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l. Introduction

We introduce concepts which analyze negligible subsets, like meager and strong
measure zero sets, of the generalized Baire space Å[ - u?'. In the topology of this space

basic neighborhoods of an elementf e Ah are of the form

U(f ,*): {g e 
^/r 

I sla :f la}.

Some of the concepts, like the concept of a meager set, are direct analogies of classical
concepts. Others, like the concept of a small set, are unique for the space A[.

Many of the results of this thesis are just the results for the Baire space N : w'
"lifted one cardinal up". The power of ZFC is often insufflcient so we will use additional
set theoretical assumptions, like CH, Kurepa's hypothesis, 0, 0*, GMA and /(cu).

We use the same name for the concepts in Å6 as for the concepts in the Baire space

Å/. We shall explicitly mention when we mean the concept of the Baire space or of the

reals. We hope that this convention does not cause confusion.
In Telgrärsky [34] there is a survey of topological games such as the Banach-Mazur

game, the Borel game and the point-open game. The length of those games is cu. Here
we shal1 generalize many of those games by simply letting the game go on for 6 moves

for some ordinal 6 I w1. As Telgärsky points out many of the games are redundant in the

case of Baire space. But in the study of Å/r we need to introduce these games since the

generalization of some concepts is most naturally deflned by games. Prime examples are

the definition of a Borel* set [11] and the deflnition of c.r1-perfectness [38].
Sikorski was the flrst to study the space C1 : 2't in [33]. He studied compactness

properties of the space Q. hhdsz and Weiss solved a problem of Sikorski in [15]. Shelah

[31] had an application for meager subsets of C1. Tuuri [37] and Väiinäinen [38] proved

the separation theorem for 171 subsets of 
^,4. 

Landver lZ2lhas studiedthe so called Baire
numbers of 

^6. 
Väåinänen [38] has studiedperfect and scattered subsets of 

^f1. 
Halko

[11] studied generalizedBorel sets of^fi.
The structure of this thesis is the following: The notation used and some of the

connections between topological properties of Å[ and set theoretical assumptions are

presented in Section 2. In Section 3 we define meager sets inÅI1 and study the property of
Baire in Å,(. fne deflnition and basic properties of small and strong measure zero sets are

deatt with in Section 4. We introduce a generalization of the combinatorial principle Q in
Section 5. In Section 6 we define several classes of negligible subsets of 

^fi. 
Section 7
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is inspired by the theorem of Galvin, Mycielski and Solovay for the strong measure zero

sets of reals. In Section 8 we investigate how the generalized Martin's axiom decides the

properties of negligible subsets. In Section 9 we discuss how diffrcult it is to deflne a

measure for,A/r.

2. Preliminaries

Our set theoretical notation is consistent with Jech [13]. We shall work within
Zermelo-Fraenkel theory with the Axiom of Choice (req. We shall often use an addi-

tional assumption, which is independent of ZFC,namely the Continuum Hypothesis (CH),

since it makes the environment here quite natural. We shall mention when we use CH.

If F : A--* B is afunction and C e A then F"C : {f(r) I x e C}. A rc-union is a

union of rc many sets. For a set A and a cardinal .\ we denote

tr'l) 
-Lnr - {n SAllBl: }} and [A]'^ : {n gt I lBl < )}.

If aisanordinalthenrco : {f lf : a -- K)andnlo:Up.oo?. Ordinalsare,

unless otherwise specified, assumed to be countable i.e. elements of ar1. For a e ar1 the

characteristic function Xo e Cr is such that 1"(() : 1 if and only if § e a.

We considerthe spaces ltfi : u?' : {/ I f : ur -' rr} andQ : 2'r : {f I f 
'

a1 -+ 2\ with a topology in which the basic open neighborhoods of/ e ÅIr are

u(f ,o): {s e 16 I V€ < of(() : s(€)l}, a 1a1.

Let Seq be the set c.rf', and denote its elements by letters s,t,. . .. If s, / € seq, then

s < , means that s is a proper initial segment of r. The length of the sequence s is

denoted by /(s). If /z is a countable function such that dom(å) e tr1 and run(h) C ut,
tet[tu] : {s e 

^fl 
lng S}.So U(/,a) : [fa]. Sequencessands/ atecompatible,

denotedbysls/,ifthereisasequencefsuchthatslfands'<f;otherwisetheyare
incompatible, sJ.st .

A set 7 e Seq is atree,if rf( e 7"for all t e T and€ < /(r). For f € 7we deflne

prec(r) : {s € I l, < r} andsucc(r) : {f(a) e Tla Eur}.Lev,(I) : {t e T 
I

(.(t): CI). A branchb 9T isamaximalchainof I. An w;branchis abranchof length

r,"r r . The set of all branches of T is denoted by B(T), and the set of a.r1 -branches of 7 is
denoted by Br,(T) . An Aronszajn tree is atree which has no u.r1-branches and Irv, (7) is

countable for all a 1 ur. A Kurepa tree is a tree which has at least N2 a.r1-branches and

Lev.(7) is at most countable for all a I u1.

The spaces ÅIr and Cl have the property that any countable intersection of open sets

isopen. Spacesof thiskindarecalled uyadditive.TheBorelsetsof Ah arethemembers

of the o2-algebra generated by open sets. A space ,Y is 7r, if its singletons are closed.

2.l.Lemma. If X is an uyad.ditive Trspace that has a clopen basis of cardinality

*1, then X is homeomorphic to a subset of 2''.

6



I{egligible subsets of the generalized Baire space ,?'

Proof. Let (Gq)g1., be the clopen basis of .t. Denote G'€ : Ge and G! - .t'.G€.
We define U e h and a homeomorphism F : X ---+ ) as follows: For each x € X set

/(€) : j,if andonlyifx e G[ andputF(x) :f .Lrut]: ran(F). Fisone-one,sinceif
x * y,then there is € < 0r1 such thatr € G6, but y / Ge. F is continuous, since for any

s e 21u1, if x € r-'([r]) thenx e n6az1"yGf(')(€) g r-t([r]). Fis open since for any

€ e ur, [{(€,1)}]n Y g F"G1. z

Thus assuming CH, ÅI1 is homeomorphic to a subset of C1.

Let.f ,s e Q andA,B g C1. Thenf f g € C1 is such that(f +gX6) :/(€) +
g(() mod 2forall6 <,,rr.Wedenote/ *A: {f + S I e e e} andA* n: {f + S lf e
A,g e B\.

2.2.Definition. Let T be a tree with unique limits, i.e. if prec(r) : prec(/) and

!(t): {.(t')is alimitordinal, then /: /. Agame is apair (7,2,)where L: Tu B(T) --
{I, III] ts the labelling function of the tree. The players of the game are I and ll. A play
of the game is any å e B(T). The player lwins the play b,lf L(b) : I; otherwise II wins.
AstrategyforaplayerQisafunctiono:L-r(Q)nf -* Tsuchthato(r) e succ(r). The
player Qhas used his strategy o in the play b, if a(åf() : ål(€ * t) for every { < l(b)
such that å f( e dom(a). A strategy o of Q is awinning strategy, if Q wins every play å
in which he has used o.

We denote by Q I G that player Q has winning strategy in G.

Usually we describe our games less informally, but it should be clear how to formulate
the precise definition. The branches of the game tree will always have the same height,
say o, and we say that the game has length a.

If A q ,A,/r, then the closure of A,Ä, is the smallest closed set which contains A. A
set P is perfect, if P is closed and contains no isolated points.

2.3.Lemma. A set A e Jll is closed if and only if A - B.rQ) for some tree

7 C Seq.

Proof. Assume that A - 8.,(7) for some tree 7. Then A is closed, since ifl ( A there
is ( such that/f€ / T whichmeans that f f(] c ,A('-4.

AssumethatAisclosed. LetT: {/l'6 lf e ,q,€ e or}. Thenobviously
A C B.t (7). Iflf€ € Ifor all € < wlthenf € A becauseA is closed. E

Atree TisaJech-Kunentree if lfl : N1 andNl ( 16.,(I)l < 2N'. Onegeneral-
ization of the Cantor-Bendixson Theorem states that the cardinality of a closed subset of
Å[ is either at most N1 or is 2N'. Thus if 7 is a Jech-Kunen tree, then B.r(I) shows that

this generali zation of the Cantor-Bendixson Theorem fails for ÅIr . The consistency of a
Jech-Kunen tree was given in lI2], in which Jech constructed a generic Kurepa ttee T
such that lB.,(T)l < 2'r in a model of CH and2'r > uz.By assuming the consistency of
an inaccessible cardinal, Kunen proved the consistency of non-existence of Jech-Kunen
trees with CH (see [16, Theorem 4.8]). In Kunen's model there are also no Kurepa trees.

1
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The differences between Kurepa trees and Jech-Kunen trees in terms of the existence
have been studied recently by Jin and Shelah inl32).

The set theoretical assumption 1(r,r) states that there is a normal ur2-complete idealZ
on c/2 such thatZ+ : {A I A / I} has a dense subset in which every descending sequence
has a lower bound.

Väänänen [38] shows that I(w) implies that every closed subset of ÅI1 of cardinality
) N1 is in fact crt -perfect (Deflnition 3.5), and hence of cardinality 2Nr.

2.4. Definition. A set A e X is u1-compact, if every open cover ll of A contains a
countable subcover of Ä.

An u.r 1 -compact space is often called Lindelöf .

2.5. Lemma (CH). A set A C Nt is ti1-compact if and only if every sequence
(fd e.r, of elements of A contains a subsequence converging to a point of A.

Proof. Assume that there is a sequence (fe)e<., of elements of A that does not contain
a subsequence converging to a point of A. For every f € A there is a7 < @l such that
UV,or) contains at most one/6. Sol,{ : {U(f ,o.i lf e e} has no countable subcover.

LetU be an open cover of A that does not contain a countable subcover. By CH we
may assume thatU has power Nr. We enumerate U : {Ue I ( < "r}. For each 1 I urr
choose/a e a..Ur.-rUe. The sequence (fd can not contain a converging sequence

f€r -f ,sinceotherwise/e U.rfor someT ( u1 andthus/6, (Urwhenever(6 ) 7. tr

The following lemma is flrst proven in [15].

2.6.Lemma. There is an u1-compact subset of c1 of cardinality ) N1 if and only if
there is a Kurepa tree with no Aronszajn subtrees.

Proof. Assume that A is u.,1-compact and lAl > Nr. Then A is closed, by the previous
lemma, and there is a tree Tsuch thatA - Br,(f). T has more than N1 branches. The
levels of Lev*(Z), a I u1, are countable, since otherwise {[r] I , € Lev.(I)] would be
an open cover of A which has no countable subcover. So 7 is Kurepa. If I contained an
Aronszajn subtree 7, then {[r] l, e B(ft)]u {[r] I s € Lev.(Z), sI7] would be an
open cover ofA which has no countable subcover.

Assume that there is a Kurepa tree T with no Aronszajn subtrees. Then there is one
which is a binary tree with unique limits. Thus we may assume that T C Z<at. Let
O - 8.,(7). Let U be an open cover of Ä. Let f(A,U) be the set of all sequences s
such that [s] n a has no countable subcover. obviously T(A,u) e z is closed under
subsequences. We claim that f(A,U) cannot contain an arl-branch/. Since A is closed,
f e A and hence there is U e U such that/ € U. There is a ( a,l1 such thatU(f ,a) c U
so/fa d T(A,U), acontradiction.

Since 7 has no Aronszajn subtree, the only possibility is that T(A,U) is bounded by
some.o. But then, by definition of T(A,U), lt) O A has a cöuntable subcover for every
s € Levo(Z). Since Lev.(7) is countable, we get a countable subcover of A. tr

8



Negligible subsets of the generalized Baire space o?'

By a Theorem of Jensen asSuming V : Lthere exists a Kurepa tree with no Aronszajn
subtrees. See [2, 4,35]. Thus V : L implies that there is an qr1-compact subset of Cr of
cardinality > N1.

3. Category in Å[

We begin our investigations of negligible sets with meager sets. Many things seem

to be similar to their counterparts in the theory of reals, see [28], but the structure of c..r1

makes some differences.

3.1. Definition. A set A of an rrrr -additive space X is dense, if every nonvoid open

set contains a point of A. A set is nowhere dense, if its complement contains an open

dense set. A set is said to be meager if it can be represented as an krl-union of nowhere

dense sets. A set is comeager, if its complement is meager.

Every countable set is nowhere dense and a countable union of nowhere dense sets

is nowhere dense since the topology of ,A/r is rur-additive. Under CH the set of rationals

Q: {f e M I 3( < r,.,1V6 > €(/(6) : 0)} isanexampleof adensesetof cardinalityr..,l.

Q is meager as an kr1-union of singletons but it is not nowhere dense since Q n ls) I o
for every s € Seq. A nowhere dense set can have cardinality 2'' . For example the closed

setP : {7 e M I Vaf(o) I 0)} is such aset, since forevery s e Seq, [r^(o)] n P : a.
See also Lemma 3.7. The set of all meager sets is an w2-ideal.

3.2. Lemma. A set A e Nr contains an open and dense set if and only if there is a

functionF: Seq --+ Seq suchthats < F(s) andlF(s)le Afor a//s e Seq.

Proof. AssumethatD C Aisopenanddense. Lets € Seq. SinceDisdenseDn[s)l o.
Since D is open there is s' > s such that [s'] c O. Let F(s) : s/.

Assume that there is a function F that satisfies the condition of the lemma. Then

D: U.6s"q[f(s)] is adense andopensubsetofA since [s] nO: [f(s)] I a foreach
seSeq.tr

For each set which contains an open and dense set let the od-function be a function
given by Lemma 3.2. A sequence of sequences (sq)6a., is continuous, if ( < 6 implies
s6 I s6 for all {,6 e al and s", : U€<rs{ for each limit ordinal 7. The next lemma is the

Baire Category Theorem for Å[. Note that it does not need CH.

3.3. Lemma . A countable intersection of open dense sets is open and dense; uy
intersection of open dense sets is dense.

Proof. Let Fq be an od-function for an open dense set D6 for each { I ut. Let s € Seq

be arbitrary. We can deflne a continuous sequence so (a ( a;r) by induction: let s6 : 5

and so..1 : Fo(so). Letf e l^]o..,[ro]. Then by the deflnition of an od-function

/ a 0..,, Da n [s]; to 0€.,, Dq is dense. Also fn.,Dn is dense, and it is open as a

countable intersection of open sets. fl

9
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3.4. Corotlary. A comeager set cannot be meager In particular Nt is not meager

Thus the ideal of meager sets is proper.

3.5. Definition. Let A e Jtfi and x6 e A. G(A,x6) is the following game of length

ar1 between players I and II: First I chooses as I uy. Then II chooses \ € A such that

xt # xo and -rr lao : xo fci. In general at round 1 I r,st player I chooses a, ) sup{46 |

( < Z) andplayerll chooses x-, € Asuchthat x., * xe andxrla( : x€ iog forall € <'y.
player II wins, if he can make all his moves. Player I wins otherwise.

A set A is uyperfecr, if it is closed and II I G(A,x6) for all xs e A'

3.6. Lemma (t3Sl). A non-empty u;perfect set A has cardinality 2'L '

The proof of Lemma 3.3 canbe strengthened to the following observation.

3.7. Lemma. Every comeager set contains a nowhere dense uyperfect subset.

Proof. Let A I Å6 be a comeager set. Then A has a representatio, 0€.,, R4 such that

for each € I ut there is an od-function F1 for R6. We construct by induction sequences

s(b) e seq for each b e 3<.1, such that for all/ € 3'' , ("ff|€))e<,, is continuous and

for all b,bt e 31't,
i) ttb < bt,thens(å) < s(b');

il) [s(r)] r--R6,tf (.(b) :6+t;
lii) it l.(b) : t(b') andb I b',thens(b)l-s(å')'

Then P : {0e.,,tr(Sl€)] I I e 2''} g a will be the required ul-perfect set. Assume

that the r"q""n""t s(b), b e 3<1, satisfying i, ii and iii, are already defined. lt ['(b) :
1 : \).r, then choose s(a) : Ue<z(r)s(ål€)' lf 1 :6 + 1 and l(b) :6, then let

s(a (;)) : p5(s(b)^(l)) for i < 3. Ciearly the sequences s(b), b e 3<1*1, satisfy i, ii
ana iii. The set p is closed and nowhere dense, since we can define an od-function F for

Å[..p: Lers € Seq, be given. If [s] n P: @ thenF(s) : s. If [s] nr f o,thereis
b e 2<'t such that s < s(b). Then we let r(s) : s(å (2)). rl

3.8. Corolla ry. Every corneager set A I Alr has cardinality 2§''

See [38] for more about t.rv-perfectness.

3.9. Definition. For an

i) add(T) - min{l"al
ii) cov (T) - min{ l/l
iii) unif(T) - min{lAl

eal T on 
^fi 

let

Ae T, uA/T\,
AgT,UA-A[r]and
Ae Ah, A/T\.

We say that an ideall is a n-ideal,if add(Z) 2 rc' The family of meager sets, 

^l, 
is

a proper ai-raeat. If 2't - 0,2thenof course add(M) : Qz. ln Section 8 we will prove

that
Con(ZF) -+ Con(ZFC + CH + add(M) :2'' * w2 z-2't)'

id



Negligible subsets of the generalized Baire space ,?' 1 1

The question whether every non-meager set has cardinality 2'' , i.e. unif("M) : 2'' , is
open.

The theory of the Banach-Mazur game on reals is studied in Oxtoby [28]. Here our
game has length ( r..r1 and so we get two different games depending on what the rules are

at limit ordinals.

3.10. Definition. Let o > 0 be an ordinal . The Banach-Mazur game of length a
for a set A e Nr is the following game between players I and IL The players choose

sequences s6r st € seq.

I: ,so s{
II: s[ si

where( < a. Playerlmovesflrstonlimits. Therulesoftheroundd < oareU646st < s6

ands6 < s/r. Playerlwins,if flr..[s!] nA+ s.Wedenotethisgameby BM"(A).
The smooth Banach-Mazur game, smooth BM*(A) or s-BMo(A), is like that above

but player I has to move [-lr.o st at limits 6 > 0.

3.ll.Proposition. If I t s-BM*(A) thenl I BM'(A). If ll t BM'(A) thenll I
s-BM*(,4).

The following example shows that these implications cannot be reversed.

3.12.Example. Let A: {x e h I {o lx(a) :0}containsacub}. Thenl f
BM'' (A),but II f s-BW' (A).
Proof. ln BM't (A) the player I makes the move at limits. It is enough to know how he

moves atlimits. Foreachlimitd ) 0let oo : min{a € Lim I a > sup{l(si) I ( < 6}}.
Thenlchoosess6 € Seqsuchthatl(sa) : aof 1,s6 F s6,forall€ < 6, ands6(46) :6.
Since {a6 I 6 < ,r} is cub, player I wins the play no matter what the other moves are.

ln s-BM't (A) the player II makes the move at limits 6 > 0. As above let s/o e Seq

suchthat l.(s'): aa * I,sä F s€,forall€ < 6, ands/u(a6): 1. Since {*o I 6 ( a.r1} is

cub, player II wins the play no matter what the other moves are. n

3.L3. Lemma. II f (s-)BM"(A), where a I u1, if and only ifll I BMr(A).

Proof. Assume that r is a winning strategy for II in (s-)BM'(A). Let s be I's move
in BM|(A). To get a winning strategy for II in BM|(A) (i.e. to flnd s/ > s such that

[s'] n a : ö) player I plays a game BM"(A) where he starts with ss : s and II uses

strategy r. So let sä : r(so), and choose s6, 0 ( ( < o, such that Ue.o tä I sa where

s! : r((se)ea6). Now we can lets/ : Ue.* r!.
Let r be II's winning strategy inBMt (A). In (s-)BM"(A) player II starts with r and

then he can choose his moves arbitrarily. n

Since a winning strategy for II in BM|(A) is an od-function for Å6--A we get the

following proposition.
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3.L4. Proposition. A set A e M ,s nowhere dense if and only if ll I BMr (A).

The proof of the following theorem is an elaboration of [17, Proposition 27.3, p.

3731 which is proved for the Baire space. The forward directions were originally noted by
Mar;vr, and Banach showed the converse. Oxtoby generalized it to arbitrary topological
spaces. See [17] for the references.

3.15. Theorem (CH). i) A is meager if and only if ll I BM't (A).

ii) [s]'.4 ls meager for some s € Seq if and only ifl I s-BM'r (A).

Proof. i) Let A : U€.r, RE, where Re , € < u1, Na nowhere dense. Let Fg be an

od-function for Å,('-R6. If s1 is the move of player I at round (, let s! : Fe (se). Now

/ : Ua.r, se / A'
Suppose now that II has a winning strategy r. For each partial play according to r

of the formp : (s€, st)e<2, let p* : Ua., ,t and set

Do: {x e 
^fl 

I p* C x---+ )t € Seq'.i()}(r(f(p.^t)) e ,)}.

Then each Do is open and dense: for if u € Seq, either u V p* 
"o 

that [z] e Dp, or else

thereis a/ € Seq.-{()} such thatp*^t: uandsolrQf(p*^t))] q tr]oDr. There areaL
partial ptays p. Moreover, for any x e |;nDo we will recursively deflne a play (s6, st)
according to r suchthatx: U..., st. Assume thatp - (s6,st)e<r is defined. Then

let s, : p*^t where /..{0} is such that rQf(p.^r)) g x; such a r exists since x e Dp.

Then x / A because r is a winning strategy for II. Consequently, A e Up(Å/r'-Dr), an

cdt-union of nowhere dense sets.

ii) Assume that [s]..A is meager for some s e Seq. Let [s] n A f 0€.., Dg where

Dq are open and dense in [s]. Let I's first rrlov€ rs be s. At 6 + 1th move I chooses s611

such that s'o 3 sa+r and [s6a1] C D6. At limit 7 player I has to move !r., st. This is a
winning strategy for I in s-BM'' (A).

If r is I's winning strategy in s-BM't (A) then let s : r(0). Then r is II's winning
strategy for BM't ([s]..A). By i) [s]'.4 is meager. E

3.16. Definition. A setA is weakly meager, if II t s-BM''(A).

By Proposition 3.11 and Theorem 3.15 every meager set is weakly meager. The set

A in Example 3 .12 is weakly meager but not meager.

3.17. Theorem. The set of all weakly meager sets is a proper u2-ideal.

Proof. It is clear that if A C B then lT I s-BMar (B) implies ll I s-BM"'(A).
Assume that o 6 is II's winning sffategy in s-BM't (A6 ). Let 7r : ur X u1 '--+ w1 be a

bijection such that { < €' implies ?r(6, €) < T(6,(') for all 6. We deflne a strategy o for
Tl in s-BM', (Ua.,, Äa) by

o((te)es,..(€,6) ) - oo((r,, (€,,6))€,.€).
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If .r € fl6.., [st] where st are the moves given by o then x / Ad since (sf ,a,o;){<.,, is a
play according to o6. Thus o is a winning strategy for II.

We will prove that if A is weakly meager then the complement of A is a dense set of
cardinality2N,. HenceM cannotbeweaklymeager. I-etobeawinningstrategyforllin
s-BM-t(A). Fix I e 2'' ands € Seq. Irt§0 : r, s€+l : ri^(S(€)) andst : o((so)a<e).
Now x € 0€.., [s6] is in [s].-4, and for each different g we get a different such an x. D

3.L8.Definition. A setA has the property of Baire, if there is an open set G such
that A A G is meager. We denote by PB the class of sets with the properfy of Baire.

3.19. Theorem. There is a set which does not have the property of Baire.

Proof. Usingtheaxiomof choiceletf beauniformultrafllteronarl extendingthefilter

{o e ut I lau1..al 1 ,,}. LetF : {X" e C1l a e. f}. Then f,: {a € f I s e X"} is
anultrafilteroncr.rl.-/(s)foreveryr e Seq. LetF. : {Xo€Qlae f,). Weprovethat
F does not have the property of Baire. We use here the following facts

i) For everyf €Cl,asetMismeagerif andonly if f + Mis;
ii) Letl : X.,. Forevery a C uJ1, Xo *1 : Xo1-a. Thus F+ T : C1'.F, since

f is an ultrafilter.

Suppose, towards a contradiction, that there is an open G such that FA G is meager.

Case 1. G is empty. Then F and F * 1 : Cr..F are both meager which contradicts

the Baire Category Theorem (Corollary 3.4).
Case}. [r] g Cforsomes€ Seq. Then(FAG) n[s] : [s]-.F: [s]:F"should

bemeager. Letf e C1 be suchthat/(4) :0, if € < /(s), and/(€) : l otherwise. Then

/ + [s].-F' : [s] n F : F, is also meager. This contradicts Corollary 3.4. n

The next lemma implies that the Borel sets have the property of Baire. The proof is
just like the one for the Baire space, e.g. in[271.

3.20. Lemma. The family of sets with the property of Baire is closed under comple-

ment and lJ.r.

Proof. If PisclosedthenletP* betheopenset {x e P l1a(U(x,a) q P)}. NowP'-P*
is nowhere dense since its complement (ÅI1'-P) U P* is open and dense: if .x e P'-P* then

for each a there is somey € U(x,o)'-P, hence there is 0 > a such that U(y,p) e M'-P
since P is closed. So P A P* is meager.

If there is closed set P such that Q A P is meager then Q has the property of Baire,
because

8LP.: (Q.-P.) u (P...p) e (O.-r)u (P\P.)u (P..Q)

is meager.
Let / denote complement. Now if p has the property of Baire there is an open P such

that QA P is meager. Since Q/ A Pt : Q A P we conclude that Qt has the property of
Baire.
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Assume that the sets P6, € < ut, have the property of Baire. There are open sets p6,
€ ( ,.rr, such that the sets Pe A Qe are meager. Then

( U "r)^( U ee) e [J {re aee)
€(,.rr €(cur {(or

is meager. since [Jr.,, O6 is open this shows that lJr.., PE has the property of Baire. tr

3.21. Lemma. Assume that A has the property of Baire. Then A is meager if and
only if for every s € Seq, [s]..4 ds not meager

Proof. If there is s € Seq such that A is meager and [s]..A is meager then we get that [s]
is meager, which contradicts the Baire Category Theorem.

If A is not meager, then there is a non-empty open B such that AAB is meager.
Choose [r] g a. Now [s]..A e B..A is meager. E

3.22. Corollary. If A has the property of Baire then BMut(A) is determined.

Proof. we use Theorem 3.15. If A is meager then rr I BM',(A). otherwise [s]..A is
meager for some s € Seq, hence f I s-BM', (A) which implies I | 81t4., (A). E

3.23. Definition. Let A, e Nt for all s € Seq. The suslin operation of the system
(A,) is the set

U [-l o''''
.f€Nr €€ur

A system (A,)is regular,if
i) A" c Ar, for all s, s/ e Seq such that s/ < s and

ii) A" : flq.z1,y A,1q, for all s € Seq such that /(s) is a limit ordinal.

If (4,),65.q, is any system, then the system (8") where B0 : A0 and B, : 0gaz1";4"1g,
for s € Seq, is regular and

U 0oru: U 0rrn.
.f €Nt €€ut "f€Å/r €eor

If (A.) isasystem, letfor eachx e lfl, T(x): {s e Seq I.r e A"}. Thenx €
Uf.n , 0r.,, Asya iff there is an &rl-branch in 7(x). If (Ar) is regular then for alt x, T(x)
is a tree which has maximal elements if x / l)rrr,yr0e.., Af le.

3.24. Conjecture (CH). Thefamily of sets withthe property of Baire is closedunder
Suslin operation.

The proof of Conjecture 3.24 may need an additional hypothesis such as I(c^.,). At
least2u < 2@' must be assumed as the following example shows.
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3.25. Example. Assume that 2' : 2't . Then the property of Baire is not closed
under the Suslin operation. Theorem 3.19 gives a set A e C1 which does not have the
propertyof Baire. I-etA: {Å l, e2'}.SetA,: {Åt,}foreachs e Seqsuchthat
l(t)> oandA,: Cr otherwise. ThenA: UseM flr.,,Arlg isasetobtainedbySuslin
operation from singletons.

4. Strong measure zero sets

E. Borel [1] introduced strong measure zero sets of reals. He conjectured that they
all are countable. But using CH one can construct a Lusin set which is a strong measure

zero set of cardinality c..rr. R. Laver l23l was able to prove the consistency of the Borel
conjecture.

Here we examine analogically the strong measure zero sets of IÅ.

4.L. Definition. Let A be subset of ,Afi.

i) AssumeXe ar. WesaythatA isX-small, if foreach a €X thereisf e ,t
such that A e U.ex U(f*,o). We say that A is o-X-small, if for each a e X
therearcf! e X,n € a.r, suchthatA e UoexU,e. U(få,o).

ii) A setA is small, if A is o-{a}-small for every a 1u1.
iii) Let Z e P(u1). A setA is Z-null,ifA is X-small for every X e Z.

iv) AsetAhas strongmeasurezero,ifAisX-smallforallX e c..rl suchthatlxl: ur
i.e. A is [c..,1]'' -null.

v) Let (oe )e.,, be a sequence. A setA is (a)-small, if there arefe , ( < r,.,1, such

thatA C Ur.,, Fe l"e].
For X, Y € lurl'r we denote X < Y if there is a bijection F : X ---+ Y such that

a < F(a)forall a e X. SimilarlyX ( L Foreacha e ul,letXlo : {€+a | { e X}.
Let ,Sa be the collection of all X-small sets.

4.2. Proposition If X < Y, then Sy I Sx.

Proof. Itis clearthatSr g,tx. IfX ( Y, then X < X+ 1 < Y. LetA : Uee, U(fa,t),
where/61(I/6 |.6, when{ I 6. WewillprovethatA / Sx+t.LetB : Urc*U(ge ,€+ t) e
§aa1. We will show that A I B by defining/ e ArB. Letlf{s : 

"fo l€o where €o : minX.
Foreach( e X,choose/(€) : Se(()+1. Otherwisedeflne/(()arbitrarily. Now/ € A'.8.
tr

4.3. Lemma, i) A is small if and only if A is lull'-null.
i» If A is small, then it has strong measure Zero.

Proof. i) Assume that A is small and lxl : a. Let a : supx. Since A is o-{a}-small
therc aref1, t e X, such thatA e Ueex U(fe,a). But [J,.* U(fe,o) e U,., U(fe,€)
and soA is X-small.



r6 Aapo Halko

AssumethatAisX-smallforallX e [rr]'. If o € crrl isgiventhenthere atefn,n e u,
suchthatÄ e U,e. U(fo,o +n). So Ae U,e,U(f",o) andhenceAiso-{a}-small.

ii)LetAbe smallandlet X e lc,u1)'' bearbitrary. Leta: SUpIwhere Yis
(any) inflnite subset of X. Choose fc, € e I, such that A e Uee , U(fe,o). Now
A e Ucex U(fe,€),where/4, € e x'.r, are arbitrary. n

4.4.Lemma. The.following are equivalent for A C !\fi.

i) A has strong measure zero,

ii) A is (aq)-smallfor every sequence (ag),

iii) Ais o-X-smallfor every uncountableX e ur
Proof. i) implies i0. Let (o6) be any sequence. LetX : {ae I 6 < ,t}. ffA is X-small
then A is (a6)-small.

ii) implies iii). Assume thatA is (a6)-small for all (a6). Let X e lull'' be given.

EnumerateX: {a€ I ( < r,}. IfAis (a6)-smallthenAisX-smallandhencea-X-small.
iii) implies i). Assume that A is o-X-small for every uncountable X e wr Let

X e [r,,,1]'t be given. We split X : U.,<.rXo where the sets Xo, e I u1, äta countable

anddisjoint.Letg.: supXa. SinceA iso-{0,lo < r.r1}-small,therearefl sothat

Ae u (u u(f:,a)).
alut nQa

Choosege,6 €X,suchthat{96 l6 e X"} : {fälne w}. NowA e Ur.rU(ge,€).tr

4.5. Lemma. The class of the strong tneasure zero sets is an\!,2-complete ideal.

Proof. Assume that A : [J€.., .46 where the sets A6 have strong measure zero. Lnt
X e lall'' andsplitX: Ui..,X6 where lXel : rr. Choosefe,€ e X, suchthat
Ao e Ue ex , U(fe ,() for all 6. Now A e U,., U(fe, Ö.Thus A has strong measure zero.

!
Assume that Z e [rr]'' satisfles the following: For each X e Z there are disjoint

Xo e Z, a I u1, such that X ( Uo<., Xo. Then we see as in the previous lemma that

the class of Z-null sets is closed under ar1 -unions.

The next proposition shows the close connection of Å[ being X-sma]l and the diamond

principles. We remaind that forX C c.r1 the principle § (X) states that there are sets A o C d,
a e X, such that for all A e q the set {a e X I Ana: Ao} is stationary. We shall

return to this in Section 5.

4.6. Proposition. i) Every countable set is small. Every set of cardinaliQ ut1

has strong measure zero.

ii) If A e I/r is X-small where X is non-stationary and 0 q X, then A[1"A has

cardinality 2N'. Hence N1 does not have strong measure zero.
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iii) Assume 0. 
^fl 

is X-smallfor every cub setX.

iv) Assume §(X). Then Afi is X-small. In particulari assuming V : L, Å/r ;"
X-smallfor every stationary set X.

Proof. i) Obvious.
ii) We may assume that lXl : or. Since X is non-stationary there is a cub set C such

thatX iC: o. For each o € XletF(a) : max(Cfl o). Now there arelo suchthat

Ae Uu(f.,") q U u(f.,F(a)r1) :6.
aQX a€X

Since {o e X I F'(a) : B} is countable for each p,we can define for each I € 2'r

fr@) :supdf.(p) I r(") : §\ + t + s@)

forall 0 e ut. Now/, *fr,,if g* g',mdfr(.Bfor everyg e 2't.
iii) O implies that there are sequences ho, a ( or, such that for every f € ÅIr the set

{o < r, I f I a : h* } is stationary (see [ 1 3, (22.20)] or Lemma 5.3). So for every cub set

X, {a e X I f f" - h.) is stationary; hence N, : U*e*lh.).
iv) V : L implies §(E) for every stationary E. Thus for each stationary E there

are sequences ho, ct € u1, such that for every/ € 
^fi 

the set {o e E I f la: ft.} is
stationary. !

4.7. Example. i) There is a small set of cardinality r,..r1. I-etf e "M1. Let

NowA : {f6 I 6 < ,,} is small: Let o be given. ThenA e U(f,a)u
Ua<*u(fo,o)'

ii) Let 6 Ue the constant function 6. The set {6 | 5 a ,, } is a set of cardinality r.r1,

which is not small.

iii) Let Q: {f € 
^fi 

I l6V€ > 6[/(6) :/(6)]]. Then Q is dense, lQl:2- and
player II has a winning strategy in BM't (Q). He just makes sure that the result
is not ultimately constant. If CH then Q has strong measure zeroby 4.6.i).

4.8. Proposition There is a Kurepa tree if and only if there is a small set of cardinality
) wr.

Proof. Let T § Seq be a Kurepa tree i.e. levels of 7 are countable and the set of
kr1-branches, 8,,(T), is of cardinality )- u2. Then 6.,(7) is closed and small. On the

other hand let A be a small set of cardinality > u2. For each o choose sf; e Seq, n €. u,
such that

As uts;l

r \\/ Ld otherwise.
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where l(tff): c-andAnlttl# z. Now f : {sl lne u,,a.e ur} isaKurepatree. E

Let the weak generalized Borel conjecture (wGBC) be the statement that every small
set has cardinality ( c.r1. If we Ldvy collapse an inaccessible cardinal to N2 we get a model
in which there are no Kurepa trees, hence wGBC is consistent withZF. On the other hand
V : L implies that there is a Kurepa tree, so -wGBC is consistent withZF.

The generalized Borel conjecture is the following statement.

. Every strong measure zero set has power at most N1.

We call it GBC for short. By Lemma 4.3.ii) GBC implies wGBC. So V: L implies the

consistency of -GBC. We will see later that for the consistency of -GBC it is enough to
assume 2N, : N2, see Lemma 6.4. The consistency of GBC is an open problem.

4.9. Proposition (CH). If D g [cu1]'' is such that lDl : ,, then there is a D-null
set Z and a meager set M such that N1 : ZU M.

Proof. LetQ: {qo lo < r,}. Letusenumerate D: {Xo la < c..r1}and

Xo : {xop I 0 < rr}. Let Zo : UB,...,U(qB,xoB) and Z : |1o<.,2o. ltis clear that
each Zois open and dense. So M : N1.-Zis meager. It is also clear that Zis D-null. tr

4.10. Remark. Since M in Proposition 4.9 is meager, Z has cardinality 2'' by
Corollary 3.8. It is easy to see that I has a winning strategy rn BM'' (Z).

4.11. Proposition. If A is small, then A is nowhere dense.

Proof. We show ll I BMt(A). If I plays s6, then since A e U,e,U(f,,l.(ss) + l)
some/, e ÅI1, player II can choose sf e of 

('")+l 
such that ss < s[ and ls'fi n a : o.

The converse of Proposition 4.1 1 does not hold. In fact:

 .ll.Proposition (CH). There is a nowhere dense set which does not have strong
measure zero.

Proof. LetQ: {qo I * < rr}.LetD: LJ*q,, U(qo,a * 1). NowDisopenand
dense, so A : M:D is nowhere dense. If A had strong measure zero, there would be

somelf6, € (,ur, suchthatA e Ua.,, U(fe,€ t 1). Choosingf e Å[ suchthatforeach

€ < a,r f@ + qaQ) andf(ö *fe@ wewould getf eA.U€.,, U(fe,t * 1)whichis
absurd. E

The idea for the following theorem is from Richard Laver. I-et P : Seq, and for
p, e e P, p I q if andonly if q g p.

4.L3. Theor em. Assume that M I ZFC + CH. Let P : SeqM and let G be P-generic
over M. Then Nr o M has strong measure zero in MIG).

for

r
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Proof. The partial ordering P is countably closed and has N2-c.c., so forcing with it
preserves all cardinals. I-etf e Å/r n Mlclbe arbitrary. Letf be a name for/. Working
inM,letCe:{pe Pl(.(p)) €,p ll-f(€) -TforsomeT}. I-etA€ e C6beamaximal
antichain suchthat l(p) > { forallp € Ag. For eachp € 46, choose abijection

g{ : succ(P) -' ul,

where T is such thatp ll f(O : T and succ(p) : {p^(") l a e a.,1}. Working in MlGl,let

Ie : l{eb')],

where p is the unique element of G O A6 and p/ is the unique element of G O succ(p) . Now
NrnM e Uee.,16,sinceforeach heNr oMtheset

Dn: {p l1€1q,q'(q,q' ) p,q e Aq,e' e succ(q), h e lgne@')))}.

is dense in P. Hence, since Dl o G I o, h e [Ja.., 16. n

It is sometimes easier to manipulate sequences then sets. When we speak about

sequences (o6 ) , we assume that ag ( a6, if ( ( 6.

4.14. Definition. Assume thatA C lI1 and (a6) is an increasing sequence.

i) A is (aq)-subsmall,if A is (pa)-small for some (0e ) suctr that pq ) o€*o for all
n€u.

ii) A is o-(o6)-small, if thereis ffi e 
^fi 

I € < et, n e u.r), suchthat

As U Urfft,"r).
€1ur n€u

Notice thatA is (o6)-subsmall, if and only if A is (sup{aq..,.n I n e c.r})-small. We
can get some closure properties for these concepts.

4.15. Lemma. Assume that A C Nr and (ag) is an increasing sequence.

i) If A is (a)-small, then A is o-(a)-small.
ii) If Ais \aq)-subsmall,thenAis \aq)-small.
iii) If A is o-(a1a.)-small, then A is (a1)-subsmall.

iv) If An, n € u, are (aq)-subsmall, thenUne.An is (a)-subsmall.
v) If An, n € e, are o-(aq)-small, thenUne,An is o-\a4)-small.

Proof. i), ii) and v) are trivial.
iii) Assume that A C Ue <., [re *,], where /(re+,) : e€+.. For each limit ordinal

u set str*n: su*u. Now /(s-'r*r) : ((tr+.) : eu*w ) ar+k for all k e w. It is clear

rharA e Ue<., [rt].

t9
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iv) Assume that A, e Ue.., [s[], where l.(sp >_ aq1, for all n e w. Let p : u x e ---+

cu be one-one and onto such that p(n, m) ) n for all n < r,.r. For each limit ordinal z set

s74pp,*1: sf,+,'

Now /(s|*, @,*1) 
: l(t\+) ) a,+k for all k ) n, hence the same holds for all fr >

p(n,m).Now it is clear that

Uo,s Ut"rl
n€a {(tur

and so Une,Ao is (o6)-subsmall. !

5. Diamonds

Here we shall study further the connection between X-smallness of 
^6 

and the
diamond principles seen in Proposition 4.6. We will introduce a generalization of the

§-principle.

5.1. Definition. i) For each E C u1, A e I/r and T g P(ur) the principle

§(E,A,Z) states that

3(so)o1., € seq''V/ e A[{o e E lfla : s*} Q 4.

ii) For each E e ar, A c Åå and T e P(u1) the principle §- (8,A,7) states that

f (So)o<., e ([Seq]')''Vf e Al{a e E lf la e S"} €.71.

Thus §(8, A,7) says that there is a sequence (s6) wtrictr captures each element f e A
E1-man! times where Ey e E is some set not in T. Here we are mainly interested in
§(2,1,{a}) since it is equivalent to A being E-small. Let CUB be the cub-filter on
a.r1 and NS be the ideal of non-stationary sets of u.r1. Then S(ar1,^6,NS) is the usual

§-principle and for E C u1, §(E,A|,NS) is usually denoted by 0(E), see Lemma 5.3.

O(rr, tlh,{o}) is equivalent with §, see [3]. Also O(rr,/4,NS) is equivalent with
O- (r,, 

^fl, 
N,S), see [5]'

The following proposition follows directly from the definition.

5.2. Proposition. i) If A g B then 0(E,B,T) implies O(E,A,T).
ii) If E e E and T is closed under subsets then §(O,l,T) implies §(E , A,I).
iii) IfTt e T then §(E,A,T) implies §(E,A,I').
iv) If T is closed under subsets and E e T then -§(E,A,I).

The same implications holdfor §-.

5.3. Lemma. For each stationary E e ur the following are equivalent
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il §@)
ii) §(E,CI,NS)
iii) §(E,lrl,Ns).

Proof. i)impliesiii). Assume §(E)andlet (0.)beaQ(E)-sequence..Let r i u1x".,1'--+
ar1 be abijection. Thereis acub set Csuchthatif a e C then a is alimitordinal and

rfa is abijection s I rr---+ o. For a e Cletso : {z.-'(€) ; 6 e 0.} if itis afunction.
Otherwise s€t.so : A. Letf e .A/t -dX: {r(((,6)) I (€,6) e /} - lr"f .Now {o €
E I Xao : 0o) isstationary,so {a e CnElXna: Öo} : {a € CnE l/fo : so}
is stationary.

ii) implies i). Assume that (s') is a §(E,C1,N§)-sequence. Let Oo : {€ < " I

,.(€) : 1) for each a ( cr;1. Now (0.) is a §(E)-sequence because if A C u.r1 then by
tetting/ - XAwe seethat {a e E l"f lo : so} : {a e ElAna: 0o} is stationary.

iii) implies ii). Assume that (s,) is a §(E, Å[,lf,S)-sequence. Then {a € E I fla :
so) is stationary for all/ € Nr. So {a e E I fla : so} is stationary for allf e Ct i.e.

§(E,Ct,NS)holds. tr

5.4. Definition. For A g Ah, let p,(A) - {E q a1

{n g a1 | -C (8,A, {a})}
Thus p'(A) - {E q u1 | A not E-small}. Note

§(8,A, l/S) implies 0 (8,A, {a}).

| -ö (8,A, l/S)) and p' (A) _

that p'(A) q p(A) because

5.5. Proposition. i) If § holds, then E 4 p(Nr) for all cub set E.

iil If §(E), then E 4 ,1Nr).
iii) If E is non-stationary, then E e p'' (.trl'r).

iv) If V : L then ,1Nr): NS'

Proof. i) If ö holds, then Å,( is E-small for every cub set E by Proposition 4.6.iii. ii)
Å/r is E-small by Lemma 4.6.iii. iii) See Lemma 4.6.ii. iv) If V : L then Q(E) holds for
every stationary E, see [14]. The claim follows then from ii) and ii|. n

It is an open problem whether ,(ltlt) : p'(Nr) i.e. whether there is a stationary E
such that §(E, Nr, { a } ), but not § (E, 

^fl 
, NS). The following proposition shows that p,

and p' have some of the properties of a measure.

5.6. Proposition. i) p(o) : 1tt(o) : o.
i» If A e B, then p,@) g p'(B) and p'(A) e p'(B).
iii) If A is small, then p'(A) q {E I lEl < "}.
iv) If A has strong rneasure zero, then p'@) g {f I lfl ( o}.
v) If A is Z-null, then p' (A) f1 Z : s.

Proof. i) O(E, z,NS) holds trivially for every E e ur
ii) If A e B then §(E,B,NS) implies trivially 0(E,A,N,S).
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A g U*.r[ro] i.". §(8,A, {s}). See Lemma 4.3.i).

iv) If A has strong measure zero and E q ut, lEl
a e E, such that A g U,.r[ro] i.". C(8, A, {a}).

v) If X e Z then 0(x, A, {o}) i.e. X / p'(A). E

are J0 € eo, a € E, such that

- er, then there are sCI € wl ,

The idea for the following theorem is from [6, Theorem l.L0,p. 144].

5.7. Theorem. rr(^Ir) is an u1-ideal.

Proof. LetI: {Ee ,r l -O(E,^fi,NS)}. IEtEn e I,n e u,andE:U,e.En. Let
0: u1x t, ---+ u)t be abijection. Thereis acubset Cof limitordinals suchthatif a € C
then0"(a x r,,r) : a.If a € Cthensetforeachs e ul,n € r,; and( < o

"(')(O 
: s(g((,n)).

To prove -O(E,^fl, N,S), let (s.).66 be arbitrary. We choose elements/, e "A/r and cub
sets C" such that for each n e a

Cnn Cn {a e E,lf,la : s!)} : o.

I-etf(0(t,n)): f"(€) andD: Crfine.Cn. WeclaimthatD n{a e E lff"
so) : @. If a e CnE,letn be such that o e Er. lf fla: so, then for all ( <
f (0(€,n)) : s-(0(€,r)),which means/, fa : sf). Therefore a ( cn. z

We do not know for which setsA q Å[, the set p(A) is an u.r1-ideal.

6. Variants

There has recently been a lot of research into negligible subsets of reals. For example,
the so called point-open game has been studied in [30] and [29]. We shall define the classes

of negligible subsets of ÅIr by generalizing the corresponding definitions for the reals. We
shall get similar hierarchy results for the classes of Å6 as for the classes of reals.

6.1. Definition. i) Let A g I[. The point-open game Ge is the following
game between players I and II. The game Ga has length ir.;1. On the (th round
player I chooses an element fe e Nt and then player II chooses an ordinal
e4 e e1. Player I wins, if

Ae U u(fe,€€).
€€''

:
Q.)

Otherwise player II wins.
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ii) Let A q M. The game Gj is the following game between players I and II. The
garne Gi has length cu1. On the (th round player II chooses an open cover {q
of A and then player I chooses an element Jq e JA.Player I wins, if

iii)

iv)

Ae U Jq.

€ €c.r r

otherwise player II wins.

A setA of cardinahty 2't is calledaLusin set,if lA n Rl <
dense set R.

A setA has Rothberger's property,if for all {ef, € a1 I (
(f€)€€., such that

As u uffe,rt).
{€c^'r

utl fot every nowhere

e wr,f e A) there is

v) Let A,Y C M. A set A is concentrated around f, if lArcl ( a.r1 for every
open set G ) Y. A set is concentrated, if it is concentrated around some I, with
lYl: 't'vi) A setA has property CM,if therc is/ such that for all g € A, l{( < ,, l/(O :
s(6))l :,,.

In the study of reals strong measure zero is called property C and Rothberger's
property is property Ct , see 1261.

Wesaythatgames Gand G' areequivalent,itQl Gif andonly ttQI d forQ:1
and Q: IL The proof of the following lemma is an easy generalization of the proof for
the Baire space, [8].

6.2.Lemma. The games Gs and. Gfr are equivalent.

Proof. Suppose r is I's winning strategy in Ge. A winning sffategy for I in G| is the

following. There are auxiliary moves €q € al and/6 that I uses to deflne his winning
strategy. lf Je, Je e Je,fe and e6 have been played for { < 7 and II has chosen a cover

J.rthenlchooses J-, e J., suchthat/, €J^,wheref., isamovegivenby r((fe,ee)e<t).
Let e., be such that U(f1, €) e 4. Clearly A e U6 ,Ia , so I wins G[.

Suppose that r is I's winning strategy in Gl. We define I's winning strategy in Ga as

follows: Letfs eA be such that {U(fs,") I o a rr} g {r(J) | J anopen cover ofA}.
There must be such a point, since otherwise for each f € A there is a1 < ar1 such that
UV,o.) isnotof the formr(J) forsomeopencover Joof A;putJ - {U(f ,oi lf e e}
for a contradiction. Let II choose any open neighborhood (Jo - U(fo,oo). Then

Uo : r(Jo) for some open cover of A. Assume thatfq, Ug and Jl for t < I have been

played. Then I chooses f., € A such that {U(f",a) I a a u.rr} e {"((Je) e.r^\J)) I

f, anopencover of A). Let II choose any open neighborhood [.]^, : u(f-r,a-,). Then
Ut : ,(J^,) for some open cover of A. Now I wins the play (/6, U6)6a,, since

(J1, (lq) y., is a play of G] in which f uses the winning strategy 7.
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Suppose that r is a winning strategy for II in Ge. A winning strategy for II in
Gfi is the following. Let Jq and "16 for ( < 7 be the previous moves. Player II uses

auxiliary moves fe e Je and e6 e or such that U(fq,ee) e "16 to define his winning
strategy. On the round 7 player II chooses J, : {U(f ,r((fe,ee)e<r)) l/ e A}. If I
chooses J1 e J1,h: U(f ,r((fq,ede<t)),weletlr:/and e.r: r((fq,e6)6ar). Now
A EUe..,U(fe ,e) impliesA VUq.,,4.

Suppose that r is II's winning strategy in Gi. We describe a winning strategy of II
in Ge. Ifls is I's first move then II chooses 06 such that U(fs,ao) e J € Jo : ,0.
Assume/6, a6 and Jq for € < Z have been defined. Let Jq : U(fe ,ag). Then if I plays

fi, II chooses a, such that (l(f1,or) c J e J1: r((,Ie )e<z). Player II wins the game

Ge.z

6.3. Lemma. i) A Lusin set is concentrated around every dense set.

ii) If A is concentrated, then it has Rothberger's property.

iii) If not ll I Ge where Ge is the point-open game, then A has Rothberger's
property.

iv) If A e Nr has Rothberger's property then A has strong m.easure zero.

Proof. i) Assume thatA is a Lusin set and I is dense. Then every open G I I is dense.

We have lA:Gl ( u.r1, since A is Lusin, so A is concentrated around Y.

ii) LetA be concentrated aroundY : {ye I ( 1 ,,}. I-et (e!) be a sequence. Let

G: Ur.., U(ye,rlrZ). NowA..G: {z€ l{ < r,.,1}, so

Aq U u(yq,e!2i)u [-J u(z6,ri|*).
{(a;r €(ut

iii) Assume thatA does not have Rothberger's property. Then there is a sequence ({ )

such that for each G) *" have A G Ue.,, Uffe ,4). But then player II has a winning

strategy by choosing Ja : {u(1, rt l I t € A} on the (th round in the point-open game

G]. Here we use lemma 6.2.

iv) Let (ea) be arbitrary and let u! : te . I
If CH holds then every Lusin set is concentrated by Lemma6.3.r) since then Q is a

dense set of cardinality N1.

The following theorem shows that the existence of these negligible sets is consistent

withzFC.

6.4. Theorem. Assume 2Nr : Nz. Then there is a Lusin set.

Proof. Let {R€ I { < u2} be the set of all closed nowhere dense sets. By the

Baire Category Theorem 3.3 Uo<e Ra I Nrfor all t I az. l-et E : {re I € I u2},
where eq / {ea I 6 < €i u Ua<e Ra. E isLusinbecauseif R is nowhere densethen

EnR gEnR e {ee l€ < ry}where'yissuchthatR:R.r. E
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6.5. Lemma. A e Nt has Rothberger's property if and only if for every sequence of
open covers (Jd e..,, of A there are Jg e Jq such that A e Uga., ,/6.

Proof. Assume that A e .t has Rothberger's property. Let (Ja)a<., be a sequence of
open covers of A. For eachf e A and € 1q choose Jy e Ja suchthat/ € "b and then

pick e! € c.r1 such ttrat [ie!] c Jy. By Rothberger's property there arel6 e A such that

A e Ue.,, Fc f/e'l e U6a,, /r1
Forthe otherdirection, if ({) is given, putJq: {f lrt] lf e e} foreach t 1q.

tr

6.6. Lemma . A e Afi has Rothberger's propefi if and only if Ftt A has property CM

for every continuousfunction F : A - Nt.
Proof. Assume that A has Rothberger's property and F is continuous. We show that FttA

has Rothberger's property. t-"t @I(D\€A,a1ur be given. Since F is continuous we can

choose {, such that Fttlf 16r*) a lF(f)lu[o]. By Rothberger's property there are fo € A,

a 1ut, such that
Ae ! r"tdr;t.

alut

Hence P"A g Uo.,,7rr6*1YeX,tr-)).
Next we prove that every set A with Rothberger's property has the CM property.

Ietr r cd1 X u)t ---+ a;1 beabijection. Fixd < rl1 foramomentandlet Jt:
{[("(€,6),")] I o < rt].Usinglemma6.5 for (Q)a<,, foreach 6 l wt weflnd/
such thatA C 0o<., Ur.-, "{ where,rf : [(r'(6, 6),f ("(€,0)))] e .7,6. ThusT has the

required property.
Assume that FttA has property CM for every continuous function F : A ---+ Å[. Let

Je : {41 6 < ,,} wheretheelements of Jqarcclopenanddisjoint. DefineF : A ---+ J{t

UVf(x)(O :6if x e "{. fhenFiscontinuous. Thusthereis/suchthatforall g e FttA,

l{6 l/(6) : s(6)}l : arr. ThenA e Ue.,, Jf(€). !

6.7.Lemma(CII). lI Geif andonly,/lÄl S Nr.

Proof. If A : {fe I € 1 ,r} then I's winning strategy is to play/6 on the (th round.

Assume that lAl ) Nr. Let r be a strategy for I. We will prove that it is not a winning
strategy. Let ,S : r"Seq. Since, by CH, lSl S Nr, there is/ € A--,S. Now there is a play

(fe,Vefa6]) of Ga where I uses r and II chooses ordinals os such thatf / [/6 fa6]. So

the play is winning for II. n
Pawlikowski [29] showed in the Baire space that an uncountable subset of reals A

has Rothberger's property if and only itll y GA.

To show that these classes of negligible sets are not the same we need some additional

set theoretical assumptions, because under GBC all these classes are just the collection
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of subsets of cardinality at most o1. Here is a lemma which separates classes of strong
measure zero sets and concentrated sets. It is agenedization of the theorem of Besicovich.
A reference to it and many of the results concerning negligible subset of the Baire space

can be found in [26].

6.8. Lemma (CH). If 2'' - w2 then there is a set which has strong measure zero,
but is not concentrated.

Proof. We construct a sequence (Pe)e.r, of disjoint ot-perfect nowhere dense sets such

that every meager set M intersects only rr1 man) of them. Let R6, € < wz, be an enumera-
tionofallclosednowheredensesets.AssumethatPl,(<6<w2,havebeenconstructed.
By Lemma 3.7 there is an o1-perfect nowhere dense set Pa e ÅIr.. U,.r(Pe U R6). Let
Eq ! PEbe a Lusin set (relativized to P6). Then E : u{Ee I € < rz} has strong measure

zero: Given a sequence (oe)e.., let G: U€.., U(qe,ozi. By the property of the
sequence (P6) thereisd < {/2 such thatPl e Gforall€ > 6. SinceUe.rEe hasstrong
measure zerc, it is (44a1 )-small.

E is not concentrated, since if D has powor rrr1, there is € I wzsuch that D O Pt : a.
Hence G : Nr..P6 is open and D e G, but E'.G has power &r2 because it contains Ee . tr

We recall that cov(M) is the smallest cardinal rc such that Å/r can be covered by
K many meager sets. The following theorem is a generalization of the corresponding
theorem of Galvin [8] for the point-open game for reals.

6.9. Theorem (CH). If A C C1 is such that lAl < cov(M) thenll does not have a

winning strategy in point-opeil. game Ga.

Proof. Let?: {F: ut ---+ S"q lUe..,[F'.(€)] : Cr].f isnonvoidbyCH.We
consider the game G]. We may assume that at the ath move, II chooses Fo e F. Then
I chooses io € a1. Player I wins the play (F.,i")o<,, if A q Uo.-, [F,"(r*)]. Let o :

seq ---+ Fbeany strategyforrrinG|. Givenanyg e Nl,letDr: Uo4.,[o(gfo)(g(o))].
Foreach x e Athe set F*: {B € 

^fi 
I x e Dr} isopenanddense: Givenanys € Seq

choose € e q suchthatx e [a(s)(O]. Thentr^(€)l q A. Since lAl < cov(M),it
follows that flr.o F* I s. Choose 8 € flrea F,; then Ds e A, and so o is not a winning
strategy. !

7. Stationary strong measure zero sets

In an unpublished paper Galvin, Mycielski and Solovay proved a nice characterization

for strong measure zero sets of reals. The theorem was announced in [9]. Their theorem

says that a set of reals A has strong measure zero if and only if for every open dense set D
there is x e 2u such that x * A g D. The proof uses a variant of the point-open game. We

will generalizethe theorem for C1, Theorem 7.8. The classical proof uses compactness

of 2' ,but2'r is not r..r1-compact by Lemma 2.6. Instead of compactness we will use the

§.-principle. We thank Stevo Todorqevic for his valuable help with this.

Let NCub : {E g ,t I E does not contain a cub set}.
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Rothberger's propertyt\ \
strong measure zeto CM

Figure 1: Properties of a negligible set A.

7.1.Definition. O* is the principle O-(a.rr,"A/r,NCub). Let (0.)*<,, be a §*-
sequence where § o : {fon I n e u}.

lf V : L then 0.. See [5].
A set is nl it itis an u1-intersection of open sets.

l.2.Lemma. I*t(so)or,,beasequenceoffunctionssuchthatdom(so) € [a.rr-.4]'
andran(s*) e uy Then

{a I ,o e ,} * s} is a dense open set,

{a I ,* C x} has cardinality Nr} is a dense il| set,

{a I ro e x} is stationary} ,, a dense set.

Proof. l-et D be any of the sets above. D is non-empty since we can define x € D as

follows. We deflne inductively o0 : 0, oa : Ue<a[sup(dom(s*,))], xldom(soo) : soo

and"r(O : 0otherwise. Then {o l r* g r} f {oa I 6 e c..,1} e Cubandsor € D. Now
it is easy to see that D is dense, since s^(rf(r*.,1'./(s))) e D for every s € Seq. The set

{, ll{"lr.qx}l :Nr}is
n U [,e]

61ut 6(€1ur

so it is n3.J
The following lemma gives us a tool to handle open and dense sets. It also gives

us a way to avoid the use of compactness. In the proof we will use an abbreviation

lo,0):{€1"<€<B}.
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7.3. Lemma. Assumethat(§.) isa§*-sequence,where §o: {fon € ao I n e u}.
Assume that D C Å[ is open and dense. There exists a sequence (ro)o<r, of countable

functions suchthat dom(s.) e [c..,1..c]' andran(s.) e urwiththe property

D' : {x € 
^fi 

I {o | ,. e .r} ls stationary} e D.

Proof. For each a we let §& : a and we choose, by induction on n € u, anordinal Bff*,
and a function s[ : l/t,/t+t) - ,r, such that

lfo''u s[ u

This is possible, since D is open and dense.

Then {cl I ,* q x} is station ary and {a
a € e1 and n € u such that xlc- : .fo,,
x e lfo,,u rl u . . . u så] g D. I

7.4. Proposition. If A has strong measure zero and (oe )g..,, is a sequence then
there are fq, t I ut such that

aq [l Uu(fq,"q)'
6€or €)6

Proof. Split uu1 : LJr.,, Xo where X6 e [w1)'1, 6 < ut, are disjoint. Since A has

strong measure zero there arel6 such thatA ! Ue.r, U(fq,a) for all 6 € u;r. Then

{€ l/ e U(fe, *)} has cardinality r,.,1 for allf e A, and the claim follows. tr

In the previous proposition i{ l/ e U(fe,a6)} has cardinality crrl for allf e A.
Although we can not prove the Galvin-Mycielski-Solovay theorem for strong measure

zero sets, we can get a similar theorem for a stronger notion, where we require that this
set is stationary.

7.5. Definition. AsetA e Å/r haspropertysrationaryCorstationarystrongmeasure
zero,ifforevery (uo)o<., € cufl'thereis (1") € flo<.,r,.,f'suchthat

..urå] cD.

Let so : Une, sL.Now assume that x e Dt .

| ,f, € ö*) is cub by 0*. Thus there is
and sCI g x. By the choice of so we have

A set A q Ah has property
(T*) e n* lusrln?*l' such that

A s f^l [J [r'].
C cub a€C

stationary o-C, if for every (to)o.r, e ,?' there is

Ae r^l u tJ [/] .

C cub dec I€T*
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7.6. Lemma. i) Stationary C implies stationary o-C and stationary o-C im-
plies strong measure zero.

ii) The sets with property stationary o-C is an \\2-ideal.

Proof. i) Implications from stationary C to stationary o-C and from stationary o-C to
o-C are clear. o-C implies strong measure zero by L,emma 4.4.

ii) Assume that the sets AB, 0 1 ur, have property stationary o-C. Let (eo) be a an

arbitrary sequence. Choose (7f) such that

ABq fl U Ut4
C cub a€C r.r0

I-etIo:Up.offl. rctxe AB forsome 0 e ut. If C isanycubset,thereissome
a e Csuchthat a> P,t e f§e Toandx e [1]. Thus[Jr..,ABhaspropertystationary
o-C.3

There are many open problems with these concepts. We do not know whether every
small set has stationary strong measure zero. Of course, if A is small then it is stationary

o-C. We do not know if stationary C is equivalent to stationary o-C.

1.1.Lemma. Assume §*. There are Mo, a e u1, where Mo is countable set of
countable models such that for each model (,.rr , R) the set

{cr e k l I (a,Rfa) € M*}

contains a cub set.

Proof. Let (§., galre u, a € url)bea§*-sequence. ThusforeachXe wt

{al1n(Xoa:0.,)}

contains a cub set. Let k be the arity of R. Let r : al --+ cur be a bijection. There is a
cub set C of limit ordinals such that for all a e C,n'fa is a bijection from aft onto a. Let
M on : (o, n-' § .,n) if it is a model; otherwise let M o, : @. Let M o : {M *r l n e w}.
Let M : (ut,R) be any model, andX : r"R : {"(;) I .r € R}. Then {o lln(Xo o :
ö.r)) contains a cub set D. lf a € C rl D then there is n such that Rfo : zr-lÖon. E

Now we can prove the main theorem of this section.

7.8. Theorem. Assume §*. Let X I 2''. Then i) implies ii) and ii) implies iii),
where

i) X has stationary strorug measure zero,

ii) for every opendense setD thereisx € 2'r suchthatx+X g D,

iii) X has strong measure zero.
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Proof. Since 0* implies CH the set Q of all ultimately constant functions has cardinality
N1. So letQ: {q"l o 4 cur}. AssumethatXhasthepropertyii). ThenXhas strong
measure zero since if (eo)oa,, is arbitrary then [Jo.,, U(eo,eo) is open and dense.

Thus,there isx e 2't suchthat.rtX e Uo<., U(qo,eo) i.e. X e Uo.., U(x*qo,eo).
For the harder implication we assume thatX has stationary strong measure z-erc. I-et

D be a dense open set.

We will deflne two games which are variants of the point-open game. Let 11 be a
game (eo , Io) oer, where on round o player I chooses e o e a1 and then player II chooses

Io € 2'-. Player I wins the game J-1 if there is x e 2'' such that

Let f2be a game (s* , Io) aeutt

x+ n Utr"l gD.
C cub aec

where the player II wins if

x e f^l [J [r"].
C cub dec

We will prove the following two claims.

1. Claim. I has a winning strategy in 11.

2. Claim. I does not have a winning strategy in f2.

Thus there is a play (eo,Io)oe,, which is a winning play for I in l'r but at the same

time is a winning play for Ilin f2. So we have that

x+xgx+ r] Utr,l g^o.
C cub aeC

Proof of Claim 1. Let (ro)o<,, be a sequence for D given by Lemma 7.3. We may

assume that mindom(r*) > supdom(sB) for all a > B. Here is I's plan. There are

auxiliary moves 16 e Seq which I uses to define his winning strategy. His flrst move

is e6 : supdom(s6) * 1. After II has chosen his Is of length €0, player I will choose

Ts Q )€o such that so ! 1o + 70. At the ath move I will play €a : suP dom(s*) * 1. After
II has chosen his 1. of length eo, I will then choose To 6 )€' such that U6ao Iq e I*
andso e Io+To.Letx e lo<,,17"].Itf €.r+ nc"uuUoec[L] then {a ls. e /i is

stationaryi.e.f e D.
Proof of Claim 2. I,et (Mo)o<,, where Mo : {M." I n € u} is a §*-sequence

of models from Lemma 7.7. Assume that o is a strategy for I. We will define a play in
which I uses o and II wins the game f2. I.et

6 o : sup{ o (U e)e .') I )n( (/€ )e.o e M on)} .



Negligible subsets of the generalized Baire space al' 3l

Since X has stationary strong measure zero we can choose sequences Io, a I {./1, such
that l.(I*) : 6o and

(1) xq n Uhl
C cub o€C

l-eteo: o((1g)€<*)foreach a 1w1. By 0. there is acub set Csuchthatif a € Cthen
thereis n€u suchthat (/e)e.. e Mon. Thuseo ( 6o foreveryo € C. If Cisanycub
set then X e U.e cn ,,ll*lby (1). tr

7.9. Conjecture. A set X C 2't has strong measure zero if and only if X has station-
ary strong measure zero.

8. GMA and negligible sets

Martin's axiom (MA) decides many properties of negligible subsets of the Baire
space [7]. For example MA implies that the union of ) < 2Nu meager sets is meager.
(See e.g. [18].) In [31] Shelah introduced a version of generalized Martin's axiom (GMA)
which he used to prove similar results for higher cardinals. More information about other
versions of GMA is in [39]. Here, we will look for the applications of GMA to the
structure of negligible susets of Å6.

I-et(P,<), lPl < 2Nr, be apartial order. Elements of P are called conditions. As
usualwedenotepl4iffthereisrsuchthatrlpandr<4.Thegreatestlowerboundof
conditions of p and 4 is denoted by p A q. The greatest lower bound of conditions of po,
n e u,is denoted by infrq, pr. D e P is dense,if for allp € P there is q e D such that
q<p.GgPisafilter,if

i) pAqe Gforallp,qeG,
ii) itpe Gandp<-qthenqc- G.

If 2 is a family of subsets of P then we say that G e P is D-generic,if G n D I o for
allD e D.

Shelah's weak generalizedMartin's axiomfor N2 (GMA) is the following:

Assume that a partial order (P, () satisfies

i) if p I q*here p,e e P then p A q e P.

regressive functionf : a2 + u2 such that

Yc-,0 e C[cf( a),ct(p) ) u, f (*) -f (P) + p* I pd.

of P, there is a D-generic filter G e P.



s the required cub

r(o) _ 
{

Clearly f is regressive. Now ^y - sup{
be ut2 elements in P. Now C - uJ2:.1 i
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Notice that iii) is a strengthening of N2-c.c.

Shelah proves the consistency of CH, 2N' ) Nz and GMA relative to consistency of
ZFC. As an application he proves Theorem 8.2 below. We use an additional assumption

to ensure that lPl < 2'1. First a simple lemma.

8.1. Lemma . Assume that P has cardinality u1. Then P satisfies the foltowing: If
p€ e P, € 1 uz, then there is a cub set C C a2 and. a regressive functionf i a2 --+ s;2

suchthatforalla,P e C if cf(a),cf(p) > a andf(a):f(P) thenF(1t*): F(pd. In
particular P satisfies GMA iii).

Proof. Let (po) o<., be a sequence of conditions. For each o let g(a) : min{p I pB :
poj and

0, otherwise.

uz, since otherwise there would
set. f

8.2. Theorem (t31]). Assume that \' < 2*' for each Å < 2N'. Assunne CH,2t\ >
\2 and. GMA. Then the union of Å < 2x' meager subsets of Nr is rneager

Proof. Let 86, € < ), be nowhere dense sets. Let P be the set of all countable sequences

of pairs
p: ($le,Ee ))e.r, .t 1ur,

such that

i) each Uq is the union of countably many basic neighborhoods [s];

ii) each E4 is countable subset of ); and

iii) for each (, U6 is disjoint from Uoe4Bo.
Acondition p' : ((UL,E))e<t, isstrongerthanp: ((Ue,Ee))q.r, if | ) Tandfor
each { < l, U'e ) Uq and Be )- Ee .

Clearly P satisfles GMA i) and ii). To show that P satisfles condition iii of
GMA let Q : {@€le<r I (Ue, Ee)e.-, e P} and define a tunction F : P'--+ Q
by r((Us,Ee)e<r) : (Ue)e.r. Note that conditions p : ((le,Ee))e<-, and q -
11Ui,fi))e<rrär€corrpatible,ifT:landforall€<"y,Ue:U'e,i.e.F(p):f(q).
By CH, the set Q has cardinality l(Seq<'')"' l : ,,. So applying Lemma 8.1if pq € P,

€ < uz, then there is a cub set C e Q2 and a regressive function/ i Q2 ---+ &r2 such that
forall a,0 € Cif cf(a),cf(P) > a.,and/(a) :f(0) ttrenF(p*) : F(pd, andhence
p" I pB.Hence P satisfles GMA iii).

For each a ( .\ and all € 1 ,t, s € Seq, let
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Since each Be, € < ), is nowhere dense, it is clear that for all ( and,§, every conditionp
can be extended to a condition p' e E6.r, and hence each E6, is dense in P. (Just choose

[s'] q [s].. Ur.u, 86 and put U| : Ue U [s'] and EL : &) Each Do is also dense in P,

since ifpis acondition, then p' : f((ltl,{"})) e Do, where [s] nf* : o. By GMA,
there exists a filter G e P such that G n Do I a forall a ( .\, and G fi E4 I o for all
(, s. For each ( ( cu1 we let

He : U{ue I Gp e G)p : (..., (Ue,Ee),...)}

Since E6., is dense for all s, ä6 is a dense open set.

Now if a < ,\, then because D* is a dense, there exists € < ,r such that 116 is disjoint
from Bo, and hence B* is disjoint from 0a.., 116. Therefore, Uoe) B. is disjoint from
0a.,, He'z

Carlson showed that MA implies 2--additivity of the ideal of strong measure zero
sets of the Baire space, see [7]. It is an open problem whether this result generalizes
to 2N'-additiveness of the ideal of strong measure zero sets of Å[ under CH and,GMA.
However, we can prove the following theorem.

8.3. Theorem. Assume CH and GMA. If A C N1 has cardinality < 2§, then A has
strong measure Zero.

Proof. Let Q: {qt I 6 < ,,}. Let (a6) be an arbitrary increasing sequence. Let
p : (Seq, f ). Clearly P satisfies conditions i), ii) and iii) of GMA. For each/ € A,let

Dy : {s € Seq I l([f € U(q,Gl,0€)]].

DTisdense, becauseif s € Seq, (.(s): §,thens': s^(d) € D7 where 6 e al is such
thatf e U(qa,a). For each ^t I ar,let E., be the dense set {s | 7 € dom(s)}. Let
t> : {Dr lf e A} u {4 | z < rr}. Since l2l < 2N, by GMAthere is a2-generic G.
Leth: UG. Nowforeach/ e A,f € U€.., U(qnc),a6), sincethereisd < r,.rr such
thathl6 e Dy. Z

8.4. Definition. A set E C Å/r of cardinality 2N' is a generalized Lusin set or a
GLusin set,if lE n Rl < 2'' for every nowhere dense set R.

8.5. Theorem. Assume CH,2§, ) N2 and GMA. There is a GLusin set.

Proof. Let {Ra I ( < Z*,} be the set of all closed nowhere dense sets. IJnder CH,
2N, > Nz and GMA we can apply Theorem 8.2. Then [J0., Ra * Nt for every ( < 2N,.

Sowecandeflne E : {ee I 6 < Z*,} where ee / {ea I 6 < €} u Ur.e R7 . EisGlusin
because ifR is nowhere dense thenEnR g E an g {re I € <,f} where 7 is suchthat
R: Rz. tr

We lift the results in Goldstern, Judah and Shelah [10] one cardinal up:
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8.6. Theorem. If 2§r is a regular cardinal and there exists a generalized Lusin set,

then

i) every subset of Afi of cardinality less than2\' has stong measure zero,

ii) there exists a strong measure zero set of cardinatity 2§l , and

iii) every generalized Lusin set has strong rneasure zero.

Proof. i) LetA be a generalized Lusin set and X C C1, lXl 1 2N', and M a meager set. In
view of the flrst part of Theorem 7.8 it suffices to prove that there is an/ €-Cr such that
(f +x)fiM: a.Foreachf e h,-f +Mismeagerandtherefore lAo(-f +M)l < 2*'.
Since 2N' is regular, A. Ur.r(-/ * M) is not empty. Ifl belongs to this set we have that

(f+x)etM:@.
ii) follows from iii).
iii) Let (aa) be arbitrary. The set G: Ur.., U(qt,or) is comeager, so lA'-Gl <

2N' . By i) there are ft, t < ur, such that A'.G C Ue .., U(ft, oze+r). Therefore

Aq U u@e,cz€)U U u(fe,c,z€+t).
{(,rr €(cur

D

8.7. Corollary. Assume CH, 2R' ) N2 is regular and GMA. There is a strong

measure zero set of size 2§'.

We believe that

8.8. Conjecfire. Con(ZF) implies Con(ZFC + CH + GBC).

Since GBC implies wGBC, theexistenceof aKurepa-treeimplies -GBC (Proposition

4.8), hence the consistency strength of GBC is at least as strong as the existence of an

inaccessible cardinal. Thus the consistency of GBC would be a strong refutation of
Kurepa's hypothesis. Of course 2't ) uz and -GMA must hold in the model for GBC.

9. Measure in "A[

We show that difficutties arise when we try to deflne a measure in ÅIr.

9.1. Definition. Let D c larl''. A setA is D-measurable,if for every X e D there

are a closed F and an open G such that F g A ! G and G'-F is X-small. A is rneasurable,

if it is [r,,,1]', -measurable.

We do not know whether all open and closed sets are measurable'

Another possibility to define measurability is the following.

9.2. Definition. A set A is D-measurablet , if therc is a Borel set B such that A A B
is D-null. A is measurablet, if it is [r,,,1 ]'' -measurable'.
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It is easy to prove thatif An,n e u, are measurable so are Å/r-Ao andl)nr.Ar. We
do not know how to prove that lJoa.,, A* is measurable whenever the Ao, ot I u1, ar:e.

A family @o)o<., is locally countable, if for every/ e Å/r there is € < cr,r1 such that

{" I U(f ,() n a, I a} is countable.

9.3. Lemma. If (Fa)a<., is a locally countablefamily of closed sets, thenl)o..rF6
is closed.

Proof. I-etf / Ur.., Fo. Since (F'6) is a locally countable family, there is ( such that
t : {61U(f ,€)nFa * a} is countable. Let€o : € u sup{min{ P I U(f ,0)nFa: s} 

|

6 e t\. Now U(/, {o) e ÅIr.. U0.., Ft. D

9.4.Lemma. If Aa, 6 < ut, are measurable andthefamily (Ao)0.., is locally
countable then l) 6 E., A6 is measurable.

Proof. LetX e [a.,1]', be arbitrary. We splitX: Uo<.,X6. Choose open set Ga and

closed set F6 such that Fa e Aa e Go and Go'.Fa is Xa-small. Let G : Uo.-, Gd and
F : LJo<-, Fa. By Lemma 9.3 F is closed. It sufflces to prove that G.-F is X-small. This
holds since

G\F e [J (co..ro)
6(.ur

and Uo<., (G6..F6) is X-small. D

9.5. Problem. Are the deflnitions of measurability equivalent? Are Borel sets mea-
surable?

The following observation is due to Ville Hakulinen. Let p,be a "measure" in Å4
which satisfles the following conditions.

i) ClopensetsA: ff l/(0) <a,f(l) 4 cur),Bo: {f l/(0) < ,,),f(I) < a},
Cn: {,f l/(0) < n,f(I) < r,} aremeasurableforall a e wlandne u.

ii) ran(p) is a linear order.

iii) If a < B then p(8.) < p(Bil andif n l mthen p(C") < p(C^).

Then A : Uneu Cn : Uo<u1Ba, but it can not be that pt(A) : suPn€o p'(C") and

t-t(A) : supo4.1 p(B*), because the former is ar-coflnal and the latter is rr.r1-coflna1.

Hence p cannot be both a.,-additive and c,.rr-additive.

Afamily f isalmostdisjoint,if forall A,B € f ,AnBis countable.

9.6. Lemma (CH). There is afamily of cardinatity 2*' of almost disjoint subsets of
ut.
Proof. By CH it is sufflcient to produce 2N, almost disjoint subsets of Seq. For each

f e 2', let S(/) : {/l( I € < rr}. Now {S(/) lf e 2''} is the required family. tr

The notion of strong measure zero is not perfectly suitable for the concept of measure

zero:

35
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9.7. Proposition (CH). Thefamily

{A I A closed and does not have strong measure zero)

does not have Zut -c.c.

Proof. IfXq c,.,1 letÄ(X) : {f e^fl l/(O:0for aJJre #X}. ThesetA(x)isclosed,
sinceA(X) :fiagx{f l/(€):0} Let{Xe ! rrr l€ < 2nr}beanalmostdisjointfamily
givenbyLemmä'9.6. LetAq: A(X).ff€ + ('then lAqnA4,l S r,: lf f e AEnA4,
then/({) : 0 for all € / Xq oXq,; thus/ € Q.

Assume thatX e a,l1 and lXl : ,r. Then the setA(X) does not have strong measure

zero, since it is not (x + l)-small. Let B : Ue., U(fe ,t * 1). We define an element

/ e Ä(x)'-B by letting/( Ö * fe@ for each € € xandl({) : 0 for each ( € x. a

9.8. Theorem. Assume either I(u), or CH and 2R' - N2. Then there is a non-

measurable set.

Proof. We will construct a set B e,A/r such that B I C + o arrd(^Ir'.f) n C t' a fot
every closed set C of cardinality > r,.r1. The set B is called aBernstein sef. If the set B were

measurable there would be a closed set F and an open set G such th at F e B e G and G:F
is (a * l)oa,,-smalt. By the property of B the sets F and Å/r-.G have cardinality ( rr.r1,

therefore Å[..(G..F) e (^Ir.-G) U F' has cardinality I wt. This contradicts Lemma

4.6.ii.
The construction of B. Let F be the set of closed sets of cardinality ) ar. F hx

cardinality 2N', since fllf /r : {06a.,('A/t..F(€)]) I f : q -* Seq} and for example

{trl u{/} lf e Nr,se Seq} e ?.Letf :{Fe l€<z*'}. Wellorder"Afi. If we

assume 1(r,,,), then by VäZiniinen [38] every closed set of cardinality > u1 has cardinality

2Nt. If we assume u)2 :2',, then trivially every closed set of cardinality ) trrl has

cardinality 2'1. Now we are ready to define the set B by transflnite induction. Assume

thatsets86 and 8'6,€ < T,havebeendefined.teth andSrbetwosmallestelementsin
Fr.(Ur<, Be U Ue <, B!). Put 8", : {fr} U Ue ., Bs and n', : {s} U Ue ., Bt. Now
B : U€<zn, 86 has the properties of a Bernstein set. I
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