € — 0. As for the final term, let h = g — p. The
smooth approximation is a linear operation. This means that g — p° = h®. Because
y — V=(p)s,y is @ smooth approximation of y — p,, on U for almost every xz € (V,
it follows that

sup |[H(VE(hqy))| < H*(sup VE(lheyl))

yeK yeK
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for almost every z € 2’ and 0 < ¢ < min{dist(K, 0U), dist(2’,0Q?)}. By integrating
with respect to x we obtain

1/p 1/p
(/ sup |h°|P dm) < ( He(sup |hy )P dx)
o yek o yEK
< [|é* [hlll oo

< |9l |[sup |hayl
yeK L ()
1/p
< ||sup |hgy| = </ sup | Ry [” dx) .
yeK Le(SY Q' yeK

But
1/p p 1/p
</ S“P’hw,ﬂpdl“) :(/ (Suplpm,y—gx<y>|) dx> < (1419'7)5.
Q' yeK O \yekK
Thus,

1/p
lim sup </ SUp |pay — P;,y\p d:c) <2(1+ |Q|1/p)5_
Q

e—0 ryeK
Since § > 0 was arbitrary,

1/p
. o _
lim ( /Q E Sg}g|ﬂw Py dfﬂ') 0.

Proof of Theorem 2.31. Let 2 CC Q2 and K CC U. We prove

(2.11) // Fye — FoJP da dy — 0,
XK

We apply equation (2.6) denoting p° by o. In this case

aagb aaQ'Ii) aapb aap? 7
|Fg—Fp| < (Qz ay]; _Qkaya — P; ay]; —i—pkaya (9yb®da: /\d.’L'k

+ |doo — dapl.

[ o00 00 00k 00
= + pka a
Y

9; aya Ok 8ya Pi aya

dop 000 0Pk . L Op)

aya pkaya Pi 8ya + pkaya
+ |dao — dapl

<2[o—p| VY| +2|p| VY0 — VYp| + |dao — dap|

+ pt )ayb ® da' A da®

almost everywhere in 2 xU. We can then apply Minkowski’s inequality, and replacing
o with p° yields

1Ey = Eyelly < 2097 llclle® = plly + 20plloc 970 = V¥l + ldp — g
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By Corollary 2.33, the right hand side converges to 0 as € tends to 0, yielding the
desired result.
This completes the proof of Theorem 2.31. 0

REMARK 2.35. The operator p + F}, is nonlinear, so we cannot expect
[Eo oo < [[Fplo,
but we can still bound ||F¢||~, because
1Fpelloe < 2[lp% ooV 2% lloo + [1dep®loc
< 2 plloo IV plloo + lldaplloo-

2.5. HOLONOMY BOUNDS FOR NON-SMOOTH CONNECTIONS

In this section we consider p € A(2 x M) restricted to a ball B(zg,79) CC 2 and
define a radial lift along p of paths ¢ — xq + tv for ¢t € [0, 7] and v € S™~ 1,
DEFINITION 2.36. Let p be a map 2 x U — R™ ® A'Q). Let A be a k-dimensional
affine subspace in R™. We define the restriction of p to A, denoted p|A, to be a map
plA: (QNA)x U — R™® A'A, induced by the inclusion map on forms:

Idpm @i :R™" @ A'Q - R @ A'A,

taking v ® a to v ® i*(«). The map p|A is defined to be Idgm ® i*(p).

In this sense, we discuss the restriction of p to lines. Fix a point y € U and a point
xo € §2. Then we can consider the restriction of p to all of the lines containing ;.
When we talk about a property “almost everywhere”, we will specify a normalised
Hausdorff k-measure H* for which said property holds.

LEMMA 2.37. Let p € A(2xU). Denote byl, = {z+tv:t € [0,00)} the ray through
xo € R™ in the direction v. Then for H" *-almost every point v € S*1,

loliulloe < llpllse and IV pllullso < 1V pllcc.

Furthermore,
dQﬂlvp“ = 07
and hence p|l, € A(QN1, x U).

Proof. Let E C €) denote the set of points y € 2 satisfying

less sup ,p| > [|plloo O |ess sup , VVp| > [|VYp||co-
Then

To
0=|FE| = / XE dx > / / (T + to)t" ! dt dv
Q sn=1Jo

for every rq > 0. Thus, for H" !-almost every v € S™ ! the map (0,ry) — R,
t — xe(ro + tv)t" 1, is equal to 0 for almost every t € [0,7r9]. Hence, for H" !-
almost every v € S"1, xg(co + tv) is equal to 0 for almost every t € [0, o).

To see that don;,p = 0, it is enough to note that d4p = 0 for any one-dimensional
space A, as there are no non-zero two-forms on the space. 0]

Let p € A(2 x U), let y be a point in U, and z( € Q. Let rg > 0 and
ro < min{dist(y, OU)/||p|| e, dist(zq, 02)}.
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Lemma 2.37 tells us that for almost every v € S"!, p has a well defined restriction
to the ray from z( in the direction v. Furthermore the initial value problem

f/(t) = Pzo+tv, f(H)Us f(o) =Y

has a unique solution f¥ : [0,r¢] — U.
DEFINITION 2.38. Let p € A(Q2 x U), let y be a point U, and zq € Q. Let 0 < rg <
min{dist(y, OU)/||p||c, dist(zo, 9Q2)}. Define 7, : B(xg,19) C Q@ — U

(2.12) W) = [iesy (|2 = w0])

lz—aq]
for © € B(xg,19). We call v, the radial lift along p centered at xq starting at y.
COROLLARY 2.39. The radial lift is well defined for all x € 1, N B(wg, o) for H"1-
almost every v € S" ' and hence is defined for H" almost every x € B(xg,70).
Furthermore the radial lift is uniquely defined by its starting point and
exp(—[|VYplloclz — @ol)ly = ¥/| < Iy (@) = vy ()] < exp(|[V7plloclz — 20l)ly — /|-

Proof. By Lemma 2.37, a well defined restriction of p is defined along the ray xo + tv
for H" l-almost every v € S"!, and by the theory of existence and uniqueness of
ODEs [Lev55|, 7 is well defined and unique. The claim follows when we apply Lemma
2.15. ([l

THEOREM 2.40. Let y be any point in U, xo any point in €2, and ro > 0 such that
ro < min{dist(y, OU)/(4||p||s), dist(zo, 02)}.
Let p € A2 x U) and let v be the radial lift along p centered at xq starting at y.
Then v has a Lipschitz representative satisfying
(1) = (@) < ([[plloe + Cloy 10) [|Fpllo max{|zy — o, [z — wo[})|21 — 2
for every x1 and x5 in B(xg,ro).

To prove the theorem we define typical planes in 2 and show that v is Lipschitz
almost everywhere on a typical plane. Then we show that almost every plane is
typical. Let p € A2 x U) and pf € T(TU ® A'Q) satisfying

(1) for 1 <p < 0
lp™ = pllp, lldep® = dapll, and [|V7p" = VY pll,
converge to 0 as € — 0;
(2) and

1o llse < Nlpllsos Idap®lloo < lldapllse and [[VY 0%l < VY pllcc.
A plane P C 2 containing x is typical for p° — p if
(1) p|P € A(P x U) and has norm bounds
lpPllse < llplloc, l(dap)Plls < ldapllss: (V7 0)Pllc < IV pllco,

and
I(CED) [ Plloe < NI Fpllocs
(2) and there is a sequence ¢, — 0 such that
(0™ = p)IPl1s [(dap™ — dap)| P, and [[(VYp™ — V)| Pl

converge to 0 as k — oo.
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LEMMA 241. Let pe A2 x U°),ye U CcCU CCU° xp € CC 1,
0 < 7o < inf (dist(y, 0U)) (4 ||p|lsc) ",
yeU’

and fore > 0 let p° € T(TURANY) be smooth Ehresmann connection forms satisfying

1PNl < llpllses  lldap™lloo < lldapllss  and VY67l < VY pllcc-

Let v, and~y, be the radial lifts centered at xq starting at y along p and p®, respectively.
Suppose that x1 and xo are two points in Q' not colinear with xq, and as such defining
a plane P C Q. If P is typical for p° — p and
(1) for almost every x € P, v;+(x) — v,(2),
(2) and ~3*(z;) converges uniformly in y to v,(xz;) for i = 1,2, that is, for every
d > 0 there exists an ky > 0 such that for everyy € U’, i = 1,2 and k > ky

vk (w6) — vy (i) <6,
where €, — 0 is the sequence for which P 1is typical for p* — p;
then there is a constant C' = C(p,ro) such that

(2.13) |yy(w1) —yy(22)] < ([[plloo +C(p,70) | Fplloo min{|zo — 21, [20 — 22|} )21 — 22].

Proof. Let p* = p** and 75 = 7;*. By the triangle inequality, for any y,y" € U’

Yy (21) = 7y (@2)| < (1) = g (@0)] + Iy (2) — vy ()| + [yl (21) — 45 (1))
+ g (2) = vy (@) | + [y (1) — 0 (2) .

By the convergence 7, (z;) — 7,(2;) as k — oo, we have that the terms |y} (z;) —
vy(x;)| tend to zero as k — oo. By Corollary 2.39, we have that

(i) — 2 ()] < exp([[VY 0"l o|zo — i)y — /|
< exp([| VY p"||scro) [y — ¥/,

for all k € N and ¢ = 1,2. Let n¥ : B(xa,79) — U be the radial lift centered at x,
starting at ’75(.1’2). That is, 775 is the solution of the initial value problem

Eny (2 +t(x — 22) /|2 — 19]) = Paytt(z—a2)/lz—za|mk ° (m

?75(1'2) = 75(352)
at t = |x — z3]. Then we use the triangle inequality to yield
[y (1) = 7 (w2)] < | () =l (@)| + [y (ar0) — (2]

for all k € N. Let A be the triangle [z, 71, 25]. We note that |y (z1) — 0} (z1)] =
Hol(p*, (OA, 0), 7} (21)). Because 7} is the solution to an initial value problem in
the direction x — x5, we have that

[y (1) = vy (w2)| = |y (1) =y (w2)] < (" [loolw2 — 2]
Combining these yields
Yy (1) = 7y (2)| < Hol(p*, (DA, 1), vy (1)) + [| 0" | o2 — 1]
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We combine these to obtain

(1) = Yy (22)] < (1) = ()] + [y (22) — vy (2)]
+2exp(rol|[ VY oM [loo) 1y =yl + 1° loo|wa — 2]
+H01<:0k7 (8A,I1>,7§/([E1))7

for every k € N. If we integrate with respect to y' € B := B(y,r) C U, and let k
tend to zero, noting that the norms |[p*[|o and |[VYp"||w are bounded respectively
by ||plle and ||VYpl|, we arrive at

7y (1) =y (22)| [B] < QGXP(ToHVU/)Hoo)/ Y =yl dy" + llplloc|2 — 1] | B]
B

+limsup/ Hol(pk, (6A,5E1),7§/($1)) dy’
B

k—0
< 2exp(ro]| VY plloo) [ Bl 7 + [|pllcc|wa — 21| | B

+timsup [ Hol(p", (92 1) 2} (22)) dy'
B

k—0

We first apply Lemma 2.28 to get a height function h* : Int(A) — U for a lift
% :[0,1]2> = A x U of a null homotopic parametrisation o : [0,1]> — A along p*
starting at y. By Lemma 2.29 the functions 7* are uniformly Lipschitz, and their
image is bounded. Hence by the Arzela—Ascoli theorem there is a subsequence of
k — oo such that 4% — ~, where v : [0,1]> — A x U is Lipschitz. Consequently
h*(x) converges for every x € Int(A) to h(x) = rpoyoot(x). Let C = [|[VYp|
and BF = B(h*(z),eC1?2lr) and B, = B(h(x),eC1?2lr) for every z € A. Then y(B¥)
converges to x(B,) almost everywhrere. Then we can apply Lemma 2.30 noting that
|OA| < 4ry and choosing r > 0 such that inf , dist(BS,0U) > ||p|lecdre. We arrive
at

fimsup [ Hol(p", (08, 1), 7 (1)) dyf
B

e—0 20

< eClmADAro Jipy sup/ / |F?| dy' dx
A JB:

e—0

< G4m0 Jim sup {/ / |F| dy dx
e—0 A -

+/A/U|X(Ba:)(y,)—X(Bi)(y’)||F|+/A/l]||F€|_|F|’dydx

< eC(m+1)4r0/ / |F| dy dx
A J By

< CmtDiro Omiro| B || || min{|wo — 21, |20 — 22|zt — 29

by the Dominated Convergence Theorem and the convergence of F* in Theorem 2.31.
Let C(p, o) = e*@mtDIVTpleero  Then

17y (@1) — Yy (@2)] | B
< 2exp(r0]|V7 plloo)r[ Bl + llpllocl 22 — 21 | B]
+ C(p,70)|BI[| F'l|oc min{[zo — 21, |20 — z2|}z1 — 22f.
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Because r € (0,71) was arbitrary, we have that

(1) = vy (@2)| < ([lplloc + Clp, ro) [ Flloe min{|za — wol, 21 — 2o})[x2 — 4],
which proves the result. U

2.5.1. Almost every plane is typical. Now that we have demonstrated how we
can get Lipschitz behaviour, we must demonstrate that the points satisfying the
criteria of Lemma 2.42 form a set of full measure in B(z, 1) X B(xo, o).

LEMMA 2.42. There is a subsequence €; — 0 such that for H"1-almost every v € S*,
such that for every 6 > 0 there is an 19 > 0 such that for every i > 1y and every
yel

sup |7, (w0 + tv) — vy (zo + tv)| < 0.
tE[O,To)

Proof. For v € S and t € [0,1] denote z4(v) = (zo+tv), and when it is unambiguous
by just x;. Consider v*(tv + x¢) — v(tv + o). By Lemma 2.34

d, . d . d
%h/y(Lf) - ’yy(l‘t)|‘ S ‘E,yy(xt) - %’Yy(l’t)
(2.14) < Pans @V = Preruen?|

S |p§t,’y§($t) - pit,’yy(xt)| + |pi7t,’7y(:l‘t) - pxt77y(xt)|
< NIV lloclg(@e) = vy (o) + sup |05, ) = poyl-
yeU’
for almost every ¢ € [0, 1].

Now define f : [0,1] — Q by f(t) := |75 (2) —vy(w¢)]. Tt follows that f is absolutely
continuous, for almost every v and by (2.14)

(O < IV plloof () + SUD |5,y — Pl
Yy

Denoting C = || VY| we have
f'(@) < Cf(t) +sup o5, y = paryl;

for almost every t € [0,1]. We can multiply both sides by e~* to yield

el f(t) < Ce () +e ! sup 105, — Paryl:
yeU’

for almost every ¢ € [0,1]. Now we can combine the terms involving f to one side
and bound e~¢* by 1 to arrive at

() = OO L) < Sup gL,y — o
yel’

for almost every ¢ € [0, 1]. Since f(0) =0, we arrive at

e “Tf(r) < / Sup |05, , = Pyl dt.
0 yeu’
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Thus

fr) < O / SUD 1~ il
Yy

70
C
0 yeU’

We integrate with respect to v € S"~! to get

(2.15) /S sup | (@+(0)) — 72+ (0))] do

n—1 TG[O,TO)
C "
e / / sup ’pit(v),y - pmt(v),y‘ dt dv
sn—=1J0 yeU’

yelU’
C ro 1 )
=€ /S"_l /[) sup |pit(v),y - pmt(v),yhﬁtn_ dt dv
C

IN

yelU’

<e / sup |pS., — p |; dx
= x, —
B(zo,r0) yeU’ Y Y |l‘ - x0|n !

1 I 1/p
<e¢ / ( n—l) dz
B(0,r0) |$|

where zlo + ﬁ = 1. We know that Hrl_”Hpr(B(O’ro)) is finite for p’ < n/(n — 1), so by
the convergence of p° — p in Theorem 2.31 we have that the right hand side of (2.15)
converges to 0 as € converges to 0. Hence there is a sequence £; — 0 such that for
almost every v € S™1

sup ’pi‘,y - pm,y’
yeU’

Y

LP(B(zo,m0))

sup |7y (w0 + 70) — (w0 + 7V)| = 0
T7€[0,r0)
yeU’
as i — Q. 0
COROLLARY 2.43. Let g; be a sequence as in Lemma 2.42. The set F of points
x € B(wg,70) for which sup,ciy 751 () — vy (w)] — 0 ds of full measure;

|B(x0,70) \ F| = 0.
Proof. The set S C S™ ! of points v € S"~! for which

(2.16) sup |7, (zo + 7v) — vy (0 + TV)| —= 0
TG[O,T())
yel’

is of full measure. Let E be the set of points o + Tv, where T € [0,70] and v € S,
Then

sup |,/ (z) — ()| = 0
yeU’

as i — oo for every x € F and F has full measure in B (20, 70).
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Let G be the set of point—pairs that define a plane through z:

G = {(x1,22) € B(xg,r0) X B(xo,70) : dim(span {x; — z¢, 22 — x0}) = 2}.
With this defined, we can denote for (x;,25) € G the unique plane through z
containing x; and z by Py, 4,.

Define now the following “good” set
F(p, ) :={(z1,22) € G: Py, 4, is typical for p° — p}.

For every =1 € B(xg, 1), we define

Fm(pa pa) = F(pa pa) N ({1’1} X B(.’L’o,?“o)).
LEMMA 2.44. Let § > 0, o € A(B(0,1 +6) x U) where B(0,1) C R", and ¢* =
HeV<e(p) for ¢ > 0. Let e, denote the n'"* standard basis vector of R", and let
U ccU. Then

/Hn72(5n72 \ Fen(@ %)) =0,
where H"2 is the Hausdorff (n — 2)-measure in R™, and S™ 2 is the unit sphere in
R™! embedded into the first n — 1 coordinates of R™.

Proof. Let p > n/2 and f* € L?(B(0,1)xU’) converge in norm to f € LP(B(0,1)xU")
as € — 0. Then

/ / 1 — f] dy dH2 () dH"2(6)
Sn—2 Pemg U’

<[ [ e e @) dy a2 6)
Sn—2 Pen,G U’

< 2"l o oan U172 = Fllzeo.ny<vm,

where p and p’ are Holder conjugates. By assumption || f¢ — f||, — 0 as ¢ — 0 and
||z|?>7"]|,» < oo, consequently there is a sequence g; — 0 such that for almost every

0 e S
lim |f¥ — f| dy dH*(x) = 0.

1—00
P, o JU

By Theorem 2.31, for n/2 < p < oo, p°, dop® and VY p* converge in their respective
LP spaces to p, dop and VYp respectively, consequently their is a sequence &; — 0
such that for almost every 6 € S"2

165 = p)|P.oll1, [(dap™ — dap)|Pe, pll1, and [|(VYp% — V)| P, 0l

converge to 0 as 1+ — o0.
Now assume f € L*>(B(0,1) x U’) is non-negative and let E denote the set of
points (x,y) € B(0,1) x U’ such that f(z,y) > || f|lcc. Then

0=|E|= / xe(z,y) dv dy
B(0,1)xU’

// [ xelwlal? dy ari(a) ane ),
n2 60 !

Hence, for almost every 6 € S™ 2 and almost every = € P, g, xr(z,y) = 0. Conse-
quently for almost every § € S"~2

esssup {f(z,y) : 2 € P g X U'} < ||floo-
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By letting f be |o|, |dqol|, or [VYp| as appropriate, we get that for almost every
0 € S*2 P, 4 is typical for o — o. O

COROLLARY 2.45. Let U, U’, ¢ and o° be as in Lemma 2.44. Then
H(R™\ F., (0,0°)) = 0.

Proof. Let U : 8" 2 x (0,00) x R — R" \ Re,, be the map (0, r,z) — r0 + ze,,. Now
P.. r0+ze, = Pe, rg+2e, for r,r’ € (0,00) and z, 2" € R. Consequently

R"\ £, (0,07) = U((S"*\ £, (0,0%)) x (0,00) X R).
By Lemma 2.44, H"2(5" 2\ F, (0, ¢°) = 0, and so
H[(S"72\ Fr, (0, 0%)) x (0,00) x R)] = 0.
The function ¥ preserves sets of measure 0, which proves the claim. 0

PROPOSITION 2.46. Let p € A(B(xo,109) X U)) and p° = H(V:(p)). For every
1 € B(wo, 7o) \ {0}

H* ({21} x B(wo, 70)) \ Fr,) = 0.
Proof. Define ¢,, : B(zg,10) \ {zo} — S"! by

T — Xo
r)=A—
¢x1( ) |l’1—$0|7
where A is a rotation satisfying
ATt
|T1 — o

Then

,Hn({xl} X B<x0’ TO) \ F-Tl (p7 pg)) < Hn(Rn \ ¢x1(Fm1<pa /38)))
< H'R\ (5. 7)),

where p,, = (¢;11)*p¢;11(x)7y. By Corollary 2.45
H'(R™\ F, (5, %)) = 0.

n

COROLLARY 2.47. The set F(p, p°) has full measure, i.e.
H>"(B(0,70) X B(zo,70) \ F(p, p°)) = 0.

Proof. By Fubini’s theorem

|B(x0,70) x B(zo,70) \ F(p, p°)| = |G\ F| = / |G\ Fy, | dH" (1) = 0.



54 JAN CRISTINA

Proof of Theorem 2.40. Let p° € T(TU ® A'Q2) be as in Theorem 2.31. Now we need
merely show that the set of point pairs which satisfy the conditions of Lemma 2.41
is of full measure.

The set F'(p, p°) of point pairs which span a typical plane is of full measure by
Corollary 2.47.

Conditions 1 and 2 in Lemma 2.41 hold for point pairs in the set £ x F, where F
is given by Corollary 2.43 o

The set F is of full measure in B(xzg, 7o) and hence the set F' x F' is of full measure
in B(xzg,79) X B(xo,10). Lastly the set of point pairs

Fp,p )N F x F,
has full measure, and every pair in it satisfies the conditions of Lemma 2.41. O

2.5.2. The proof of Theorem 1.1. In section 2.3 we defined the holonomy of a

smooth connection about an absolutely continuous curve. If p € A(2 x U), it is not

possible to define a priori a lift of an absolutely continuous curve. We have, however,

shown that radial lifts along p are Lipschitz functions. Consequently we can define

the holonomy about a triangle by taking successive radial lifts along the vertices.
Let pe A2 x U), U CcC U be a domain and y € U’. Let

0 <ro < min{dist(U", OU) /(4| plloo), dist(y, OU") /(12| pl| o) }-

By Theorem 2.40 we have that v, , : B(x,r)xU’" — U, the radial lift along p centered
at o € ) and starting at y, has a Lipschitz representative. Let xg, 1,22 € € be
points with pairwise-distance less than ro. Fori = 0,1, 2 define f; : B(x;,ro)xU" — U

(2.17) fi(2,y) = 2wy ()

for v € B(x;,19) and y € U’). Note that (x;,y,x) > 7a,(x) is jointly continuous
in all variables. For any y' € U’ satisfying dist(y’, 0U’) > 4r¢]|p||s, We have that
fizj,y') € U for i =0,1,2. In particular, if dist(y, 0U’) > 12r¢||p[|~, then

fiz (xi(n fi1 (xiga fio(xila y))) S U/
and is well defined for any permutation of (g, i1,142) of {0, 1,2}.

DEFINITION 2.48. The A-holonomy of p about the triangle A = [z, 1, x5 based at
T starting at y is

Hola(p, (04, 70),y) = |y — fa(wo, fi(x2, fo(z1,9)))]-

REMARK 2.49. A smooth connection form p € I'(Q2 x U) is also in A(Q x U).
Consequently we can define both its holonomy and .A-holonomy about a triangle
A = [xg, 11, x2]. But

Holu(p, (04, xo), y) = Hol(p, (04, 79),y),

as the radial lift along p starting at x; evaluated at x; is just the lift along p of the
straight line t — (x; + t(z; — x;)).

THEOREM (1.1). Let Q and U be smooth bounded domains. Let p € A2 x U) be an
Ehresmann connection form and U' CC U be a domain. Letry < d(U’,0U)/(4]|p|l)-
There is a constant C' = C(p, 1) such that for every y € U', and g, x1, 29 € Q, if
dist(y, U") > 12r¢||p|lec and |z; — ;| < 1o for everyi,j =0,1,2, then

(218) HOIA(P, (aAal‘O)?y) S C(pa T0>||Fp|||A|

where A = [z, x1, Ta).
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Proof. Let f; be as in (2.17) and let p* € I'(£2 x U) be a smooth approximations as
in Theorem 2.31. We show that

hH(l) Hol(p%, (0A, z0),y) = Hola(p, (0A, z0),y)
E—

for y € U'.
Let y1 = fo(z1,v), ¥2 = filze, 1), 91 = V5,.(T1), U5 = 75,4, (22), and g5 =
Vor,g: (2). Let C' = IVYp|loo- Then
[Hola(p, (0A,z0),y) — Hol(p", (OA, z0), )|
= |y = f2(z0, y2)| — [y = V2.0 (@0)
< | fao(®o,¥2) — V2,5, (o)
< 1 fa(@0, Y2) = Yoy (0) |+ (72,4 (T0) — 72, 5 (@0
+ 75,5, (T0) — V2, 5 (T0)]
< | oo, y2) — 75, 0 (w0)| + €727y — 95| + 195 — B5))

by Lemma 2.15. First we examine 75, .. : B(z2,70) — U. By Theorem 2.40, for
e > 0 this is a family of uniformly Lipschitz maps whose image is contained in a
compact set. By Lemma 2.42, there is a sequence ¢; — 0 for which these functions
converge pointwise almost everywhere to vy, ., where v,, ., : B(22,79) — U is the
radial lift along p centered at xo starting at y,. By the Arzeld—Ascoli theorem there
is a uniformly converging subsequence. But 7,, ,,(x) = fao(z,y2) and hence

3 i ~Eil — 13 i —
}gglo [y =05’ = Ehﬁnm | fa(o) — 7§z,y2($0)| =0.
Now
|y2 - 3‘7;| = |%c1,y1 (:L'Q) - 7§1,y1|'
We similarly deduce that there is a sequence ¢; — 0 such that 75 | @ B(wy,79) — U
converges uniformly to 7, ,,, and so
i [go — 35| = i [0, 3, (22) — 72, (22)] = .
By Lemma 2.15
195 = 03] = 172, 4 (22) = 72, 4, (22)]
< eClmmml|ge — g
= elmillgl (1) = Yooy (@)
Once again we deduce that for some sequence €; — 0 75, , converges uniformly to
Vzo,y, @0d hence
lim [g5 — 3 = 0.
1—00
Now we may conclude that

HOlA(pa (8A7 xO)v y) = III% HOl(p€7 (6A7 Zlfo), y)

We note that the functions y — f;(x,y) are uniformly Lipschitz in U’ (with Lipschitz
constant exp(C max{|ro—x1|, |1 — 22|, |ra—x0|}) and hence y — Hol4(p, (0A, z0),y)
is Lipschitz in U’. Similarly y — Hol(p®, (A, x0),y) is uniformly (in €) Lipschitz in
U'.
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By Lemmata 2.27 and 2.28 there is a null homotopic parametrisation of A, o :
[0,1]> — A, a lift 4* : [0,1]> — A x U of o along p starting at y, and a height
function h® : A — U for 7* given by

hf =myon oot

Let r > 0 be sufficiently small that for every ¢ € B(y,r), Hol4(p, 0A, 1) is defined.
For x € A let BE = B(h®(x),e“r). As in the proof of Lemma 2.41, h® converges
for almost every = € Int(A) to some h : Int(A) — U.

Assume that zg,x; and zo span a typical plane for p* — p. Then there is a
sequence ¢; — 0 such that F;|P;, 5, converges almost everywhere to F,|P,, ,, and
[ Ep1Ps, g lloo < N[ Fpllo- Then |Fyei (7, y)|x(B5)(y) converges for almost every (z,y) €
A x U to |Fy(x,y)|x(B:)(y). Let f(m) = |B(0,1)|7" in R™ and let C' = ||[VYp|s.
Consequently

Hol4(p, (0A, x9),y) = lim 5(m)7’_m/ Hol4(p, (0A, z0),y) dy’
B(yr)

r—0

= limr~"B(m) / lim Hol(p®, (0A, x0),y') dy
B(y,r)

r—0 e—0

r—0e—0

= lim lim r_mﬁ(m)/ Hol(p®, (A, z0), vy dy’
B(y,r

r—0e—0

)
< lim lim B(m)r—meCm+14r0 / / |F*| dy' dz
A J B3

< lim B(m)r_mec(mﬂ)"‘m/ / |F| dy' dz
A J By

r—0

< lim B(m)e“ @A Pl
r—

Hence (2.18) holds for every x,xs € B(xg,r) for which P,, ., is typical for p° — p.
However, for every xq € 2 and y € U’
($1a ZL‘Q) — HOl.A(p7 (8[3707 Zy, .Z'Q], l‘())) y)

is continuous on B(xg,79) X B(xg, 7). But the set of vertices for which (2.18) holds

is of full measure and hence dense. Consequently it holds for all z1,z9 € B(xq,10).
Thus (2.18) holds with C(p, ) = e¢(@m+bro, 0

2.6. A FROBENIUS THEOREM FOR NON-SMOOTH
CONNECTIONS
THEOREM 2.50. Let p € A(Q2x U) be an Ehresmann connection form with curvature
F,=0.
Let U' C U, y € U and 1y satisfy
(2.19) ro < min{d(U", 0U) /4| pl| o, dist(y, OU") / (16| pl|oc) }-

Then there exists a radial lift v, : B(xo,ro) — U along p centered at xy starting at y
satisfying

DYy = payy(z) 0-€., and v, (zo) = y.
Furthermore, suppose n : B(xg,1m9) — U is Lipschitz, such that n(zo) = y and
D.n = Pzmn(x)- Then n = Vy-
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Proof. By Theorem 1.1, if the curvature of p is zero, we know that the .4-holonomy
about any triangle is zero. Since 1y > 0 satisfies (2.19) there exists a radial lift
v : B(zg,709) — U starting at y which is Lipschitz continuous by Theorem 2.40.

There exists an ¢ > 0 such that for any 2’ € B(xg,¢) there is a radial lift v,/ :
B(a2',rg+¢) — U along p starting at y(z') and (2.19) holds for 7o + ¢. For any z €
B(zg,79) we can apply Theorem 1.1 to get that the A-holonomy about the triangle
[z, xg, '] starting at y(x) is 0. Consequently v, (z) = 7(z) for every 2’ € B(xg,¢)
and every x € B(x,79). Furthermore,

x—a / x—a x—a

Dy(z) ——— = D7" (2) - = Py’ (z)

'|x—x’]_ |z — /| '|x—x’]

for almost every 2/ € B(xo, ). Hence

Dy (%) = poqa)-

Uniqueness follows from uniqueness for the radial lift in Corollary 2.39. ([l

DEFINITION 2.51. Let p be a connection one-form on © x M of class Aj,(2 x M)
with 0 curvature. For every (xg,70) € 2 x M there is a coordinate neighbourhood
of yg, ¥ : U — R™, an ry such that

0 < ro < d(yo,OU)/(4]|¥.plloo)

and a Lipschitz map 7,4, : B(xo,79) — M given by the radial lift along ¥, p post-
composed with W. As a consequence, 1, ,, satisfies

Drnro,yo = Pznzg,y0 () and 7733072;0(130) = Yo.

We call this a lift along p centered at xg, yo.

Let (Y,d) be a compact metric space and f : Y — Q a Lipschitz map. We say
that a Lipschitz map f :Y — M is a lift of f along p if there are numbers r, 17y > 0
such that for every z € Y and 2’ € B(z,r)

f(zl) = nf(z),f(z)<f(zl>>7

where 1 : B(f(z),19) — M is the lift along p centered at f(z), f(2).

LEMMA 2.52. Let Q C R™ be a smooth bounded domain, (M, g) be a smooth complete
Riemannian manifold and (Y, dy) be a compact metric space. Let yo € M and R > 0
and let p be a connection one-form of class Ajoc(2 X M) with zero curvature. Let
H :Y x]0,1] — Q be a Lipschitz map. There is an R' > 0 such that for any Lipschitz
map f:Y x {0} = B(yo, R) which is a lift of H|Y x {0} along p, there is a unique
Lipschitz map H : Y X [0,1] — B(yo, R') which is a lift of H along p and satisfies

H(z,0) = f(2,0) for every z € Y.

Proof. The proof follows that of the homotopy lifting property for covering spaces cf.
[Hat02, Proposition 1.30]. Let ¢ denote the Lipschitz constant of H, C' = ||[VMpl|s
and D the diameter of Y. Suppose ¢ — H (z,t) is the solution of the initial value
problem

d ~ d
%H<Z7t) = PH(t),H(zt) %H(Z’t)

H(z,0) = f(z,0).
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Consequently
d(yo, H(z,t)) < d(yo, H(z,0)) + d(H(z,0), H(z,1))
< R+ ||pllce™

where the norm of p is taken over the domain €2 x B(yg, ), which is finite because
p € Aoe(2 x M). We set R = R+ ||p|s0e“.

Because M is complete, B(yo, R') is compact. Hence there is an 7; > 0 such that
for any (z,y) € H(Y x[0,1]) x B(yo, R') there exists n,,, : B(z,r1) — M a lift along
p centered at x,y. Because H is Lipschitz, there is an r» > 0 such that for any z € Y
and t € [0,1], H(B(z,r) X (t —r,t+71)) C B(H(2,t),r1). Let {z;:i=1,...,N} be
an r-net for Y, and let 0 = tg < t; < --- <t = lsatisfy t,; 1 —t; <rfori=0,... k.

We proceed by induction. Suppose H;; : B(z,r) x [0,t;] — M is a lift of
H|B(z,r) x ([0,t; +7) N[0, 1]) along p. Define H; ;41 : B(z,7) x [0,tj41 +7) = M
by

Hyjor(o 1) = H,; (z,1), t €10,t]
MH (et o) oy () (L (21)), 1 <T<tjpa + 7

Define H; g : B(y;,r) x [0,7) by

Hio(2,) = NH(z00).5z0.0) (H (2, 1)
The uniqueness of the lift 1y, 7. (., .,) guarantees that H; ;11 is continuous and is
alift of H|B(z;,7) % ([0,t;41+7)N[0,1]). By induction we have constructed a map H, :
B(zi, 1) x[0,1] — M. Suppose B(z;,r)NB(z;,r) # @. Once again by the uniqueness
of radial lifts the maps H;o and H,o are equal on (B(z;,7) N B(z;,7)) x [0,7). By
induction H; is equal to H; on (B(zz, )N B(z;,r)) x [0,1]. Similarly any other lift G

equal to f on Y x {0} is equal to H.
[

COROLLARY 2.53 (Theorem 1.2). Let (M, g) be a smooth complete Riemannian man-
ifold, and Q C R™ a connected and simply connected domain, and p € Aje(2 X M)
an Ehresmann connection one-form with zero curvature, that is

F, = 0 almost everywhere.

Then for every y € M and xy € Q, there is a unique Lipschitz map vy, : Q& — M
such that

Dr’)/y = Pryy(z)s

V(o) = v.

Proof. Let 01,09 : [0,1] — Q be two Lipschitz paths satisfying 0;(0) = z¢ 0;(1) = xg
Let 7; : [0, 1] — M be the lift along p of o; starting at y. Let H : [0,1] x [0,1] —
be a Lipschitz map such that H(0,t) = o1(t), H(1,t) = os(t), ( 0) = zo and
H(s,1) = x; for s,t € [0,1]. We define a lift f:[0,1] x 0 — M of HHO 1] x {0} by
f(s,0) = y. We apply Lemma 2.52 to construct a lift H : [0,1] x [0,1] — M of H
along p equal to f on [0,1] x {0}. Consequently 71(t) = H(0,t) and ~,(t) = H(1,1).
Because H is a lift of H, s — H(s,1) is constant for s € [0,1]. Consequently
7 (1) = 72(1). We define y(z) to be the value of the lift of any Lipschitz path
o :[0,1] — Q from z( to x starting at y. By the preceding reasoning, this value is
independent of the choice of path.
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Lastly the condition
Dl"yy - pxﬂy
follows from the fact that v(2') = 7, (z)(2") wherever the latter is defined. O

2.6.1. Frobenius’ theorem for Lipschitz distributions. In this section we show
that Frobenius’ integrability condition for Lipschitz distributions follows from Theo-
rem 1.2.

THEOREM 2.54 (cf. Theorem Al in [Sim96|). Let k < n be positive integers, let M
be a C? n-manifold and let H be a rank k Lipschitz hyperplane distribution in M.
If H s involutive almost everywhere then it is integrable. Furthermore the integral
submanifolds are of class C11.

We say a rank k hyperplane distribution, H C T'M is continuous if it is everywhere
locally given by the span of continuous vector fields. If it is given locally by the span
of Lipschitz vector fields, we say it is Lipschitz. If X, Y : M — T M are Lipschitz
vector fields we can define their commutator in coordinates, that is if

X=X, Y=Y

where 0; = %, then

Y 0X!
J— Y —

O’ O’
which is defined almost everywhere and is locally essentially bounded.

A Lipschitz Hyperplane distribution H is said to be involutive almost everywhere if
for every pair of Lipschitz vector fields X,Y : M — H, and for almost every x € M

(X, Y](z) € H.
Let U and V' be subsets of R™. Define the set
U4+V={ax+y:zeclU yeV}

LEMMA 2.55. Let Q C R™ be a connected domain. Let H C T be a continuous rank
k-distribution. Then for every xoy € Q there is a k-dimensional subspace Py C R",
relatively open Uy C Py and Vy C POL and a connection one-form p : Uy x Vo —
Pt @ A'Py such that zo € Uy + Vo, and for every x € U x V

He ={X +px)- X:X € B} x{y}.

Furthermore H is Lipschitz, if and only if p is a Lipschitz continuous function.

(X, Y] =[X,Y]'0, [X,)Y]'=X

Proof. Without loss of generality we may assume that zy = 0 and Hy, = R* C R™.
Let € > 0 be such that there are continuous vector fields X, Xs, ..., Xy : B(0,¢) —
R™ spanning H|B(0,¢). Suppose further that there exist continuous vector fields
Xkat, .-, Xy B(0,6) — R™ which, for every x € B(0,¢), extend X1,..., X} to a
basis of R”. We apply Gram-Schmidt orthogonalisation to get continuous orthonor-
mal vector fields Xi,..., X, : B(0,e) — R", such that Xi1,..., X, span H, and
Xk+1, e ,Xm span H*, the orthogonal complement of H. In particular if the X; are
Lipschitz continuous then so are the XZ Set e; to be the standard Cartesian basis
vectors in R"™, and without loss of generality assume that e; = XZ(O) fori=1,...,n.
Then {ey, ..., e} is an orthonormal basis of R¥ and {egy1,...,e,} is an orthonormal
basis of R"7*.
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Define the matrix field

k
My : B(0,€) = Mo, 7Y Xi(x) @ (Xi(), ).
i=1

Then Iy (x) - Iy (z) = Hy(x) and gy (x)" = Hy(x) for every z € B(0,e). And for
every € B(0,¢e) and X € R", IIy(z) - X € H,.

Let IT* and II,,_;, denote the matrices of the projections onto, respectively, the first
k-coordinates and last n — k coordinates of R".

I3 is continuous because it is the sum of products of continuous functions and
I13(0) = II*. If the X; are Lipschitz, then so is ITy.

Consider for every x € B(0, ) the matrix I1* - [Ty (x). For any vector X € R¥,

(I Ty () - X = X[ = [II* - (Tl () — TI%) X|
< [T [T () — T (0)1] X
< [T () = T (0) |-

By the continuity of Il we have that there is a 6 > 0 such that for all z € B(0, ¢)
| Ty (z) — g (0)|| < 1/2. For every x € B(0,d) let (II* - 115 (z))|R* : R* — R* denote
the linear map

X = 1% - Ty (z) - X.

Then

[[(TT° - Ty (2))[R® — Idge | < 1/2
for every x € B(0,6). Hence there is a (k x k) inverse matrix R(x). Furthermore
for every z € B(0,d), matrix multiplication by Il (z) is a linear isomorphism from
R¥ — H, and matrix multiplication by II* is a linear isomorphism from H, to R*.
The function R : B(zg,d) — GL(k) is continuous because I3 : B(0,0) — My, is
continuous. In particular, if I3 is Lipschitz then so is R.

Let 4, denote the (n x k)-matrix which takes R” to the first k components of R".
Define @ : B(0,9) = M, by Q(z) = Iy (x) - ik - R(z) € M,y for x € B(0,6).
Then IT* - Q(x) = Idgs. Define the map p : B(0,6) = M u_p)xk by @ — IL,_; - Q(z).
If @ is continuous, then so is p. If @) is Lipschitz then so is p.

Forany Z € H, Z =11 - Z + 11, - Z. Let X =T*. Z, then IT* - Q(2)X = X.
The vector Z is the unique vector in H with P-component X, so Z = Q(z) - X, and
SO

Z=TF-Q(z) - X+, Q)X =X +p(x)-X.

Let U = B(0,5/v/2) C R¥ and V = B(0,6/+/2) C R"* then U +V C B(0,0) C
R"™. This gives us a map p : U +V — M_pyxr but M(_p)xx is isomorphic to
TV @ A'U.

Suppose p is Lipschitz continuous. Then the vector fields given by x — e;+p(z) -e;
for e =1,..., k are Lipschitz and span H. Hence H is Lipschitz.

O

LEMMA 2.56. Let U C R, V. C R™* be bounded domains and p : U x V —
R™ % @ AU be a Lipschitz continuous connection one-form. Then p € AU x V).
Furthermore the distribution

H={(X®ply) X,y) eER"x(UxV): ycUxV, X cRF

is involutive almost everywhere if and only if F, = 0 almost everywhere.
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Proof. Let xq, ..., x; denote the k coordinates of R* and 1, . .., ¥m_x the coordinates
of R™*. Because p is Lipschitz, it is in W1°(U x V,R"® ® A'U). Hence p is of class
AU x V).

First we note that the proof of Lemma 2.8 holds for X and Y Lipschitz vector
fields. Hence for Lipschitz vector fields Z; = X +p- X and Zo, =Y 4+ p- Y the
following holds almost everywhere

(21, 2] =X +p- XY +p-Y]
=VxipxY = Vyi v X +p (VxipxY + Vyipv X) + F(XY).

By construction H @& R** = R" so
(71,75 € H
almost everywhere if and only F}, = 0 almost everywhere. U

Proof of Theorem 2.54. Because H is Lipschitz, around every point zy € M we can
choose a chart (¢, Q) such that ¢(Q) =U x V, U C R*, V. C R™ % and Dy(H) is
given by {X +p-X : X € R¥} where p € A(U x V) by Lemma 2.56. Suppose without
loss of generality that ¢(z) = (0,0). Because H is involutive almost everywhere, it
follows that F,, = 0 almost everywhere. Hence by Lemma 2.55, there is a V! C V
containing 0 and a unique v : U x V' — U x V satisfying

Oy(@,y) = e; + p- e; and y(zo,y) = (70, ),
where e; is the i** standard basis vector of R¥ and i = 1,..., k. Then we can define
a homeomorphism v,, : U x V' — M by 7., = ¢! o7, which satisfies 9;7,, € H for
i =1,...k. In particular the map x — ~,,(z,y) has a Lipschitz continuous derivative
and hence is C''-smooth.

Given two points z; and zp in M, and corresponding charts (p1,€1), (@2, ),
©i(z) = (x;,y;), define ~,, : Uy x V] — M and ,, : Uy x Vo — M.

We can define sets O; = v.,(U; x {y;}) © = 1,2, and maps ¢, = Ty, x{y,} © i :
O, — U; C R¥, where Tu,x{y} 18 the Cartesian projection U; x V; = U; x {y;}. Then
Y2 |\Ui X {y;} is the inverse map of ;.

By uniqueness of the lifts

Va1 OPLO Py = Ty
on 12(01 N Oy), and hence the intersection O; N Oy is locally homeomorphic to an
open subset of R*. Define the transition map

V121 01(O1 N O2) = (01N Oa), 1= Yoz (T, 41)).

The transition maps are compositions of C2- and C*!-smooth maps, and hence C'*!-
smooth. 0






CHAPTER 3

QUASICONFORMAL CO-FRAMES AND p-HARMONIC MAPS TO SO(n)

In this chapter we investigate the connections between R"-valued one-forms minimis-
ing the norm of their exterior derivative over a fixed conformal class and p-harmonic
maps to SO(n).

The orthogonal group O(n) is the space of (n x n)-matrices R satisfying

RR=1.

The special orthogonal group SO(n) is the subset of O(n) of matrices with deter-
minant 1. The group O(n) is homeomorphic to two disjoint copies of SO(n), and
SO(n) is the connected component of the identity of O(n).

These groups are both Lie groups. Because SO(n) is the connected component
of I € O(n) we have that the Lie algebras of SO(n) and O(n) are the same. We
denote this space by so,, and it is the space of antisymmetric (n X n)-matrices with
Lie bracket given by the commutator of two elements:

[A,B] = AB — BA

for every A, B € s0,,. The adjoint action is given by conjugation with elements of
O(n): for every R € O(n)

Adpg : s0, — s0,, Adg(u) = R 'uR.

The conformal group CO(n) is the group of (n x n)-matrices AR where A € R\ {0}
and R € O(n). The group CO™(n) is the set of positively oriented conformal matrices,
that is conformal matrices with positive determinant. We denote

COF(n)=CO*(n)u{0} and COy(n)=CO(n)uU{0}.

The sets CO(n) and CO™(n) are (non-compact) Lie groups.

Once again COT(n) is the connected component of the identity in CO(n), so
CO™(n) and CO(n) have the same Lie algebra, namely (RI) @ so,, where R/ is the
space of matrices equal to a constant times the identity matrix. The Lie-bracket is
once again given by the commutator.

Conformal matrices have a rather nice property cf. [IM01, (9.39)]

PROPOSITION 3.1. Let A be a matrix, then

|A|" > n"/?| det A,
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and A € CO{ if and only if
|A|" = n"/? det A.

Here |A[ is the non-normalised Hilbert-Schmidt norm /3", af; of A = (a;;)
For an invertible matrix A we define the outer distortion

(3.1) KC(A) = |A]"det A™*
and the inner distortion
(3.2) KI(A) = ]A*1|" det A.

For a matrix field A : Q — M,,«,, which is invertible almost everywhere, we define
KO9(A) = esssup, K°(A(x)) and K!(A) = esssup, K’ (A(x)).
If p: Q — R"® A'Q) is a measurable co-frame, and there is a K > 0 for which

()" < K det p(a)

for almost every x € (), we say that p is a K-quasiconformal co-frame; by Proposition
3.1 K >n"/2

Let ¥ C Q be a measurable set and let p : Q@ — R" ® A'Q given by p’ = Pjda’
be a K-quasiconformal co-frame which vanishes almost nowhere on X. It has a dual
frame R : % — R™" ® T given by

where R{ is the inverse matrix field to P;, i.€. R;'-Plg = §i. Trivially

R;®p'(z) =ldr,q and  p'(R;)(z) = 6

for almost every x € 3.
LEMMA 3.2. Let p: Q — R* ® A'Q be a K-quasiconformal co-frame. Suppose that
for every x € ¥ C Q, p(x) # 0. Then for almost every x € ¥ the map

p(x), 1 50, @ AT — R" @ A*Q a— ap(z)
18 invertible and has inverse given by

p(x) 1R @ A*Q — 50, ® A'Q

8 5 (R = Ry(e)u B+ 5 (Ri(a), Ry()ph(2)

where R € R" ® TS} is the dual frame to p. The norm of this map is bounded in the
following way

(3.3) [p(2) | < Cln) (KT (P)Y" det p~/" (),
where K1 (P) is the inner distortion of the coefficient matriz P of p.
Proof. The norm bound follows from the fact that

[Rj(@)] < [P < (K1) det p='/7,



NON-SMOOTH CURVATURE AND THE ENERGY OF FRAMES 65
by virtue of being the dual frame to p?(z). Let a € s0,, ® A'Q. Then
2p(z) e A pl(x))?
= Ri(z) (o™ A p¥(2)) = Rj() (o™ A p(2))
+ (o APl (2))(Ri(x), By (@) p" ()
= a““( i(@)p"(x) = p (-%")( Ri(x))a’™ — o™ (R;(x))p" (x)
(@) (Rj(2))a™ + o (Ri(x))p' () (R;(x))p" ()
oH(Ry(2)) (2)(Ri(2))o (&
= Oﬂk( i(2)pf(2) = ofa’™ — !
oM(R (SC))(%/)’“( ) — aM(R;(2))dip" (x)
= 207,
O
For 1 < p < oo and p € WP(Q, R" ® AkQ) define the exterior energy &, of p to be

(3.4) / |dp|P dzx.

3.1. p-HARMONIC MAPS AND SO(n)

Throughout this chapter, we will assume that 2 C R"™ is a bounded Euclidean do-
main with smooth boundary. Of special interest in this study is the space W?(Q, SO(n))
of Sobolev maps to the Lie group SO(n). For 1 < p < oo the space of p-Sobolev
maps to SO(n) denoted WP(Q2, SO(n)) is defined to be the subset of elements of
WP (Q, M, »r,) with values almost everywhere in SO(n). Of special interest in this
study is the so called p-energy of a Sobolev map:

(3.5) T, : W (Q,S0(n)) — o~ / |do|P.

The left (resp. right) Darbouz derivative of o € WHP(Q,SO(n)) is Dyo := o 'do
(resp. (Dgro)o™t). A priori we would expect 0*1d0 € LP(Q Mpxn @ A'Q), as
do € LP(Q, My s @ A1Q) and 071 € L(Q, SO(n)). In fact we have the following
LEMMA 3.3. Let 1 < p < oo and o0 € W'?(Q,SO(n)). Then Dyo is s0,-valued, i.e.
Dro € LP(Q, 50, @ A'Q). (Similarly for Dgro).

Proof. Consider first an absolutely continuous function o : [0,1] — SO(n). We can
extend this to a map ¢ : R — SO(n) by letting it be constant outside the endpoints.
Let 0 : R — M,,«,, be a standard smooth approximation satisfying the properties
(1) 0° — o uniformly, i.e. [[0° — 0|l = 0 as e = 0, and [[0°||cc < ||0]|oo;
(2) do® — do in the L' norm, i.e.

/|do (2)] dz — 0

as ¢ — 0, and ||do®||; < ||do]|y;
(3) 0f € C®(R, Myxn).
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The existence of such an approximation is standard and can be found in, for instance
[Eva98, §5.3.1,§C.4].
Then

1
/ |(Do')o + o' Do — (D(0%)'0° + (6°)' Do®)| dx
0
< / |D(0°)" — Do'||o®| dx +/ |D(c")||0° — o| dz
R

— c'||Dof| dx + o'||Dof — Do| dx
R

HD = Dalli([lofleo + [[0%[loc)
(IIfoIIl + Do [l)llo" = ol
< 2||ollol| Do = Do®[|y + 2| Dalfi([lo° = olje)-

Now || — 0%||« — 0 and || Do — Do®||; — 0 as € — 0. It follows that
/ |Do'o + o'Do — D((0%)'0)| dz — 0
R

as ¢ — 0. As such (¢°)!(0°) converges in WHH (R, M,,,,). Since (0¢)!c® converges
uniformly to I, and d((c°)!c®) converges in L'(R, M,,»,,), d[(c°)!c°] must converge
to the weak derivative of I, which is zero [Eva98, 5.2.1]. Hence

(Do")o + o'Do = lin%(Dae)tag + (0°)!Do® = DI =0, a.e.
e—

Consequently o' Do = 0~'Do is an antisymmetric matrix.

Now if o € W'P(€Q, SO(n)) then it is absolutely continuous on almost every line.
As such for almost every line ¢ in §2, the restriction of ¢ to this line is absolutely
continuous. It follows that the partial derivatives of o : 2 — SO(n), when multiplied
by o' on the left, are antisymmetric matrices. And hence Dyo = o 'do is an
antisymmetric matrix valued one-form almost everywhere.

Lastly do € LP(2, Myxn @ A'Q) so 07ldo € LP(Q, M, @ A'Q). But by the
preceding reasoning o~ 'do(z) € s0, ® AQ) for almost every x € 2, and so o~ !do €
LP(Q, 50, ® A'Q). O

REMARK 3.4. Let 1 < p < oo and o € W'(Q,SO(n)). Then

» a):/|DLa|p d:c:/|DRa|p dz.
Q Q

This is a direct consequence of Proposition 1.13, as do is a matrix valued one-form,
and left and right multiplication by an orthogonal matrix preserves the Hilbert—
Schmidt norm.

LEMMA 3.5. Letp’ >n, 1 <p<p andl < q < co. Supposeoc € WH»/¥'=D(Q, SO(n))
and p € LV (Q,R" ® A'Q). Suppose further that op € COP(S2) and (det p)~Hm €
L1(Q). Then o € W''(Q, SO(n)) where ¢ = pq/(p + q).
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Proof. Because o € Wh'/®'=D(Q SO(n)), we know by Lemma 3.3 that Dyo €
LY/ =1(Q, s0,, ® A'Q). The condition (det p)~/" € L(Q) implies that p is essen-
tially non-vanishing. Now by Lemma 3.2 and quasiconformality of the frame p,

/ |Dpo|? do = / |Dpo|? det p?/™ det p=0/™ da
Q Q
<C(w) [ |Diot’|pl” det p 7" da
Q

< C’(n,K)/ Do A pl? det p=?/™ da
Q
< C(n, K)| Do A pl|? || det p~2/™(|2.
Thus
IDrolly < Cln, K)[Dro A pllyl| det p='/".

Now by virtue of Lemma 1.14, we know that d(op) = do A p + odp, and hence we
know that

DioAp=octdoNp=octd(op) — dp.
Consequently
1Drolly < Cln, K)|[ det p= /||| Do A pll,
< C(n, K)| det p=/"|l¢ (lld(op)ll, + lIdpll,)

and hence Dpo € L7(Q,s0, ® A'Q). Consequently do € LY(Q, My, @ A'Q).
Because o :  — SO(n) is an M,,,-valued 0-form, and do € LY (2, My, @ A'Q)
the claim follows. ]

3.2. THE EULER—-LAGRANGE EQUATIONS

THEOREM (1.5). Let 1 < p < co. If p € LP(Q,R™ @ A'Q) is a local minimiser of
Ep C(’)IZO(Q) — R, then it satisfies the Fuler-Lagrange equations

(3.6) [ o 2dp. i) de =0

and

(3.7) [ dol=2dp.un p) dz =
Q

where u € C§°(R2, 80,,) and A € C§(Q).

Proof. Let § > 0 and oy € C*(Q,CO*(n)) t € (—0,9) be a smooth one-parameter
family of test functions equal to the identity on a neighbourhood of 0f2, with oy =
I. Then for |t| small enough, there exists a smooth one-parameter family A, €
Ce(Q, co,,) satistying oy = exp(Ay).

Because co,, = R@s0,, we consider /M%) where A € C5°(Q) and u € C°(£2, 50,,).
Set 7, = t~ (Mt — )p for t > 0 and 79 = (M + u)p. Furthermore we note that
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lim; o 7¢(x) = 79(2) for every x € Q. Then

d (A u) . )\Jru p
G ) = T [ | ) = fdpl da
= }g%; (d(e"™ ) p), d(e" ™) p))P? — |dpl? da
Q

1
—lim= [ (dp+ tdr, dp + tdr,)""* — |dp|? du
=0t Jq

1 p/2
= lim - (|dp|2 + 2|dm|* + 2t (dp, dry) ) — |dp|? dz
Q

t—0 t

=lim | I;dx,
t—0 Q

where

I = < [(|dpl* + *|dm|* + 2(dr, dp))""* — |dp|"] .

H—l»—t

By the monotonicity of | - [P/2, we have the estimate

| 1]

IN

((|dp|* + £*|dm|* + 2t|(dp, dr:)|)P"* — |dp|?)

IA

((|dpl? + £2|dm|? + 2t|dpl|dr, )" — |dp|")

IN
Sl s S S

((ldp| + tldm[)" — |dp]")
< p(ldp| + tldr|)P~"|dr|
< p(ldp| + |dn| )"~ |dmi|
< C(p)(ldpl"|dr| + |dmi ")

for every ¢ > 0 On the other hand,

dr, =d (i(/\] + u)* t;l )

k=1

— (ZZ (A 4 w)? (AN + du) (AT 4 uw)F—771 I )/\p

k=1 7=0

e tk*l

+ (Z(M + u)’fF) dp.
k=1

Thus

k 1
jdn| < Zk AL+ [ul)* = (JdA] + IdUI) el

k=1
+Z Jul + [A])* Idp!

(HdUHOOJerAH el tiXlo)
+ (lulloe + Moo E(t([[telloo + [[Alloc)) |l
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where F(z) = (¢* — 1)/x. By the monotonicity of F' and the exponential function,
for every 0 <t <1

|dri| < (ldullso + [|dA|oo) el =M= o] + (flul| oo + [IA]loo) F ([l oo + I M]lso)ldp].
Thus
(3.8) dri| < C(|pl + |dpl),
where
€' = (ldullo + a1 o)1=+ (e + [\l )F (e + A1)

Hence
L] < C [|dpl” + |pl” + |dp|"~|pl]

where C' = C(p, ||u/|1,00, || A]]oo) Thus we get a uniform (for 0 < ¢ < 1) integrable
bound. Hence we can apply the Dominated Convergence Theorem and obtain:

d “ .
0= E gp (et(k-i- )p>|t:0 = 1% QIt dx

1
:/lim— [(dpl? + 2]dn|? + 2t{dr, dp))?'? — |dp]?] da
qt—=01

- / (dplP~2dp, dry) d = p / (dplP2dp, d[(M] + w)p]) d.

Setting © = 0 and then A = 0 yields, respectively, the equations

[ do=2dp.d0ve) =0, and [ (app2dp.atup)) ds o
Q Q

Since (dp,u dp) = 0 almost everywhere by Lemma 1.12, the second equation can be
written

0= /(\dp[p_de, du N p+udp) dx
Q
— [ dol2dp,dun ) + o> dp,u dp) do
Q

= / (ldp[P~2dp, du A p) da.
Q
This completes the proof. 0

Equation (3.6) corresponds to Equation (7.4) in [PR11]. As a direct corollary of
Theorem 1.5 we obtain a weak reverse Holder inequality for the local minimisers of
the energy functional &,.

COROLLARY 3.6 (Corollary 7.8 in [PR11]). Let p > n/2. Suppose p € COY (Q)
is a local minimiser of £,. Then there exist constants ¢ = q(n,K) > n and C =
C(n, K,q) > 0 such that for every ball B with 2B CC (2

1/q 1/n
([1omar) <o [ prar)
B 2B

The following Lemma is needed to test agains arbitrary Sobolev functions, and not
just smooth functions.
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LEMMA 3.7. Let n/2 < p < n. Suppose p € COY (Q) satisfies the Euler-Lagrange
equations (3.6) (respectively (3.7)) for any smooth test function X € C§°(2) (resp.
u e CP(Q,50,)). Then p satisfies the equations for any function X € Wy (Q) (resp.
u e WP (Q,s0,)) where p* = np/(n — p). Furthermore, if p = n/2 and p satisfies
(3.7) for any smooth test function u € C§°(§2,80,,) then it satisfies (3.7) for any test
function u € Wy (9, s0,,).

Proof. We first prove the claim for (3.7). Let u® — wu be a sequence of smooth

compactly supported functions in Q converging in Wy”" (Q, s0,).
Then

‘ / (dplP~2dp,du A p) dx
Q

/<|dp|p_2dp, du® A p+ (du — du®) A p) dx
Q

= ‘/(\dp!p‘de, du® A p) dzx
Q

+ /(ldp]pde, (du — du®) A p) dx
Q

/ (\dplP2dp, (du — du®) A p) de
Q

< / dpP~"du — duf||p| da
(9]

1/p
< ol ( [ b= anlop ac)
Q
< dpll " du — el

This is true for any 1 < p < n and every € > 0, and hence

/(|dp|p_2dp, du A p) dx = 0.
Q

Now we prove the claim for (3.6). Let A* — X be a sequence of smooth compactly
supported functions converging in W,*" (€2). Then consider

‘ | ol 2ap. ) d

= ‘ /Q (|dplP~2dp, d(X°p)) dx + /Q (|dp|P~2dp, d(X — X°) A p

+ (A= X%)dp) dx

/ (dpP~2dp, d(A — X) A p + (A — X )dp) do
Q

< / dplP A — dX[o] + [dplPIA — X da
Q
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< lidplly ™ lldA = A llp-llplla + dplIBlIA — Alloc
< Clldpllp~ (ldplly + llplln) dA — dX*

p*-

The last inequality is possible because if p > n/2 then p* > n, so we can use Morrey’s
inequality. Once again we allow ¢ — 0, which yields

/Q (|dp|P~2dp, d(\p)) = 0.
]

3.2.1. A-harmonic maps to SO(n). Let V' be a finite dimensional inner-product
space. Consider a measurable bundle map

A Qx (Ve ARY) — (V@ A'RY).
We say A is monotone of growth p > 1 if

e for almost every x € ) the map £ — A(z, &) is continuous;
e there is a number C' > 1 such that

CHel < (A(x,€),€) < Clef

for almost every x € Q and £ € V @ A'R™;
e for almost every x € Q and every £, € V @ A'R"

with equality if and only if £ = (; and
e for every A € R A(z, &) = A\|A[P2A(z,€).
A function f:Q — V is said to be A-harmonic if it satisfies

/Q<.A(df), du) dx =0

for all u € C§°(€2, V). The concept of an A-harmonic function f : Q2 — V generalises
the notion of a p-harmonic function. In general they arise as minimisers of functionals
of the form

Tu(f) = [ Pla.Df) da

under suitable assumptions on F; see e.g. [HKMO06, Chapter 5.

We consider maps from Q to SO(n). Let A : Q X (s0, @ A'R") — (s0, @ A'R")
be monotone of growth p > 1.

A map 0 € W'P(Q, SO(n)) is said to be A-harmonic if

/<A(DLO'), Ad,(du)) dz =0

for all u € C§°(2, s0,,).
LEMMA 3.8. Let1 < p < co. Assume that G : @ — End(s0, @ A'R™) is an essentially
bounded measurable map satisfying

(1) for every & € s0, @ A'Q and almost every x € Q
CTHEP < (G(2)6,€) < I¢”
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(2) for every &, ¢ € 50, @ A'Q and almost every x €

(G(2)¢, ¢) = (&, G(z)Q).
Then
Ac(z,€) = (G(x)€, )P G(x)¢,

is monotone of growth p, and a local minimiser o € W'?(Q, SO(n)) of the energy
7o) = [ (G@)Dro (o), Duo(a))?" d
Q
satisfies the A-harmonic equation

| Aate. Dyota) Adugo duta) da =0

for every u € C§°(, s50,,).
Proof. We consider the variation o +— e where t € R and u € C§°(£2, s0,,). Then
Dy(eo) = o e Mde™o + o Mo

= AdU(DLet“) + DLU.

We get
d
—|  Dp(e"o) = Ad,(du).
dt|,_,
We differentiate the integrand of Z7 (o), and by Property 2
4 (GDp(e"0),Dy(e™o))P/?
dt|,_,
= (p/2)(G Do, Dpo)P* 71 ((G Ad,(du), D1o)
+ (G Do, Ad,(du)))
= p(G Dyo, Do)?* (G Do, Ad,(du))
a.e. in ().
Consequently, since o is a local minimiser of Z7,, we get
d d
0=—| Z&("0) :/ —|  (G(z)D(e™Do(z)), D (™D (x)))P/? da
dt],_, o dt],_,

= p/(G(x)DLa(x),DLJ(m)>p/2_1<G(a:)DLU(x),Adg(x)du(x)) dx.
Q

Here we have brought the differentiation through the integration without an explicit
justification wvis-a-vis the proof of Theorem 1.5, because this class of functionals is
more standard in the literature [HKMO06, HL87]|. O

When we look at the energy minimiser problem o — &,(o dx) in this context, we
arrive at the following Fuler-Lagrange equation:
COROLLARY 3.9. Let 0 € WP(Q,50(n)) be a local minimiser of o + &,(o dx).
Then o satisfies the A-harmonic equation

(3.9) /Q<.A(DL0), Ad,(du))y dx =0
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for every u € C§°(§2, s0,,), where
A 50, @ A'R" — 50, @ A'R",  A(€) = (GE, )P Ge,

and
G = (- Ndx)*(- A dx).

We remind the reader that G' € End(so,, ® A'R") is defined by

(G(£), ¢) = (§ A dx, A dx).
Proof of Corollary 3.9. By Theorem 1.5, for every u € C3°(€2, so0,,)

/<|da A dx[P~2do A dx, du A odx) dz = 0.
Q
Since o takes values in SO(n), we have

0= /(|01d0 AN dx|P" 207 do A dx, 0" duo A dx) dx
Q
= /(|DL0 AN dx[P2Dpo A dx, Ad,(du) A dx) dx
Q

= / (Dpo Adx,Dyo A dx)P*"Y(Dpo, Ad,(du) A dx) dz.
Q
Thus
/ (G Dyo, Dpo)P* (G Dpo, Ad,(du)) dz = 0.
Q

By Lemma 3.2 G satisfies the conditions of Lemma 3.8, and so A is monotone of
growth p and

/(A(DLU), Ad,(du)) dz =0
Q
for every u € C§°(2, s0,,). O

The interesting thing is that the linear map G in Corollary 3.9 is independent of
r € Q and 0. In particular A is C!, and we can apply existing regularity theory
to yield higher regularity for this minimiser. We refer to [HL87| for a more detailed
discussion.
COROLLARY 3.10. Let 1 < p < oo and let 0 € WP(Q2,S0(n)) be a local minimiser
of o — E,(0dx) then there is an o, 0 < a < 1, and a set X CC 2 of Hausdorff dimen-
sion less than or equal to n — [p] — 1 such that ¢ € CL*(Q\ 2, SO(n)). Furthermore

loc
if 0Q is C?, and olsq is C1, then o is Holder continuous up to the boundary.

3.2.2. Minimisers in the class of an exact frame. In what follows we examine
a K-quasiconformal map f : Q@ — Q' C R". We denote by h : ' — Q the inverse
f' of f. In this case the frame df is a quasiconformal frame, and J; = det df is
its Jacobian determinant. Let dy denote the standard Cartesian co-frame in §2'. For
almost every y € Q' we define the measurable map A : Q' x s0, @ A'R" — R"” @ A2R"

Ay, €) = {<B<y))#<5 Ady), if dh(y) # 0

3.10
( ) ENdy, otherwise,



74 JAN CRISTINA

where B(y) = J;/"(h(y))Df(h(y)). Note that B(y)~" = J, /" (y)(Dh(y)). Subse-
quently by (3.1) and (3.2) |B| = (Kfo)l/” and |B~!| = (K})l/", where K} and K¢
are respectively the inner and outer distortions of f.

Apply Lemma 3.2 to deduce that |dy;!| < C(n). Then

€] < |dyH(B~H? B* (¢ A dy)
< C(n)(K[)*™|B*(¢ A dy)].
On the other hand
|B* (& Ady)| < (K9)*™¢ A dy]
< C(n)(K9)*.
We set
G(y) = A*(y)A(y) : 50, @ A'QY — 50, @ A'QY,
where
A*(y) : R" @ A*Q — s0,, @ A'QY

is the adjoint of A(y).
We can then define a measurable monotone function A : Q' x (s0, ® A'R") —
50, @ A'Q of growth n/2 by

(3.11) Ay, €) = (G(y)&, &) D1G(y)¢

for every y € ' and &so,, € A'R"

The reason for using this potential theoretic terminology is that in this context
the Orthogonal Euler-Lagrange Equations (3.7) take the following form.
THEOREM (1.7). Let f: Q — Q' be a quasi-conformal map with inverse h : Q' — ,
and o : Q — SO(n) be a measurable map such that & = o o h € WH(Q/, SO(n)). If
d(odf) € L"*(Q,R" ® A%Q) then ¢ € WH™2(Q, SO(n). If odf satisfies the Orthogo-
nal Euler—Lagrange equations (1.6) then & satisfies an A-harmonic equation, where
A is given by (3.11). That is, for every u € C§°(§Y, s0,,)

(3.12) / (A(D15), Ads( du)) = 0.

Proof. By quasiconformality of h, d(h*c df) = h*d(cdf) € L"*(V,R* @ A%Q), cf.
[GT10, Thm 6.6]. But h*(odf) = (0 o h)dy = 6dy. By Lemma 3.5,
Dp(5) = (dyp) "' (o 0 h)"'d((a o h)dy) € L"*(€Y, 50, ® A'€Y).

Consequently & € W/2(Q, SO(n))).
Now because adf is a solution to (1.6) and by Proposition 1.13 left-multiplication
by o is an orthogonal operator R” ® A%2Q) — R" ® A%Q), we have

0= / (|d(adf)|""* 2d(odf), du A odf) dz
Q

= / (o7 Yd(odf)|["* 20~ d(odf), o~ (du)o A df) dz.
Q
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We apply the change of variables x = h(y) to yield

0= / ,<\a*1d(adf)\<”*4>/20*1d(o—df), Ad, (du) A df)niyIn(y) dy

- / (|IDf*(Dho fY* o td(odf)|"2Df#(Dh o f)#o = d(adf),
Q/
Df#(Dho f)*(Ad,(du) A df))neJr(h(y)) ™" dy.

We set B=J;"/"Df oh, A= B#(- Ady) and G = A*A. Then

0= / (|B*n (o d(odf))| " B (07 d(o df).
B*h*(Ad, (du) A df)), dy
— [ 4B (67 @o) ndy)| "B (d5) Ady),
B*(Ads(d(u o h)) Ady)), dy
— | 14(D1)[" 2 A(Du5)., Al (dlu o 1)), d

_ / (G(D1&), Di6) " D4G(D15), Ads (d(u o h))), dy

313) = [ (ADE) Ads(d(u o 1), do,

where A is as in (3.11). By Lemma 3.7 the Euler-Lagrange equations (1.6) are
true for any function u € VVO1 (€, 80,). But h* is a Banach space isomorphism of
Wy ™(Q, 50,) to Wy ™(€, s0,,). Hence we may re-express (3.13) as

(3.14) / (A(D15), Ady(du)) dy = 0

for any function u € W, (', s0,,). But C3°(Q, s0,)) € W, (€, 50,,) so, in particular
& satisfies (3.14) for any u € C§°(€Y, s0,,). O

3.3. MINIMISERS OF EXTERIOR ENERGY

In this section we prove the existence of minimisers for the exterior energy.
PROPOSITION 3.11. Let n/2 < p < oo and Q@ C R™ be a bounded C* domain
for which there are no harmonic 1-forms with vanishing tangential component, i.e.
Hr(Q,A'Q) ={0}. Let pp € L"(,R" @ A'Q) be a K-quasiconformal co-frame such
that dpy € LP(Q,R™ @ A*Q). There is a number C' = C(K,p,Q) such that for every
p€COb (Q)

(3.15) lolln < Cllpolln + [1d(p = po)llp)-

Nota bene The condition Hp (2, A*Q) = 0 is equivalent to the cohomological con-
dition H'(£2,09) = 0 [DS52, Theorem 3].
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Proof. The following proof is along the lines of a similar proof in [PR11]. Denote
n = p — po. Using the Hodge decomposition [ISS]

L"(QR"® A'Q)
= dW, " (L, R™) @ d* W™ (Q,R" @ A’Q) @ HP(Q,R" @ A'Q)
we can express
n=df +d'6+¢,

where f € W, (Q,R™), B € W™ (Q,R* @ A%Q) and ¢ € H™(Q, R @ A'Q). Further-
more 7 is in WEP(Q, R* @ A'Q). Consequently so are ¢ and d*8.

Because ¢ € WP(Q,R" @ A'Q), it follows that ¢ € Hr(Q,R” ® A'Q), and hence
¢=0.

The condition (d*8) € WP (Q,R" @ A'Q) along with

dd*B = dn = d(p — po) € LP(,R" ® A*Q)

guarantees that d*4 € WP (Q,R*@ A'Q)NWE P(Q,R" ® A'Q) hence by [ISS, (6.4)],
ag e VVO1 P(Q,R"®@AQY), and by Gaffney’s inequality for compactly supported forms
cf. [ISS, Proposition 4.1]

IV B, < Cp, Q)||dd" B, + [|d"d"Bll, = C(p, D)|d(p — po)|lp-
Because Q is bounded, and n/2 < p, we have d*3 € Wol’n/Z(Q,]R” ® A'Q), and

IV Bllns2 < Cp, D)ld(p — po)llp-
Then by the Sobolev—Poincaré inequality

1d*Blln < CEDNVBlnj2 < Clp, Dld(p = po)llp-
Let 7 = pg + d*B, so that p — 7 = df. Then

Il < [l polln + [ Bl
< llpolln + Cp, 2)[d(p = po)lp,
Consider J; = x(df' A--- Adf™). Then
Jp=x[(p" =7 A A (p" =)

=detp+ *Z Z sign(1)p™\ A 7!
i

1 n — n—i 7
> —lol" = Cm) Yo" 7]
i=1
Because f € WO1 (€2, R™), when we integrate J; over 2 it yields 0, and hence

1 n o
02_/ pn_Cn /pnsz
KQH (); Q|| 7|

I - n—i||||i
> —lolls =) YNl 171
i=1

by applying Holder’s inequality.
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Assume |[|p||, < [|7||n. Then

lolln < llpolln + C (o, D)lld(p = po)llp-
It [lplln > [|7][n, then

[l

~ [l
0> n>1 - COm)K—
[olln = lI7lln

— lplli, =

After rearranging,

lplln < (C) K + D7l < (C(n)K +1)([[polln + C(n, K, p, D)[d(p = po)l)-

This completes the proof.

7

O

PROPOSITION 3.12. Let f € Li.(Q2). Suppose that for every mon-negative o €

Cg°(©)
/ fedx > 0.
Q
Then f(x) > 0 for almost every x.

Proof. Let ¢ = e ™p(x/e) be a smooth mollifier function satisfying
e CP(R™), >0 and / o(x) dx = 1.

Then
0< lim [ ¢f(z —y)f(z)de = f(y),

E— 00 Q

for almost every y € (.

O

LEMMA 3.13. Let (A,) be a sequence in L™(Q2, CO (n)) which converges weakly to
A€ L™"(Q, Myxn) as v — 0o, and suppose det A, — det A in the sense of distribu-

tions. Then A € L"(Q, COJ (n)).

Proof. By conformality, n="/2|A,|* = det A,. Let n € L*(Q) be a non-negative

function. As such n|A[""24 € L™=V and thus

/n|A|”dx _ /(A,n|A|”‘2A> dz = lim /(A,,,mAyn—?A) da

< liminf |/ A, || |n*™A|" L.
V—r00

Consequently
/ nA|" dx < liminf/ n| A" dzx.
Q V—r00 QO

Hence, for n € C§°(Q2)

/ n(JA" —n™?det A) < liminf/ n(|A,|" —n"?det A,) dz = 0.
Q Q

V—00

Hence, by Proposition 3.12, |A|* = n"/?

3.1, A is a conformal matrix almost everywhere.

Lemma 3.13 allows us to apply the following result of Iwaniec and Lutoborski.

det A almost everywhere, and by Proposition

O
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THEOREM 3.14 (Compensated Compactness Theorem, 5.1 in [IL93]). Assume ol €
LP(Q, A (Q)),...,ak € LP(Q, A (Q)) converge weakly in their respective spaces to

al, ... af as v — oo, where Zle - =1, and assume that ||daj||,, < C < oo for all
J

j=1,....k and v > 1, where ¢; > np;/(n+p;). Thenal A---Nak —=al A---NF
as v — o0 in the sense of distributions.

We use this theorem to show that CO? () is closed under the weak topology.
LEMMA 3.15. Let p, € COb (Q), liminf, o &,(p,) < 00 and p, converge weakly to
o€ L*(Q,R"® AY(Q)), then £,(0) < liminf, . E(p,) and o € COY ().

Proof. The proof of weak lower-semicontinuity is classical as in [PR11|. Similarly it
is straightforward to see o — po € WiP(Q, R" @ Q). The real difficulty lies in showing
that ¢ is a conformal multiple of py. To do so we use the Compensated Compactness
Theorem and Lemma 3.13

From the compensated compactness theorem it follows that detp, — detp in
the sense of distributions. Then consider the conformal matrix fields A, defined
uniquely by p, = A,podet py Y " for detpy # 0 and A, = 0 otherwise. Hence
det p, = det A,. Likewise there is a uniquely defined matrix field A : @ — M, «,
such that o(x) = A(x)po(z) det pal/”(x) when det po(z) # 0, and A(z) = 0 otherwise.
Hence det p = det A. Now

|A" = n™?det A, = n™? det Pus

so A, is a bounded sequence in L™(2, M,,«,,). Hence by passing to a subsequence A,
converges weakly to A in L"(2, M, ), and by Theorem 3.14 det A, converges weakly
in the sense of distributions to det A. As such, by Lemma 3.13, A is a conformal
matrix field, so o € COY (€2).

O

THEOREM (1.3). Let p > n/2, let Q be a smooth bounded domain in R™ with
Hr (2, A1Q) = {0} and let py be a quasiconformal co-frame in WP (Q R" @ A1Q) N
LMQ,R" ® A'Q). Then there is a minimiser of €, in the space CO?b (€2).

Proof. Assume we have a minimising sequence p, for which
lim E,(p,) = inf &,(p).
Jim & (o) = o »(P)

Then by Proposition 3.11

lpulln < C(p, K, Q) ([l polln + lldp, — deHp)
< Cp, K, Q) (polln + E(p)"" + E(p0) /7).

Hence p, is a bounded sequence in L™(£2, R" ® A'Q}). By passing to a subsequence we
may assume that (p,) converges weakly to a frame p € L"(Q2, R" ® A'Q)). By Lemma
3.15, p € COP (). Furthermore, by weak lower-semicontinuity of &,,

< li = i .
Elp) < Jim &(py) = _inf  Enleo)

Since p € CO?

PO’

E(p)> inf &E/(p).
»(p) > . cg%O @ »(0)

This completes the proof. 0
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The condition p > n/2 in the proof of Theorem 1.3 follows from Theorem 3.14. If
we assume a higher exponent of integrability for p, then we can examine the situation
where dp is only n/2-integrable, using a modification of Theorem 3.14.

We introduce some new notation. Let m > 1 and let

b= (pl>"'apm) and q= <q17--'7Qm)
be multi-exponents, where p; > 1 and ¢; > 1. Define

for every 1 < i < m and

we(-t-xh)

forevery 1 <i<mand1<k<m,1#k.
We will use the Averaged Poincaré Homotopy Operator. Let B C R™ be a ball and
let ¢ € C§°(B) be a non-negative function satisfying

[ ety

We define T, : C*(B,A*B) — C>~(B,A*"'B) by

T,a = /B o(y) Ko dy,
where .
K, () (x) = / (2 — y)saly + t(z — y)) £+ dr.

for y € B and a € C®(B,A*B).
The operator T, is well defined by the convexity of B, and it satisfies the following
properties:

(1) for 1 < p < oo, T, extends to a bounded linear operator LP(B,A*) —
Whr(B, A*1B);
(2) for 1 < p <ocand 1 < g < p*, T, is a compact operator LP(B,A*B) —
L9(B, AF1B);
(3) if a € L (B,A*B) and da € Li (B, A" B), then T,da and dT« belong to
L} (B,A*B) and a = T'da + dTa.

For proofs of these facts see [IL93, §4].
LEMMA 3.16. Let Q C R™ be a domain and m > 1, and let @, = (o), ..., ¢™) be an
m-tuple of differential forms ¢! € LI (Q, ALQ), dgol, € L (Q, A1) where qF > p;

loc loc
and
1 1 1
— 4+ —=—<1
b1 Pm Do
Suppose p, and dy, converge weakly to ¢ and dy in their respective spaces as

v — 00. Then, provided pf > p; for every 1 <i <m,

/77/\g0i/\~--/\90:,”—>/77/\<,01/\---/\<pm as v — 00
Q Q
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for every n € C°(Q, A"~2:LQ).

Proof. This is modest generalisation of [IL93, Theorem 5.1] to the case where 1" | pi' <
1, and follows the original proof almost exactly. The key here is that by increasing
the integrability of the forms themselves, we can decrease the integrability of the
exterior derivatives. We follow the proof of Theorem 5.1 in [IL93|. We first assume
that n € C3°(Q, A"~2:%Q)) is compactly supported in a ball B = B(xg,7) CC Q.
Then consider

(3.16) /Qn/\sol/\---Mom—/Qn/\SOi/\---MDT

=/ZM@IA---/\@HA(wi—wi)Awi“A---/\wZ‘-
Q=1

Let T}, be the averaged Poincaré homotopy operator where ¢ € C§°(B) is constant
on the support of 1. Then

Z/nAsolAm/\dlA(soi—%)/\wi“Am/\wT
i=1 79
—Z/Msol/\---/\d1A(de(soi—sOi))Asai“A'--A%”
i=1 7B
+Z/nAsolA---/\soi‘lA(dTw(soi—sOi))MOi“/\---MOZ”
i=1 VB

Ai + B,

I
.Mgl

=1

where

A

/nAsolA---/\soi‘lA(de(sOi—wi))MDi“/\---MDT
B

and

Bi=/nAsolA---/\soi‘lA(dle;(sOi—wi))Awi“/\---MOT
B
for every 1 = 1,...,m. To estimate A;, we apply Holder’s inequality and arrive at

[Ail < Hnllscll@® lpy - - 1T (dee” = o))l -+ 167" -
Since ¢ > p;, Ty is a compact operator. By passing to a subsequence, if necessary,
| Ty (de" — dgt)||, converges to zero as v — oo.
To estimate B; we first integrate by parts and then estimate:

|B;| < ‘/dn/\s01~--AT¢(<pi—wi)A--‘MOT
Q

/n/\sol/\---Adcp’“A“-/\Tw(cpi—wi)A---/\sOT
B

/n/\wl/\~~ATw(soi—sOi)A~~Ad<p’,f/\-~A90T
B
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From this it follows that
|Bil < lldnlloclle™ 1y, - I1Tu(@" = @) llgi - 197 llpnn
+ 3 lnlloolle lps - I llge - 1T (" = @8l ==~ 165 |

k<i

+ 3 Mllc et llpy -~ 1Tu(¢" = )
k>i
for every ¢ = 1,...,m. Because p; < pi, Ty : LP/(B,A"B) — LP{(B,A""'B) is
compact and, by passing to a subsequence if necessary, ||T(¢" — )] converges to
Zero as v — 0.
Since py, < qj,

pik ”d(pz]iHQk e ||90T||pm

1 1 1
I =
Qg N #kp

and
1 1 1 1
—_—— <1l —.
pi n qk #Z.’kpj

Thus p; > pi. Hence Ty : LPI(B,A“B) — LPx(B,A""'B) is compact and, by
passing to a subsequence if necessary, || Ty (" — ¢5)||p,, converges to 0 as v — oo.
We have obtained

/77/\@11,/\---/\%77—>/77/\§1/\---/\g0m
Q Q

as v — oo for any 7 supported in a ball B CC ().

Assume 1 € C§°(Q, A"~24Q). We can cover the support of 1 by balls compactly
contained in . If we take a smooth finite partition of unity {t;}}¥, covering the
support of 1, such that each v; is supported in a ball B; CC €2, then we can calculate

m [ A (P A AR =gy A Al

v
vV—00 Q

V—00

N
= lim (ZW;)A(wlAmMom—sOiAm/\%”)
Q \i=1

N
=> lim/ Y AT A A = oL N A )
— V—00 B;
= 0.
This completes the proof. O

COROLLARY 3.17. Let Q be a domain, p > n, ¢ > np/((n+ 1)p —n(n — 1)) and let
p, € LP(Q,R" @ A'Q) be a bounded sequence with dp, bounded in LI(,R" @ A%Q).
Then there exists a weakly convergent subsequence (p,, ) tending to p as k — oo such
that det p,, — det p as k — oc.

Proof. Now we apply Lemma 3.16 with ¢, = p’, p; = p, and ¢; = ¢. Let us check
that the conditions are met:
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n+1 n-—1 1 n—1
n 4 n p

-1 -1 1
(@) =) =-~—-<
Consequently
(a)™" < ()"
Furthermore p* = oo > p; and hence the conditions of Lemma 3.16 are satisfied. [J

REMARK 3.18. Because p > n,

| . :n:<ﬁ>,
P n 2

and hence ¢ = n/2 is admissible in Corollary 3.17.
THEOREM (1.4). Let p > n and ¢ > np/((n+ 1)p —n(n — 1)). Let Q be a smooth
bounded domain and let py € LY (Q,R" ® A'Q) be a quasiconformal co-frame. Sup-
pose dpy € L1(Q,R™ @ A*Q). Then there exists a minimiser of &, in SO;, .

It’s worth noting that for every p € SOJ (), it follows automatically that ||p||, =

| poll, and hence we do not need the condition on harmonic fields as in Theorem 1.3.

Proof. Our theorem assumes that p € L} (Q,R" @ A'Q)), whereas Corollary 3.17
assumes that p € LP(Q,R" ® A'Q). To circumvent this problem, let U CC Q.

Suppose (0,,) is a sequence of measurable mappings : {2 — SO(n) so that p, = o,pg
is a minimising sequence for £,. Then (p, ) is a bounded sequence in L (U, R" @ A'U)
and (d(o,pp)) is bounded in LI(U,R" @ A2U).

Consequently we can choose a subsequence (p,, ), weakly converging to some p €
L"(U,R™ @ A'U). We can apply Corollary 3.17 to yield that deto,, py — detp.
But det o, po = det py almost everywhere for every k € N, so det p = det py almost
everywhere. Then by Proposition 3.13, p = Apy for some conformal matrix field A.

But then det A = 1 almost everywhere, so A is a measurable map Q2 — SO(n). O

THEOREM (1.6). Letp > n/2 and let Q be a bounded smooth domain with Hr(Q, A*Q)
0. Suppose py € L"(,R" @ A'Q) is a K-quasiconformal co-frame and dpy €
LP(Q,R" @ A%Q). Then there exists a qo = qo(n, K) < n/2 such that for every
q > qo there is a p € COY (2) satisfying (3.7) with exponent q.

Proof. First we minimise the p-energy of py with Theorem 1.3 and get a minimiser
0 € COY (). The co-frame g is in Lf (2, R" ® A'Q) by Corollary 3.6 where p' =

P (n, K) > n. Then, by Theorem 1.4, for any

np
CESVATICESY

q>qo=

there is a minimiser of &, in SO%(€2), which is then a solution of (3.7) with exponent
q- But 9 € CO? (Q) C COY () and so SOY(Q) C COY (). O

REMARK 3.19. Tt follows that for all k& < n, any oy € WH(Q, SO(k)), and ¢ > 1
there exists a minimiser of the Dirichlet p-energy, o : Q — SO(k), with o|sq = 0olon
in the Sobolev trace sense. Indeed, we may set py = ogdx € L®(Q,R" @ A'Q)
and apply Theorem 1.4. This is, however, a rather roundabout way of proving the
existence of a p-harmonic map Q@ — SO(k); compare with [Whi8§].
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3.4. ANOTHER EXTERIOR ENERGY

In this section we define an operator 2, and use this to define an alternate exterior
energy. Let pg € L™(2, R"®A'Q) be a fixed essentially non-vanishing quasiconformal
co-frame, and let p € SO (Q) or p € CO} (€2). The determinant of our quasiconfor-
mal co-frame plays the role of a weight for our Euler-Lagrange equations, and hence
the non-vanishing assumption is a natural one to make. It arises, for instance in the
case when the determinant is an A, weight, which is the case when our co-frame is
exact.

Denote by F, and P the matrices of coefficients of py and p, respectively. Let Sy =
det By/"P; ", let S, = det PY/"P~! wherever detp # 0 and let S, = Sy otherwise.
Define 21, : R™ ® A?Q — R" ® A*Q by the formula

(3.17) %,(5) = 545.

We minimise the following energy:

(3.18) &) = [ 1o

The reason for adding a seemingly additional layer of complexity is that it peels away
when we examine a situation analogous to Theorem 1.7, that is frames p = odf, where
f:Q — @ is a quasiconformal map and oo f~1 € Wh1(Q, SO(n)).

We first show that minimisers of (3.18) exist and then derive their Euler-Lagrange
equations. The end result is that in certain cases the minimiser corresponds to an
A-harmonic map ¢ : Q — SO(n) with a C'-smooth bundle map A. Subsequently
we can apply existing results on the higher regularity of such maps.

LEMMA 3.20. Let 1 < p < 0o and let p € L"(,R" @ A'Q) be an essentially non-
vanishing K -quasiconformal frame. Then

C(n) " (KO)721"E,(p) < E(p) < C(n)(K')*"E,(p)

where K© and K' are respectively the outer and inner distortions of the coefficient
matrix-field P of p.

Proof. This lemma is really a corollary of the fact that given a matrix-field A : Q —
M n, the pointwise operator A% : A*¥Q — A*Q) is bounded by the function |A|*,
where | - | is the Hilbert—Schmidt norm.

Let A= S,. Then

|A] < det PV P < (KT)V"
Hence, for a 2-form o : Q — A%Q)
[ Aol < AP |af? < (KT)*/"|af?.

Now for the first part of the inequality. Let B = det P~Y/"P. then AB = I. It is

clear that |B| < (K°)Y/™ and so
la|P = |B#A#O¢]” < ’B#’2P|A#Q‘P < (KO)ZP/”]A#a|p.
Thus
[KO|72 af? < |AFal.
O

It is not immediate that the functional SI; is lower semi-continuous. But in fact we
have the following property.
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LEMMA 3.21. Let py € L™(Q,R™ @ A'Q) be an essentially non-vanishing quasicon-
formal co-frame. Let p € COP (Q). Then for every o : Q — R @ A*Q

[2Ap ()| = [Apo ()]

almost everywhere, and consequently

/ |Sfdp[p dx = / |SFdp|P d.
Q Q

Proof. Let P : 0 — M,,«, denote the coefficient matrix-field of p and Fy : 2 —
M« denote the coefficient matrix-field of py.

Let E denote the set where det p # 0 and det py # 0. It follows that p = Apy
almost everywhere for some conformal matrix-field A : Q — CO{ (n), where A = T
on Q\ E. Then P~! = Py ' det A=2/" A*. When acting on A*T,) for v € E

(P~"det PY/™)# = det P"(Py " det A=*/"AY#
= det PY/™ det AF/™ det A=/ (AY# (P )#
= det )" det A=/ (AN (P )
= (det A"V AY#(det PY/" Py )#.
Now R := det A~Y/"A is a measurable orthogonal matrix field, so
[R7B| = |5,
for every form /3 : Q — A*Q, and hence for o : Q — A*Q
(Pt det PY™#q)| = [(R*(Py'det PY™M#a)| = |(Py'det PY/")*al.
If p =0 then 2, = 2, by construction. O

LEMMA 3.22. Let 1 < p < oo, and let py € L™(Q,R" @ A'Q) be essentially non-
vanishing. Suppose (p,) is a sequence in COb (Q) with & (p,) < C. If (p,) converges
weakly to p € COL (Q) as v — oo, then

&,(p) < liminf £ (p,).
Proof. By Lemma 3.21, we can express

&p) = [ I15tdolr da
and
&) = [ I8 dop ds
We introduce the norm || - ||, : L?(2,R" ® A*Q) — R by defining

4 1/p
wmr(@%wm).

It is equivalent to the usual L? norm, 7.e.
CH n,p, K)llally < llall,, < Cln,p, K)llall,.
By the weak lower semicontinuity of norms on Banach spaces,

£(p) = Idpll, < liminf |[dp, |12, = liminf £)(p,).
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U

THEOREM 3.23. Let 1 < q < oo and n < p < oo. Suppose py € LP(R" @ A'Q) is an
essentially non-vanishing K -quasiconformal co-frame with finite exterior q energy,
ie. &(po) < oo. Ifp =mn and n/2 < q < n then there exists a minimiser for
E 1 COL(Q) = R. Ifp>mnand g > np/((n+1)p —n(n — 1)) then there exists a

minimiser for &, : SOZO/Z(Q) —R.

Proof. Once again we start with a minimising sequence (p,) for £. Then, by Lem-
mata 3.20 and 3.11, the sequence (p, ) is bounded in CO? (€2). Hence we can choose a
weakly converging subsequence, which by Lemma 3.15, converges in CO? (€2). Lastly
by Lemma 3.22, this weak limit minimises the energy. U

We now derive the Euler-Lagrange equations for &, : COb (Q2) — R.
THEOREM 3.24. Let1 < p < oo and let py € L™(Q, R"®@A(Q)) be an essentially non-
vanishing K -quasiconformal co-frame such that 5,’,(P0) < o0. Let Py : Q — Myuxn
denote the coefficient matriz-field of py with respect to dx. Suppose p € COY () is
a local minimiser of £,. Then p satisfies the Euler-Lagrange equations

B19) [ R Al (P dp, () du) ) det B e =0
Q

(3.20) / (B Y#dop=2(By YEdp, ((Py*#(d(Mp)) det B2/ de = 0

for every X € C3°(Q2) and every u € C§°(€2, s0,,).
If p € SO (2) is a local minimiser of &, : SO} () — R, then p satisfies (3.19)
for every u € C3°(£, s0,,).

Proof. Let u € C3°(Q,s0,) and A € C°(2). We can again apply Lemma 3.21 to
obtain for every t € R

5};<6t(>\1+u)p) — / ‘(det P()l/npal)#d(et(AIJru)p) P dr.
Q

Denote det P,/"P; " by B, and note that |B| < C(n, K).
Once again we let 7, = t~1(e!™+%) — [)p for 0 < t < 1. Recall
ldri| < C(lpl + |dpl)

pointwise almost everywhere, where C' = C(||ul|1,00, [|A]|1,00); see (3.8). Then

d
_5/ (6t<>\]+u)p)
dat? o
1
~lin 7 [ 1BH@ O Bl do
= lim It dl',
=0 Jq

where

1
(|B%dp|* + t*| B*dn|” + 26(B*dp, B*dm))"* — | B*dpl’]

It:;
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For every 0 <t <1

1
1] < 5 ((B¥dpl + 2| B#dnf? + 20| B dri| | B*dp| ) — | B*dpP)
1
< - ((1B*dpl +t|B*dn) — |dpP)
p(1B*dp| + | B¥dri| |7
C(n, p, K)(|dpl? + |dol"| ).

Once again the bound for [; is integrable and independent of 0 < ¢t < 1. Conse-
quently we can use the Dominated Convergence Theorem to bring the limit inside
the integral

<
<

lim [ I, dx = / hm[t dx.
t—0 Q Qt—>
Let us calculate
llr% I, = llm (|B#al,0|2 + 3| B#dr,|* 4 2t(B*dr,, B#dm)p/2 | B#dp|P
—
= pIB#dplp 2(B*dp, d((M +u)p))
For

@52( p)

=0
and u = 0 we arrive at (3.20).
To derive (3.19), set A = 0 and consider

(B*dp, B¥d(up)) = (B*dp, B*((du) A p)) + (B* dp, BY (udp))
= (B*dp, B* ((du) A p)) + (B*dp,uB*dp)
_ (B*dp, B*((du) A p).
This follows because B#(Aa) = AB#a, for any a : Q — R" @ A*¥Q) and any matrix

A, and u is antisymmetric, so (ua, o) = 0 for any a : Q — R" ® A¥Q cf. Proposition
1.12. Furthermore

B#(du A p) = B¥(du) A B¥ (p) = B*(du) A dx(det p)*/™.

Replacing B with det PO1 / "P;! and pulling out all factors of the determinant yields
the desired result. O

THEOREM (1.8). Let f: Q — ' be a quasiconformal map with inverse h : Q' — Q.
Let o : 2 — SO(n) be a measurable map satisfying & := o o h € WH(Y', SO(n)). If
d(adf) € L™*(Q,R" @ A%Q) then & is in WI™/2(QY, SO(n)). Furthermore if odf is a
solution to (3.19) for p =n/2 then & salisfies

/ (|D16 A dy|"?2D1é A dy, Ads(du) A dy) dz = 0
QI

for every u € Wol’n/z(Q’, SO(n)), where dy is the standard Cartesian co-frame on .

Proof. This is just a simple application of Theorem 3.24. In this case py = df so
Py = Df,and p = odf. Once again h is the inverse map to f, so Df(h(y))~' = Dh(y)
for almost every y € €V,
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Since d(odf) € L™?(Q, R* ® A%2Q), it follows that h*d(cdf) € L™?(V,R™ @ A%QY).
But h*d(cdf) = dh*(odf) = d(5dy). Thus, by Lemma 3.5, & € W'™2(Q, SO(n))
and

h*d(odf) = d(ody) = do A dy.
For p = n/2 the Euler-Lagrange equations (3.19) yield

/Q<|(Df‘l)#d(adf)I"/z_z(Df‘l)#d(Udf), (Df=)*(du A df))aTp(x) du = 0.

We apply a change of variables x = h(y) to yield
0= //(I(Df‘l)#d(adf)I”/Q‘Q(Df‘l)#d(adf), (DfH* (du A adf))ney) dy
= [ A @lodr D2 (dad)), b n o)), dy
= /l(|d6r A dy|"?72da A dy, ¥ (du) A Gdy), dy
= / ,<|&‘1d& Ady["*7257 e A dy, 5 R (du) A ady), dy

_ / (ID15 A dy|"/>Dy& A dy, Ads (1" (du)) A dy), dy.

We can use similar reasoning to Lemma 3.7 to test against any u € I/VO1 "(Q,50,).
Then noting that composition with A is a linear isomorphism

W&’”(Q,ﬁon) — W&’"(Q’,ﬁon)

we obtain

/ (|D16 A dy|"?2D1é A dy, Ads(dv) A dy) dy = 0

for every v € W, (Q, s0,,). O

Theorem 1.8 somewhat unnaturally assumes that o o f~! € W11(Q)). This could
be omitted if the following conjecture were to hold
CONJECTURE. Leto : Q' — SO(n) be a measurable map, and odx € We/2(Q) R"®
A'Q). Then o € WI™2(QY, SO(n)).

Assuming the conjecture, suppose odf € W™2(Q,R* ® A'Q) is a solution to the
Euler-Lagrange equations (3.19) for p = n/2, where f : Q@ — €' is quasiconformal
and o : Q — SO(n) is measurable.

It follows that oo f~!is in W'™/2(Y, SO(n)). So if odf is a solution, then we could
apply the higher regularity of o o f=! to get that ¢ is Holder continuous excepting a
set of zero Hausdorff S-measure. The number 8 = §(n, K) is given by the Hausdorff
dimension distortion of Sobolev functions cf. [Kau00],

5 P21 =)
p—[n/2] -1
and p = p(n, K) is the higher integrability exponent of a K-quasiregular map in
n-dimensional space. In particular 3 is always strictly less than n.
Furthermore if this conjecture were to hold, then it would trivialise the exis-
tence of frames minimising the exterior energy in 802/2(9), as we could apply a
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classical proof of existence: any minimising sequence o,df weakly convergent to
p € Wen/2(Q R" ® A'Q) would give rise to a sequence (o, o f~') which would be
bounded in W™2(€Y, SO(n)). Hence, by passing to a subsequence (if necessary),
(0,, © f71) would strongly converge in LP(Q),R") for p < n = (n/2)* and would
converge pointwise almost everywhere to o o f=1 : ' — SO(n). Consequently p
would be equal to odf € 803/2(9).
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