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1. Introduction

We introduce concepts which analyze negligible subsets, like meager and strong
measure zero sets, of the generalized Baire space NV} = w;”". In the topology of this space
basic neighborhoods of an element f € N are of the form

Uf,a) = {g € M1 | gla =fla}.

Some of the concepts, like the concept of a meager set, are direct analogies of classical
concepts. Others, like the concept of a small set, are unique for the space N.

Many of the results of this thesis are just the results for the Baire space N' = w
“lifted one cardinal up". The power of ZFC is often insufficient so we will use additional
set theoretical assumptions, like CH, Kurepa’s hypothesis, ¢, ¢*, GMA and I(w).

We use the same name for the concepts in N as for the concepts in the Baire space
N'. We shall explicitly mention when we mean the concept of the Baire space or of the
reals. We hope that this convention does not cause confusion.

In Telgdrsky [34] there is a survey of topological games such as the Banach-Mazur
game, the Borel game and the point-open game. The length of those games is w. Here
we shall generalize many of those games by simply letting the game go on for 6 moves
for some ordinal 6 < w;. As Telgérsky points out many of the games are redundant in the
case of Baire space. But in the study of A} we need to introduce these games since the
generalization of some concepts is most naturally defined by games. Prime examples are
the definition of a Borel* set [11] and the definition of w;-perfectness [38].

Sikorski was the first to study the space C; = 2¢! in [33]. He studied compactness
properties of the space C,. Juhdsz and Weiss solved a problem of Sikorski in [15]. Shelah
[31] had an application for meager subsets of C;. Tuuri [37] and Viininen [38] proved
the separation theorem for /7 11 subsets of A;. Landver [22] has studied the so called Baire
numbers of . Viininen [38] has studied perfect and scattered subsets of Aj. Halko
[11] studied generalized Borel sets of V.

The structure of this thesis is the following: The notation used and some of the
connections between topological properties of N and set theoretical assumptions are
presented in Section 2. In Section 3 we define meager sets in NV} and study the property of
Baire in NV;. The definition and basic properties of small and strong measure zero sets are
dealt with in Section 4. We introduce a generalization of the combinatorial principle ¢ in
Section 5. In Section 6 we define several classes of negligible subsets of N;. Section 7
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is inspired by the theorem of Galvin, Mycielski and Solovay for the strong measure zero
sets of reals. In Section 8 we investigate how the generalized Martin’s axiom decides the
properties of negligible subsets. In Section 9 we discuss how difficult it is to define a
measure for V.

2. Preliminaries

Our set theoretical notation is consistent with Jech [13]. We shall work within
Zermelo—Fraenkel theory with the Axiom of Choice (ZFC). We shall often use an addi-
tional assumption, which is independent of ZFC, namely the Continuum Hypothesis (CH),
since it makes the environment here quite natural. We shall mention when we use CH.

If F: A — Bis a function and C C A then F'C = {F(x) | x € C}. A k-union is a
union of x many sets. For a set A and a cardinal A we denote

AP = {BCA|[Bl=)}and[A] = (BCA|[B] < \}.

If o is an ordinal then k* = {f | f : & — k} and k< = Uz, xP. Ordinals are,
unless otherwise specified, assumed to be countable i.e. elements of w;. Fora C w; the
characteristic function x4 € Cy is such that x,(§) = 1 if and only if £ € a.

We consider the spaces N} = wi' = {f | f:wi — wi}and C; =2 = {f | f:
w, — 2} with a topology in which the basic open neighborhoods of f € N are

U(f, o) = {g € N1 | VE < alf(§) =]}, a <wr.

Let Seq be the set w™*" and denote its elements by letters s.7,.... If 5,7 € Seq, then
s < t means that s is a proper initial segment of 7. The length of the sequence s is
denoted by £(s). If h is a countable function such that dom(k) C w; and ran(h) C wi,
let [)]] = {g € N1 | h C g}. So U(f,a) = [fla]. Sequences s and s’ are compatible,
denoted by s | &, if there is a sequence 7 such that s < ¢ and s’ < #; otherwise they are
incompatible, s Ls'.

Aset T C Seqis atree, if t]§ € T forall t € Tand § < {(s). Fort € T we define
prec(f) = {s € T | s < t} and succ(t) = {f(a) € T | a € wi}. Levo(T) = {t €T |
() = a}. A branch b C T is a maximal chain of 7. An w;-branch is a branch of length
w;. The set of all branches of T is denoted by B(T), and the set of w;-branches of T is
denoted by B, (T). An Aronszajn tree is a tree which has no w;-branches and Lev, (T) is
countable for all & < w;. A Kurepa tree is a tree which has at least X, w;-branches and
Lev, (T) is at most countable for all a < w.

The spaces N and C; have the property that any countable intersection of open sets
is open. Spaces of this kind are called w;-additive. The Borel sets of N are the members
of the w,-algebra generated by open sets. A space X’ is 77, if its singletons are closed.

2.1. Lemma. If X is an w,-additive T\-space that has a clopen basis of cardinality
Ny, then X is homeomorphic to a subset of 2"
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Proof. Let (Ge)e<w, be the clopen basis of X. Denote Gi = G¢ and G = X\ G.
We define Y C C; and a homeomorphism F : X — ) as follows: For each x € & set
f(&) =i, ifand only if x € Gé and put F(x) = f. Let Y = ran(F). F is one-one, since if
x # y, then there is £ < w; such that x € G¢, but y € G¢. F is continuous, since for any

s € 2<@ if x € F~!([s]) then x € ﬂgdeg(x)(g) C F~!([s]). F is open since for any

§ewn [{(&DHNY CF'Ge. O

Thus assuming CH, | is homeomorphic to a subset of C;.

Letf,g € C; and A,B C C;. Then f + g € C; is such that (f + g)(&) = f(&) +
g(§) mod 2 forall € < wy. Wedenotef +A={f+g|gc€AlandA+B={f+g|f€
A, g € B}.

2.2. Definition. Let T be a tree with unique limits, i.e. if prec(¢) = prec(¢') and
{(t) = £(¢) is a limit ordinal, then t = ¢'. A game is a pair (T, L) where L : TU B(T) —
{I,II} is the labelling function of the tree. The players of the game are I and II. A play
of the game is any b € B(T). The player I wins the play b, if L(b) = I, otherwise II wins.
A strategy for a player Q is a function o : L™!(Q) N T — T such that ¢ (¢) € succ(z). The
player Q has used his strategy o in the play b, if o(b[€) = b[(£ + 1) for every £ < £(D)
such that b€ € dom(o). A strategy o of Q is a winning strategy, if Q wins every play b
in which he has used o.

We denote by Q T G that player Q has winning strategy in G.

Usually we describe our games less informally, but it should be clear how to formulate
the precise definition. The branches of the game tree will always have the same height,
say a, and we say that the game has length a.

If A C N, then the closure of A, A, is the smallest closed set which contains A. A
set P is perfect, if P is closed and contains no isolated points.

2.3.Lemma. A set A C N is closed if and only if A = B, (T) for some tree
T C Seq.

Proof. Assume that A = B, (T) for some tree 7. Then A is closed, since if f ¢ A there
is € such that f[€ € T which means that [f[€] C N \A.

Assume that A is closed. Let T = {f[{ | f € A,{ € w;}. Then obviously
AC B, (T). Iff1€ € Tforall £ < w; thenf € A because A is closed. O

A tree T is a Jech—Kunen tree if |T| = X; and Xy < |B,, (T)| < 2%. One general-
ization of the Cantor-Bendixson Theorem states that the cardinality of a closed subset of
N is either at most R, or is 28 Thus if T is a Jech—Kunen tree, then B, (T) shows that
this generalization of the Cantor-Bendixson Theorem fails for ;. The consistency of a
Jech—Kunen tree was given in [12], in which Jech constructed a generic Kurepa tree T
such that |B,,, (T)| < 2¢' in amodel of CH and 2*' > w,. By assuming the consistency of
an inaccessible cardinal, Kunen proved the consistency of non-existence of Jech-Kunen
trees with CH (see [16, Theorem 4.8]). In Kunen’s model there are also no Kurepa trees.
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The differences between Kurepa trees and Jech—Kunen trees in terms of the existence
have been studied recently by Jin and Shelah in [32].

The set theoretical assumption /(w) states that there is a normal w,-complete ideal 7
onwy suchthat 7+ = {A | A ¢ T} has a dense subset in which every descending sequence
has a lower bound.

Viiingnen [38] shows that I(w) implies that every closed subset of NV} of cardinality
> Ny is in fact w-perfect (Definition 3.5), and hence of cardinality 2%

2.4. Definition. A set A C X is w,-compact, if every open cover U of A contains a
countable subcover of A.

An wj-compact space is often called Lindeldf.

2.5.Lemma (CH). A set A C N, is wi-compact if and only if every sequence
(fe)e<w, of elements of A contains a subsequence converging to a point of A.

Proof.  Assume that there is a sequence (f¢ )¢, of elements of A that does not contain
a subsequence converging to a point of A. For every f € A there is ay < w; such that
U(f, o) contains at most one fz. So U = {U(f, or) | f € A} has no countable subcover.
Let U/ be an open cover of A that does not contain a countable subcover. By CH we
may assume that / has power ;. We enumerate I/ = {U; | £ < w,}. For each v < w;
choose f: € AN Ug <~ Ue. The sequence {fe) can not contain a converging sequence
Jes — [, since otherwise f € U, for some v < wy and thus f;, & U, whenever {5 > v. O

The following lemma is first proven in [15].

2.6. Lemma. There is an wi-compact subset of C of cardinality > X if and only if
there is a Kurepa tree with no Aronszajn subtrees.

Proof.  Assume that A is wi-compact and |[A| > XN,. Then A is closed, by the previous
lemma, and there is a tree 7 such that A = B, (T). T has more than X, branches. The
levels of Lev,(T), a < wy, are countable, since otherwise {[s] | s € Lev,(T)} would be
an open cover of A which has no countable subcover. So T is Kurepa. If T contained an
Aronszajn subtree 7", then {[s] | s € B(T")} U {[s] | s € Lev,(T), sLT'} would be an
open cover of A which has no countable subcover.

Assume that there is a Kurepa tree 7 with no Aronszajn subtrees. Then there is one
which is a binary tree with unique limits. Thus we may assume that 7 C 2<%, Let
A = B, (T). Let U be an open cover of A. Let T(A,) be the set of all sequences s
such that [s] N A has no countable subcover. Obviously T(A,U) C T is closed under
subsequences. We claim that T(A,{) cannot contain an w;-branch f. Since A is closed,
J € A and hence there is U € U such that f € U. There is o < w) such that U(f,a) C U
sofla & T(A,U), a contradiction.

Since T has no Aronszajn subtree, the only possibility is that (A, ¢/) is bounded by
some «. But then, by definition of T(A, ), [s] N A has a countable subcover for every
s € Lev, (7). Since Lev, (T) is countable, we get a countable subcover of A. [J
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By a Theorem of Jensen assuming V = L there exists a Kurepa tree with no Aronszajn
subtrees. See [2, 4, 35]. Thus V = L implies that there is an w;-compact subset of C; of
cardinality > N;.

3. Category in NV

We begin our investigations of negligible sets with meager sets. Many things seem
to be similar to their counterparts in the theory of reals, see [28], but the structure of w;
makes some differences.

3.1. Definition. A set A of an w;-additive space X is dense, if every nonvoid open
set contains a point of A. A set is nowhere dense, if its complement contains an open
dense set. A set is said to be meager if it can be represented as an w;-union of nowhere
dense sets. A set is comeager, if its complement is meager.

Every countable set is nowhere dense and a countable union of nowhere dense sets
is nowhere dense since the topology of ] is w;-additive. Under CH the set of rationals
Q={f €N |3 <wVs>E(f(6) =0)} is an example of a dense set of cardinality w .
Q is meager as an w;-union of singletons but it is not nowhere dense since Q N [s] # @
for every s € Seq. A nowhere dense set can have cardinality 2*!. For example the closed
set P = {f € N\ | Va(f(a) # 0)} is such a set, since for every s € Seq, [s(0)] NP = 2.
See also Lemma 3.7. The set of all meager sets is an w,-ideal.

3.2. Lemma. A set A C N contains an open and dense set if and only if there is a
function F : Seq — Seq such that s < F(s) and [F(s)] C A for all s € Seq.

Proof. Assume that D C A is open and dense. Let s € Seq. Since D isdense DN ([s] # @.
Since D is open there is s’ = s such that [s'] C D. Let F(s) = s'.

Assume that there is a function F that satisfies the condition of the lemma. Then
D = Jeseq F(5)] is a dense and open subset of A since [s] N D 2 [F(s)] # @ for each
s € Seq. O

For each set which contains an open and dense set let the od-function be a function
given by Lemma 3.2. A sequence of sequences (S¢)¢<w, i continuous, if § < 6 implies
s¢ < ss forall §,6 € wy and 5, = Ug,5¢ for each limit ordinal . The next lemma is the
Baire Category Theorem for A/;. Note that it does not need CH.

3.3. Lemma. A countable intersection of open dense sets is open and dense; w-
intersection of open dense sets is dense.

Proof. Let F¢ be an od-function for an open dense set D¢ for each § < w. Let s € Seq
be arbitrary. We can define a continuous sequence s, (o < wi) by induction: let so = s
and so4+1 = Fa(sa). Letf € () .., [5o). Then by the definition of an od-function
f € Necw, De N [s]; 50 Mgy, De is dense. Also [, Dy is dense, and it is open as a
countable intersection of open sets. [
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3.4. Corollary. A comeager set cannot be meager. In particular, N is not meager.

Thus the ideal of meager sets is proper.

3.5. Definition. Let A C A and xo € A. G(A, xo) is the following game of length
w, between players I and II: First I chooses ap < w;. Then II chooses x; € A such that
x1 # xo and x; [ag = xo[vg. In general at round v < w; player I chooses a, > sup{a |
€ < ~} and player II chooses x., € A such that x, # x¢ and x, [ag = xg[ o for all § <.
Player II wins, if he can make all his moves. Player I wins otherwise.

A set A is wy-perfect, if it is closed and I T G(A, xo) for all xp € A.

3.6. Lemma ([38]). A non-empty w,-perfect set A has cardinality 2'.
The proof of Lemma 3.3 can be strengthened to the following observation.

3.7. Lemma. Every comeager set contains a nowhere dense w,-perfect subset.
Proof. Let A C N be a comeager set. Then A has a representation ﬂg <w, Re such that
for each & < w there is an od-function F¢ for R¢. We construct by induction sequences
s(b) € Seq for each b € 3<*', such that for all f € 3*, (s(f1€))¢<w, is continuous and
for all b, b’ € 3<¥1,

i) if b < b', then s(b) < s(b');

ii) [s(b)] C Rs, if ((b) =6 + 1;

iii) if (b) = €(b") and b # V', then s(b) Ls(b").
Then P = {(.,,[s(¢1&)] | g € 2«1} C A will be the required w;-perfect set. Assume
that the sequences s(b), b € 3<7, satisfying i, ii and iii, are already defined. If b)) =
v = U, then choose s(b) = Ug o) s(B16). If 7 = 5+ 1 and ¢(b) = 6, then let
s(b(i)) = Fs(s(b)(i)) for i < 3. Clearly the sequences s(b), b € 3<7F1] satisfy i, ii
and iii. The set P is closed and nowhere dense, since we can define an od-function F for
Ni~P: Let s € Seq, be given. If [s] N P = @ then F(s) = s. If [s] N P # &, there is
b € 2<% such that s < s(b). Then we let F(s) = s(b"(2)). O

3.8. Corollary. Every comeager set A C N has cardinality 2%,

See [38] for more about w-perfectness.

3.9. Definition. For an ideal Z on A, let
i) add(Z) = min{|A| | ACZ, UAEZTI},
ii) cov(Z) = min{|A| | ACZ, JA=Ni}and
iii) unif(Z) = min{|A| |A C N}, A ¢ T}
We say that an ideal 7 is a k-ideal, if add(Z) > . The family of meager sets, M, is
a proper w-ideal. If 2 = w, then of course add(M) = w,. In Section 8 we will prove

that
Con(ZF) — Con(ZFC + CH + add(M) = 2 + w; < 291).
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The question whether every non-meager set has cardinality 2, i.e. unif(M) = 2“', is
open.

The theory of the Banach-Mazur game on reals is studied in Oxtoby [28]. Here our
game has length < w; and so we get two different games depending on what the rules are
at limit ordinals.

3.10. Definition. Let « > 0 be an ordinal. The Banach—-Mazur game of length o
for a set A C N is the following game between players I and II. The players choose
sequences S¢, 5; € Seq.

where ¢ < a. Player Imoves first on limits. The rules of the round § < a are | J <5 s¢ < S5
and 55 < s§. Player I wins, if (), [s5] N A # . We denote this game by BM*(A).

The smooth Banach—Mazur game, smooth BM®(A) or s-BM“(A), is like that above
but player I has to move | J <6 s’£ at limits 6 > 0.

3.11. Proposition. If I | s-BM“(A) then I T BM*(A). IfII T BM*(A) then II 1
s-BM*(A).
The following example shows that these implications cannot be reversed.

3.12. Example. Let A = {x € C; | {a | x(a) = 0} contains acub}. Then I T
BM®1(A), but I T s-BM“'(A).
Proof. In BM“'(A) the player I makes the move at limits. It is enough to know how he
moves at limits. For each limit § > 0 let s = min{ov € Lim | o > sup{£(s;) | £ < 6}}
Then I chooses ss € Seq such that £(ss) = as+ 1, 55 > s¢, forall £ < 6, and ss(avs) = 0.
Since {as | 6 < wy} is cub, player I wins the play no matter what the other moves are.

In s-BM“' (A) the player II makes the move at limits § > 0. As above let s € Seq
such that £(s%) = as + 1, s > s¢, forall £ < 6, and s§(as) = 1. Since {as | 6 < w;}is
cub, player II wins the play no matter what the other moves are. [J

3.13. Lemma. II | (s-)BM®(A), where a < wy, if and only if IL T BM'(A).
Proof.  Assume that 7 is a winning strategy for II in (s-)BM*(A). Let s be I's move
in BM'(A). To get a winning strategy for II in BM'(A) (i.e. to find s’ > s such that
[s'] N A = @) player I plays a game BM*(A) where he starts with so = s and II uses
strategy 7. So let sj, = 7(s0), and choose s¢, 0 < € < a, such that | J; 5 s; < ss Where
sl = T((s¢)e<s). Now we can let s’ = g, 5t

Let 7 be IT’s winning strategy in BM'(A). In (s-)BM®(A) player II starts with 7 and
then he can choose his moves arbitrarily. [J

Since a winning strategy for IT in BM'(A) is an od-function for N;\A we get the
following proposition.
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3.14. Proposition. A set A C N is nowhere dense if and only if 11 T BM'(A).

The proof of the following theorem is an elaboration of [17, Proposition 27.3, p.
373] which is proved for the Baire space. The forward directions were originally noted by
Mazur, and Banach showed the converse. Oxtoby generalized it to arbitrary topological
spaces. See [17] for the references.

3.15. Theorem (CH). i) A is meager if and only if I | BM“'(A).
ii) [s]\A is meager for some s € Seq if and only if1 T s-BM*“' (A).
Proof. i) Let A = U, Re, where R¢, { < wy, are nowhere dense. Let F¢ be an
od-function for Ni\Re. If s¢ is the move of player I at round ¢, let s; = Fe(s¢). Now
f:U§<w1 S§ Q/A
Suppose now that IT has a winning strategy 7. For each partial play according to 7
of the form p = (s¢, s¢)e<+, let p. = U, s and set

D, = {x € Ni | p. € x — Ft € Seq~{{()}(r(p{p."1)) C )}

Then each D), is open and dense: for if u € Seq, either u 2 p. so that [u] C D,, or else
there is a t € Seq~{()} such that p,”t = u and so [7(p"(p."t))] C [u] N D,. There are w;
partial plays p. Moreover, for any x € ﬂp D, we will recursively define a play (s, s¢)
according to 7 such that x = {J._,,, s¢. Assume that p = (s¢, 5¢)e< is defined. Then
let s, = p,’t where 1~{()} is such that 7(p"(p.’t)) C x; such a ¢ exists since x € D).
Then x ¢ A because 7 is a winning strategy for IT. Consequently, A C (J,(N1~\D,), an
wi-union of nowhere dense sets.

ii) Assume that [s]\A is meager for some s € Seq. Let [s] N A 2 (., D¢ where
Dg are open and dense in [s]. Let Is first move 5o be s. At 6 + 1th move I chooses 551
such that s < ss41 and [ss41] € Ds. At limit v player I has to move qu s’E. This is a
winning strategy for I in s-BM“'(A).

If 7 is I's winning strategy in s-BM“'(A) then let s = 7(()). Then 7 is II’s winning
strategy for BM“!([s]\A). By i) [s]\A is meager. O

3.16. Definition. A set A is weakly meager, if I1 T s-BM“'(A).

By Proposition 3.11 and Theorem 3.15 every meager set is weakly meager. The set
A in Example 3.12 is weakly meager but not meager.

3.17. Theorem. The set of all weakly meager sets is a proper w,-ideal.
Proof. 1Itis clear that if A C B then IT T s-BM*“'(B) implies IT T s-BM“' (A).

Assume that o is II’s winning strategy in s-BM“'(As). Let 7 : w; X w; — wj be a
bijection such that £ < &' implies 7(6, &) < w(6,¢’) for all . We define a strategy o for
IT in s-BM“* (s, As) by

o({see<n(e,s)) = os({sr(er,6))er<e)-
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If x € ¢, [st] where s; are the moves given by o then x & As since (s, s))e<w, 1S a
play according to os. Thus o is a winning strategy for II.

We will prove that if A is weakly meager then the complement of A is a dense set of
cardinality 2%'. Hence /| can not be weakly meager. Let o be a winning strategy for IT in
s-BM“'(A). Fix g € 2" and s € Seq. Let so = s, s¢41 = s¢"(g(£)) and 5; = o ((s5)s<¢)-
Now x € ¢, [s¢] is in [s]\A, and for each different g we get a different such an x. O

3.18. Definition. A set A has the property of Baire, if there is an open set G such
that A A G is meager. We denote by PB the class of sets with the property of Baire.

3.19. Theorem. There is a set which does not have the property of Baire.

Proof. Using the axiom of choice let F be a uniform ultrafilter on w; extending the filter
{aCuw ||wiNa| <w} LetF={x,€C |a€ F}. ThenFy={a€ F|sC xa}is
an ultrafilter on w;~((s) for every s € Seq. Let F; = {x, € C, | a € F,}. We prove that
F does not have the property of Baire. We use here the following facts

i) Forevery f € C;, a set M is meager if and only if f + M is;
ii) Let T = xu,. Forevery a C wi, Xa + | = Yuw,~a Thus F+ 1 = C|\F, since
F is an ultrafilter.
Suppose, towards a contradiction, that there is an open G such that F A G is meager.
Case 1. G is empty. Then F and F + 1 = C;\F are both meager which contradicts
the Baire Category Theorem (Corollary 3.4).
Case 2. [s] C G for some s € Seq. Then (FAG) N [s] = [s]\F = [s]\F; should
be meager. Let f € C; be such that f(§) = 0, if £ < {(s), and f(§) = 1 otherwise. Then
f + [s]\F = [s] N F = F, is also meager. This contradicts Corollary 3.4. O

The next lemma implies that the Borel sets have the property of Baire. The proof is
just like the one for the Baire space, e.g. in [27].

3.20. Lemma. The family of sets with the property of Baire is closed under comple-
ment and U, .
Proof. If P is closed then let P* be the open set {x € P | 3a(U(x, a) C P)}. Now P~ P*
is nowhere dense since its complement (N}~ P)UP* is open and dense: if x € P~P* then
for each « there is some y € U(x, a)\P, hence there is 3 > « such that U(y, ) C N|\P
since P is closed. So P A P* is meager.

If there is closed set P such that Q A P is meager then Q has the property of Baire,

because
QAP = (QNP) U (P'~Q) C (QNP) U (PNP*) U (PNQ)

is meager.

Let’ denote complement. Now if Q has the property of Baire there is an open P such
that Q A P is meager. Since Q' AP’ = Q AP we conclude that Q" has the property of
Baire.
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Assume that the sets P¢, § < wy, have the property of Baire. There are open sets Os,
¢ < wy, such that the sets P¢ A Q¢ are meager. Then

(U Proacly ) c | Peage)

E<w E<w E<w

is meager. Since (J;,, Q¢ is open this shows that Ug<w, Pe has the property of Baire. [J

3.21. Lemma. Assume that A has the property of Baire. Then A is meager if and
only if for every s € Seq, [s]\A is not meager.

Proof. If there is s € Seq such that A is meager and [s]\A is meager then we get that [s]
is meager, which contradicts the Baire Category Theorem.

If A is not meager, then there is a non-empty open B such that A A B is meager.
Choose [s] C B. Now [s]\A C B\A is meager. [J

3.22. Corollary. If A has the property of Baire then BM“' (A) is determined.

Proof.  We use Theorem 3.15. If A is meager then IT 7 BM“'(A). Otherwise [s]\A is
meager for some s € Seq, hence 1 T s-BM“'(A) which implies I | BM“(A). O

3.23. Definition. Let A, C N, for all s € Seq. The Suslin operation of the system

(Ay) is the set
U N e

fEN E€w;
A system (Ay) is regular, if
i) A; C Ay forall 5,5 € Seq such that s’ < s and
i) Ay = ﬂ§<e(s) Ajspe, for all s € Seq such that ((s) is a limit ordinal.

If (As)seseq, 1S any system, then the system (B;) where By = A(y and B, = m§<é(s) Agpes
for s € Seq, is regular and

U ) Arie = U N Bre

fENI E€W, fEN| EEw,;

If (A;) is a system, let for each x € N}, T(x) = {s € Seq | x € A;}. Thenx €
Urens Neew, Arie iff there is an wy-branch in T(x). If (A;) is regular then for all x, T/(x)
is a tree which has maximal elements if x ¢ Uren, Neew, Arte-

3.24. Conjecture (CH). The family of sets with the property of Baire is closed under
Suslin operation.

The proof of Conjecture 3.24 may need an additional hypothesis such as I(w). At
least 2 < 2¢! must be assumed as the following example shows.
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3.25. Example. Assume that 2 = 2“'. Then the property of Baire is not closed
under the Suslin operation. Theorem 3.19 gives a set A C C; which does not have the
property of Baire. Let A = {f; | s € 2}. Set A; = {f;..} for each s € Seq such that
£(s) > wand Ay = Cy otherwise. Then A = [, <., Agle is a set obtained by Suslin
operation from singletons.

4. Strong measure zero sets

E. Borel [1] introduced strong measure zero sets of reals. He conjectured that they
all are countable. But using CH one can construct a Lusin set which is a strong measure
zero set of cardinality w;. R. Laver [23] was able to prove the consistency of the Borel
conjecture.

Here we examine analogically the strong measure zero sets of \j.

4.1. Definition. Let A be subset of \V].
i) Assume X C w;. We say that A is X-small, if for each o € X thereisf, € X
such that A C (J,ex Ulfa, ). We say that A is o-X-small, if for each o € X
there are f! € X', n € w,suchthat A C J,cx U, e, Ufa, @)
ii) A setA issmall,if A is o-{a}-small for every o < w;.
iii) Let Z C P(wy). A set A is Z-null, if A is X-small for every X € Z.
iv) A setA has strong measure zero, if A is X-small for all X C w, such that [X| = w;
i.e. Ais [w]* -null.
v) Let (ag)e<w, be asequence. A setA is (ag)-small, if there are f¢, £ < wi, such
that A C Uee,, [feTael.
For X,Y € [w;]*" we denote X < Y if there is a bijection F : X — Y such that
a < F(a)forall a € X. Similarly X < Y. Foreacha € wi,letX+a = {{+a | € X}.
Let Sy be the collection of all X-small sets.

4.2. Proposition. If X < Y, then Sy € Sx.

Proof. Ttisclearthat Sy C Sx. f X < Y, thenX <X+ 1< Y. LetA = Ugex U(fe, €),
where f¢ [ 1516, when § # 6. We will prove that A & Sx4,. LetB = Ugex U(ge, E+1) €
Sx+1. We will show that A # B by defining f € ANB. Letf[& = fo[§o where {o = minX.
Foreach ¢ € X, choosef(§) = ge¢(€)+1. Otherwise define f(€) arbitrarily. Now f € ANB.
O

4.3. Lemma. i) A is small if and only if A is [w;]* -null.
ii) If A is small, then it has strong measure zero.

Proof. i) Assume that A is small and |X| = w. Let a = supX. Since A is o-{a}-small

there are f;, £ € X, such that A C gy U(fe, @). But Ugex Ulfe, ) C Ugex Ufe, €)
and so A is X-small.
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Assume that A is X-small forall X € [w]*. If & € w; is given then there are f,,, n € w,
such that A C |J,¢,, U(fu, @ +n). S0A C U, ¢, Ulfs, @) and hence A is o-{a }-small.

ii) Let A be small and let X € [w;]*' be arbitrary. Let & = supY where Y is
(any) infinite subset of X. Choose f¢, £ € Y, such that A C U£€Y U(fe, ). Now
A C Ugex Ulfe, €), where fe, £ € X\Y, are arbitrary. O

4.4. Lemma. The following are equivalent for A C Nj.

i) A has strong measure zero,
ii) A'is (ag)-small for every sequence (ag),
iii) A is o-X-small for every uncountable X C w;.

Proof. i) implies ii). Let (o) be any sequence. Let X = {a¢ | £ < wi}. If A is X-small
then A is (o )-small.
ii) implies iii). Assume that A is (¢ )-small for all (ag). Let X € [wi]*" be given.
Enumerate X = {ag¢ | £ < w;}. If Ais (a¢)-small then A is X-small and hence o-X-small.
iii) implies 1). Assume that A is o-X-small for every uncountable X C w;. Let
X € [w]" be given. We split X = Ua <wy X, where the sets X,,, a < wj, are countable
and disjoint. Let 3, = supX,. Since A is 0-{3, | @ < w; }-small, there are f; so that

Ac |J Juws sa)).

a<w| nEw

Choose g¢, £ € X, such that {g¢ | £ € Xo} = {f0 [n € w}. Now A C Uy Ulge, §)- O

4.5. Lemma. The class of the strong measure zero sets is an Np-complete ideal.

Proof.  Assume that A = (J,_, A¢ where the sets A¢ have strong measure zero. Let
X € [w]* and split X = [J;,, Xe Where [X¢| = w;. Choose f¢, { € X, such that
As C Ugex, Ulfe, €) forall 6. Now A C Ugex U(fe, €). Thus A has strong measure zero.
O

Assume that Z C [w;]“" satisfies the following: For each X € Z there are disjoint
Xo € Z, « < wy, such that X < <wi X.. Then we see as in the previous lemma that
the class of Z-null sets is closed under w;-unions.

The next proposition shows the close connection of \V; being X-small and the diamond
principles. We remaind that forX C w the principle {(X) states that there are sets A, C
« € X, such that for all A C w; the set {& € X | AN a = A,} is stationary. We shall
return to this in Section 5.

4.6. Proposition. i) Every countable set is small. Every set of cardinality wi
has strong measure zero.
ii) If A C N is X-small where X is non-stationary and 0 ¢ X, then N1~A has
cardinality 2%'. Hence N does not have strong measure zero.
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iii) Assume <{y. N is X-small for every cub set X.
iv) Assume {(X). Then N is X-small. In particular, assuming V = L, N is
X-small for every stationary set X.
Proof. 1) Obvious.
ii) We may assume that |X| = w,. Since X is non-stationary there is a cub set C such
that X N C = @. For each a € X let F(a) = max(C N «). Now there are f,, such that

AC |J U(fara) € | Ufar F(a) + 1) = B.

aeX acX

Since {a € X | F(«) = [} is countable for each 3, we can define for each g € 2

fe(B) = sup{fa(B) | F(a) = B} + 1+ g(B)

forall 8 € w;. Now f, # fr, if g # ¢, and f; & B for every g € 2¢1.

iii) ¢ implies that there are sequences A,,, &« < wy, such that for every f € N/, the set
{a < wy | fla = hy} is stationary (see [13, (22.20)] or Lemma 5.3). So for every cub set
X,{a € X | fla = hy} is stationary; hence NV = J,cxllal-

iv) V = L implies {(E) for every stationary E. Thus for each stationary E there
are sequences A, o € wi, such that for every f € N the set {a € E | flaw = hy} is
stationary. O

4.7. Example. i) There is a small set of cardinality w,. Let f € Nj. Let
siey = Jf(§), <6
(9 {6 otherwise.

Now A = {f® | § < w} is small: Let o be given. Then A C U(f,a) U
Us<a U, ).

ii) Let & be the constant function &. The set {§ | § < w;} is a set of cardinality w,
which is not small.

iii) Let Q@ = {f € N} | V€ > 6[f(€) = f(6)]}. Then Q is dense, |Q| = 2¢ and
player IT has a winning strategy in BM“'( Q). He just makes sure that the result
is not ultimately constant. If CH then Q has strong measure zero by 4.6.1).

4.8. Proposition. There is a Kurepatree ifand only if there is a small set of cardinality
> wi.
Proof. Let T C Seq be a Kurepa tree i.e. levels of T are countable and the set of

wi-branches, B, (T), is of cardinality > w,. Then B,, (T) is closed and small. On the
other hand let A be a small set of cardinality > w,. For each a choose s € Seq,n € w,

such that
AcC s

new
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where ((s&) = aand AN [s5] # @. Now T = {57 | n € w,a € w; } is a Kurepa tree. O

Let the weak generalized Borel conjecture (WGBC) be the statement that every small
set has cardinality < w;. If we Lévy collapse an inaccessible cardinal to N, we get a model
in which there are no Kurepa trees, hence wGBC is consistent with ZF. On the other hand
V = L implies that there is a Kurepa tree, so ~wGBC is consistent with ZF.

The generalized Borel conjecture is the following statement.

Every strong measure zero set has power at most X;.

We call it GBC for short. By Lemma 4.3.ii) GBC implies wGBC. So V = L implies the
consistency of “GBC. We will see later that for the consistency of -~GBC it is enough to
assume 2% = N,, see Lemma 6.4. The consistency of GBC is an open problem.

4.9. Proposition (CH). If D C [w;]*" is such that |D| = w, then there is a D-null
set Z and a meager set M such that N\ = Z U M.
Proof. Let @ = {¢go | @ < wi}. Let us enumerate D = {X, | @ < w;} and

= {xap | B < wi}. Let Zo = Upe,, U(gsXap) and Z = (), _,,, Za. Itis clear that
each Z., is open and dense. So M = N|\Z is meager. It is also clear that Zis D-null. O

4.10. Remark. Since M in Proposition 4.9 is meager, Z has cardinality 2*! by
Corollary 3.8. It is easy to see that I has a winning strategy in BM“'(Z).

4.11. Proposition. If A is small, then A is nowhere dense.

Proof. We show IT T BM'(A). If I plays so, then since A C (J,c, U(fu, £(s0) + 1) for

some f, € N, player IT can choose s, € w, {6+ guch that sp < spand [sp) NA=2. 0

The converse of Proposition 4.11 does not hold. In fact:

4.12. Proposition (CH). There is a nowhere dense set which does not have strong
measure zero.
Proof. Let Q = {qo | @ < wi}. Let D = {J,,, U(¢a,a + 1). Now D is open and
dense, so A = N|~\D is nowhere dense. If A had strong measure zero, there would be
some f¢, £ < wy, such that A € ., U(fe, § + 1). Choosing f € N such that for each

£ <wif(€) # qe(§) and f(§) #fg(ﬁ) we would get f € AN U, Ufe, € + 1) which is
absurd. OJ

The idea for the following theorem is from Richard Laver. Let P = Seq, and for
p,q € P,p <gqgifandonlyifg C p.

4.13. Theorem. Assume thatM = ZFC+ CH. Let P = Seq” and let G be P-generic
over M. Then N\ N M has strong measure zero in M[G].
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Proof. The partial ordering P is countably closed and has N,-c.c., so forcing with it
preserves all cardinals. Let f € N; N M[G] be arbitrary. Let # be a name for f. Working
inM,letCc ={peP|lp)>¢&plFF&) =~ forsome~}. Let Ac C C; be a maximal
antichain such that ¢(p) > ¢ for all p € A¢. For each p € A¢, choose a bijection

g 1 suce(p) — wy,
where 7 is such that p I £#(£) = v and succ(p) = {p™(a) | @ € w,}. Working in M[G], let

Ie = [g¢(P)],

where p is the unique element of G N A¢ and p’ is the unique element of G Nsucc(p). Now
NiNM C Uge,, Ie, since for each i € N N M the set

Dy = {p|3¢39.9'(9.4' > p,q € A¢,q’ € succ(q), h € [g{(q')])}.

is dense in P. Hence, since D, NG # &, h € Ugew1 I.. O

It is sometimes easier to manipulate sequences then sets. When we speak about
sequences (o), we assume that ae < as, if § < 6.

4.14. Definition. Assume that A C A and («) is an increasing sequence.
i) Ais (ag)-subsmall, if A is (3¢ )-small for some () such that 3¢ > a4, for all
new.
i) Ais o-(og)-small, if there is {f € Ni | § <wi, n € w}, such that

Ac | Yo, ae.

E<w) hEw

Notice that A is {a)-subsmall, if and only if A is (sup{ce4, | n € w})-small. We
can get some closure properties for these concepts.

4.15. Lemma. Assume that A C N and (ag) is an increasing sequence.

i) IfAis (ag)-small, then A is o-(oe)-small.
ii) If A is (ag)-subsmall, then A is (o )-small.
iii) If A is 0-(Qg4,)-small, then A is (o )-subsmall.
iv) If Ay, n € w, are (ag)-subsmall, then | J, ¢, Ay is (ag)-subsmall.
v) If Ay, n € w, are o-(ag)-small, then | J,c, An is 0-(o)-small.

new
Proof. i), ii) and v) are trivial.

iii) Assume that A C U, [Se+w], where {(s¢4w) = ag. For each limit ordinal
vsets), , = Suqw. Now £(s), ) = l(su4w) = Quiw > apyy forall k € w. It is clear
that A C U, ., [s¢]-
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iv) Assume that A, C U£<w; [sg] where E(s’g) > agqpforalln e w. Letp: wxw —
w be one-one and onto such that p(n,m) > n for all n € w. For each limit ordinal v set

w _Jm
su—f—p(n,m) = Sutn-

Now £(s%, umy) = L(s4,) = gy for all k > n, hence the same holds for all k >
p(n,m). Now it is clear that

Ua.c U]

new E<wy

and so (J,,c, An is (a¢)-subsmall. O

5. Diamonds

Here we shall study further the connection between X-smallness of A7 and the
diamond principles seen in Proposition 4.6. We will introduce a generalization of the

$-principle.

5.1. Definition. i) Foreach E C w;, A C N and Z C P(wy) the principle
O(E, A, T) states that

ISa)a<w, € Seq”'Vf € A{a € E|fla =s.} € Z).
ii) Foreach E C wy,A C N; and Z C P(w) the principle {~ (E, A, 7) states that
HSa)a<w € ([Seq]”)'Vf € Al{a € E|fla € Sa} ¢ T].

Thus {(E, A, Z) says that there is a sequence (s¢) which captures each element f € A
Es-many times where E; C E is some set not in Z. Here we are mainly interested in
O(E,A,{2}) since it is equivalent to A being E-small. Let CUB be the cub-filter on
w; and NS be the ideal of non-stationary sets of w;. Then {(w;, N, NS) is the usual
$-principle and for E C wy, $(E, N1, NS) is usually denoted by {(E), see Lemma 5.3.
O(wi, N1, {@}) is equivalent with &, see [3]. Also {(w;, Ny, NS) is equivalent with
&~ (wy, N1, NS), see [5].

The following proposition follows directly from the definition.

5.2. Proposition. i) IfA C Bthen {(E,B,T) implies {)(E,A,T).
ii) IfE C E' and T is closed under subsets then {(E, A, T) implies $(E',A,T).
iii) If T' C T then $(E,A,T) implies O(E, A, T).
iv) If T is closed under subsets and E € T then —{(E,A,T).

The same implications hold for $~.

5.3. Lemma. For each stationary E C wy, the following are equivalent
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i) O(E)
ii) $(E,Cy,NS)
iii) O(E, Ni,NS).
Proof. 1) impliesiii). Assume {(E) and let () be a O(E)-sequence. Let 7 1 wy Xw; —
w1 be a bijection. There is a cub set C such that if o € C then « is a limit ordinal and
7lais a bijection o X o — . Fora € Clets, = {771(€) | £ € Oq} ifitis a function.
Otherwise set s, = 0. Let f € Nj and X = {7((£,6)) | (&§,8) € f} = 7"'f. Now {a €
E|XNa = <{,}isstationary,so {a € CNE|XNa={.} ={a e CNE|fla=s4}
is stationary.
ii) implies i). Assume that (s,) is a O(E,Cy, NS)-sequence. Let $o = {£ < o |
5o (&) = 1} for each o < w;. Now ({4) is a $(E)-sequence because if A C w then by
letting f = x4 we see that {a € E | fla = 5.} = {a € E| AN a = {4} is stationary.
iii) implies ii). Assume that (s,) is a {(E, Ny, NS)-sequence. Then {a € E | fla =
Sq } is stationary for all f € Nj. So {a € E | fla = 5o} is stationary for all f € C; i.e.
&(E, €y, NS) holds. O

5.4. Definition. For A C N, let u(A) = {E C w; | ~O(E,A,NS)} and p/(A) =
{E C wy | _—'<>(E7A7{®})}‘

Thus 4'(A) = {E C w; | AnotE-small}. Note that u'(A) C pu(A) because
O(E,A, NS) implies O(E, A, {@}).

5.5. Proposition. i) If  holds, then E & p(N)) for all cub set E.
ii) If O(E), then E & p(N).
iii) If E is non-stationary, then E € u'(N7).
iv) If V = L then u(Ny) = NS.
Proof. i) If ¢ holds, then N is E-small for every cub set E by Proposition 4.6.iii. ii)

every stationary E, see [14]. The claim follows then from ii) and iii). O

It is an open problem whether 1(N7) = p/(N;) i.e. whether there is a stationary E
such that $(E, N, {@}), but not {(E, Ny, NS). The following proposition shows that 1
and p’ have some of the properties of a measure.

5.6. Proposition. i) u(e) = (o) =20.
ii) IfA C B, then 1(A) C u(B) and ' (A) C 1t(B).
iii) IfA is small, then 1/ (A) C {E | |E| < w}.
iv) If A has strong measure zero, then ji'(A) C {E | |E| < w}.
v) IfAis Z-null, then // (A)NZ = 2.
Proof. i) $(E, @, NS) holds trivially for every E C w;.
ii) If A C B then $(E, B, NS) implies trivially ¢(E, A, NS).
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iii) If A is small and E C wy, |E| > w, then there are s, € a®, a € E, such that
A C U, cplsal ie. O(E A, {2}). See Lemma 4.3.i).

iv) If A has strong measure zero and E C wy, |E| = wy, then there are s, € w{,
o € E,suchthat A C J,cgsa] ie. O(E A, {2}).

V) If X € Zthen (X, A, {@})ie X & u/'(A). O

The idea for the following theorem is from [6, Theorem 1.10, p. 144].

5.7. Theorem. u(N}) is an w-ideal.

Proof. Letl={E C w; | ~Q(E,N|,NS)}. LetE, € I,n € w,and E = J,, Ey. Let
0 : w; X w — w) be abijection. There is a cub set C of limit ordinals such thatif « € C
then 6”(a x w) = a. If & € Cthen set foreach s € wi,n € wand { < a

s (€) = s(6(&, n)).

To prove =< (E, N, NS), let (so)ack be arbitrary. We choose elements f, € A and cub
sets C,, such that foreachn € w

C.nCn{a€E,|fila=s"}=ao.

Let f(0(&,n)) = fu(§) and D = CN(),c, Co. We claim that DN {a € E | fla =
So} = @. f o € CNE, letnbesuch that o € E,. If fla = s, then for all £ < a,

F(B(E,n)) = 54(6(&,n)), which means f, [o = s{". Therefore o & C,,. O

We do not know for which sets A C A/, the set p(A) is an w-ideal.

6. Variants

There has recently been a lot of research into negligible subsets of reals. For example,
the so called point-open game has been studied in [30] and [29]. We shall define the classes
of negligible subsets of N] by generalizing the corresponding definitions for the reals. We
shall get similar hierarchy results for the classes of V] as for the classes of reals.

6.1. Definition. i) Let A C N|. The point-open game G, is the following
game between players I and II. The game G4 has length w;. On the {th round
player I chooses an element f; € N and then player II chooses an ordinal
g¢ € wy. Player I wins, if

AC | Ufe 0.

f€w

Otherwise player II wins.
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ii) LetA C V. The game G} is the following game between players I and II. The
game G} has length w;. On the {th round player II chooses an open cover J¢
of A and then player I chooses an element J; € ;. Player I wins, if

otherwise player II wins.
iii) A setA of cardinality 2*" is called a Lusin set, if |A N R| < w, for every nowhere
dense set R.
iv) A set A has Rothberger’s property, if for all {s’; € w; | £ €wy,f € A} there is
(fe)eecw, such that
Ac | Ul €f).
§Ew,
v) Let A,Y C N). A set A is concentrated around Y, if |ANG| < w; for every
openset G O Y. A setis concentrated, if it is concentrated around some Y, with
IYI = Wwi.
vi) A set A has property CM, if there is f such that for all g € A, [{§ < w; | f(&§) =
g(E)}H = wi.
In the study of reals strong measure zero is called property C and Rothberger’s
property is property C, see [26].
We say that games G and G’ are equivalent,if Q | Gifandonly if O T G’ forQ =1
and Q = II. The proof of the following lemma is an easy generalization of the proof for
the Baire space, [8].

6.2. Lemma. The games G4 and G} are equivalent.

Proof. Suppose 7 is I's winning strategy in G4. A winning strategy for I in G is the
following. There are auxiliary moves € € w; and f; that I uses to define his winning
strategy. If J¢, J¢ € J¢, f¢ and ¢¢ have been played for § < v and II has chosen a cover
J., then I chooses J, € 7, such that £, € J, where f, is a move given by 7({f¢, c¢)e<~)-
Let ¢, be such that U(f,,¢,) C J,. Clearly A C {J; J¢, so I wins Gj.

Suppose that 7 is I's winning strategy in G. We define I's winning strategy in G4 as
follows: Let fy € A be such that {U(fy, ) | @ < w1} C {7(J) | J an open cover of A}.
There must be such a point, since otherwise for each f € A there is oy < w; such that
U(f, o) is not of the form (7 ) for some open cover Jp of A; put 7 = {U(f, ay) | f € A}
for a contradiction. Let II choose any open neighborhood Uy = U(fo,ap). Then
Uy = 7(Jy) for some open cover of A. Assume that f, Ug and J¢ for £ < 7 have been
played. Then I chooses f, € A such that {U(fy,a) | o < wi} C {7((Te)e<y(T)) |
J an open cover of A}. Let II choose any open neighborhood U, = U(f,, o). Then
U, = 7(J,) for some open cover of A. Now I wins the play (f¢, Ug)e<w, since
(Je, Ug)e<w, is a play of G in which I uses the winning strategy 7.
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Suppose that 7 is a winning strategy for IT in G4. A winning strategy for II in
G is the following. Let [J; and J¢ for { < v be the previous moves. Player II uses
auxiliary moves fy € J¢ and ¢ € w such that U(fg,e¢) C J¢ to define his winning
strategy. On the round ~ player II chooses [J, = {U(f, T({fe,ce)e<~)) | f € A}. IfI
chooses J., € T, Jy = U(f, 7({fe,e¢)e<~)), weletf, = fand ey, = 7({fe, €¢)e<). Now
A g U§<w1 U(fg,c’é) 1mphesA g U§<w1 Jg.

Suppose that 7 is IT’s winning strategy in G;. We describe a winning strategy of IT
in G4. If fy is I’s first move then IT chooses aq such that U(fy, ) C J € Jo = 7().
Assume fg, o and J¢ for € < v have been defined. Let J¢ = U(f¢, o). Then if I plays
f+» II chooses cv, such that U(f,, a,) € J € Jy = 7({Je)e<~). Player IT wins the game
Gy. O

6.3. Lemma. i) A Lusin set is concentrated around every dense set.
ii) If A is concentrated, then it has Rothberger’s property.
iii) If not II 1 G4 where G4 is the point-open game, then A has Rothberger’s
property.
iv) If A C N has Rothberger’s property then A has strong measure zero.
Proof. 1) Assume that A is a Lusin set and Y is dense. Then every open G O Y is dense.
We have |ANG| < wy, since A is Lusin, so A is concentrated around Y.
ii) Let A be concentrated around ¥ = {y¢ | £ < w;}. Let (s’;) be a sequence. Let

G = Uec, UDe,e55)- Now ANG = {z¢ | £ <wi}, 50

AC U U()’{a%&g)u U U(Zg,&‘;‘iﬂ).
E<w) E<w

iii) Assume that A does not have Rothberger’s property. Then there is a sequence (52)
such that for each (fg) we have A Z e, Ufe, sfg ). But then player IT has a winning
strategy by choosing J: = {U(f, 52) | f € A} on the £th round in the point-open game
G}. Here we use lemma 6.2.

iv) Let (¢¢) be arbitrary and let 62 =ce. O

If CH holds then every Lusin set is concentrated by Lemma 6.3.1) since then Q is a
dense set of cardinality N;.

The following theorem shows that the existence of these negligible sets is consistent
with ZFC.

6.4. Theorem. Assume 28" = R,. Then there is a Lusin set.

Proof.  Let {Re | £ < wy} be the set of all closed nowhere dense sets. By the
Baire Category Theorem 3.3 (J;_ Rs # N for all € < wy. Let E = {eg | £ < wa},
where e¢ & {es | 6 < &} UUsce Rs. E is Lusin because if R is nowhere dense then

ENRCENRC {ec | € <~} where vissuchthat R = R,. O
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6.5. Lemma. A C N has Rothberger’s property if and only if for every sequence of
open covers (J¢)¢<w, Of A there are J¢ € Jg suchthat A C e, Je-
Proof. Assume that A C X has Rothberger’s property. Let (J¢)e<., be a sequence of
open covers of A. For each f € A and £ < w; choose J; € J¢ such that f € J; and then
pick s’; € wy such that [f[a’;] C J;. By Rothberger’s property there are f; € A such that

f
AC U§<w, [f£ r‘fg&] c U§<w1 Jfg'
- For the other direction, if (sé) is given, put Jz = {[f[e’;] | f € A} foreach £ < wy.

6.6. Lemma. A C N, has Rothberger’s property if and only if F"' A has property CM
for every continuous function F : A — N.
Proof. Assume that A has Rothberger’s property and F is continuous. We show that F"’A
has Rothberger’s property. Let (5£(f ) )feA,a<w, be given. Since F is continuous we can
choose &, such that F”[f[&/,] C [F(f) ek )]. By Rothberger’s property there are f,, € A,

o < wi, such that
AcC | [fardf).

a<lw]|

Hence F'A C U, ., [F(fa) f&‘i(fa)].

Next we prove that every set A with Rothberger’s property has the CM property.
Let 7 : w; X w; — w; be a bijection. Fix § < w; for a moment and let ‘75‘5 =
{l(n(&,6),a)] | @ < w;}. Using lemma 6.5 for (J§5)£<w, for each § < w; we find f
such that A C Ny, Uecy, J8 Where Jg = [(7(€,6).£(7(€,6)))] € J?. Thus f has the
required property.

Assume that F”’A has property CM for every continuous function F : A — N. Let
Je = {J5 | & < w;} where the elements of J; are clopen and disjoint. Define F : A — N

by F(x)(§) =6ifx € Jg. Then F is continuous. Thus there is f such that for all g € F'’A,
{61 £(6) = 8(8)} = wi. Then A € U, /£ O

6.7. Lemma (CH). 11 G, if and only if |A| < N;.
Proof. TfA = {f; | £ <w} thenI’s winning strategy is to play f¢ on the {th round.
Assume that |[A| > X;. Let 7 be a strategy for I. We will prove that it is not a winning
strategy. Let S = 7"/Seq. Since, by CH, |S| < 8y, there is f € AN\.S. Now there is a play
(fe, [felowe]) of G4 where I uses 7 and II chooses ordinals a¢ such that f ¢ [felag]. So
the play is winning for IT. O

Pawlikowski [29] showed in the Baire space that an uncountable subset of reals A
has Rothberger’s property if and only if IT ¥ Ga.

To show that these classes of negligible sets are not the same we need some additional
set theoretical assumptions, because under GBC all these classes are just the collection



26 Aapo Halko

of subsets of cardinality at most w;. Here is a lemma which separates classes of strong
measure zero sets and concentrated sets. Itis a generalization of the theorem of Besicovich.
A reference to it and many of the results concerning negligible subset of the Baire space
can be found in [26].

6.8. Lemma (CH). If 2“!' = w, then there is a set which has strong measure zero,
but is not concentrated.

Proof. We construct a sequence (Pg¢)¢ <., of disjoint w;-perfect nowhere dense sets such
that every meager set M intersects only w; many of them. Let R¢, § < w», be an enumera-
tion of all closed nowhere dense sets. Assume that P¢, { < ¢ < w,, have been constructed.
By Lemma 3.7 there is an w;-perfect nowhere dense set Ps C N~ J £< s(Pc UR¢). Let
E¢ C Pg¢ be a Lusin set (relativized to P¢). Then E = U{E¢ | £ < w,} has strong measure
zero: Given a sequence (ag)¢<w, let G = g, Ulge, aze). By the property of the
sequence (P¢) there is § < w, such that P¢ C G for all £ > 4. Since (J; 4 E¢ has strong
measure zero, it is (a¢41)-small.

E is not concentrated, since if D has power wy, there is £ < w; suchthat DN P = @.
Hence G = N~ P¢ isopen and D C G, but EXG has power w, because it contains E¢. [

We recall that cov(M) is the smallest cardinal  such that \; can be covered by
x many meager sets. The following theorem is a generalization of the corresponding
theorem of Galvin [8] for the point-open game for reals.

6.9. Theorem (CH). If A C C; is such that |A| < cov(M) then II does not have a
winning strategy in point-open game Gy.
Proof. Let F = {F:w — Seq | Ue.,, [Fa(§)] = Ci}. F is nonvoid by CH. We
consider the game G;. We may assume that at the ath move, II chooses F, € F. Then
I chooses i, € w. Player I wins the play (F,,in)a<w, if A C Ua<w1 [Fo(ia)]- Leto :
Seq — F beany strategy for ITin G;. Givenany g € Ny, letD, = |, ., [0(gla)(g(a))].
For each x € A the set Fy = {g € N} | x € D,} is open and dense: Given any s € Seq
choose ¢ € w such that x € [o(s)(§)]. Then [s°(§)] C F,. Since |A| < cov(M), it
follows that (., Fx # @. Choose g € [,¢, Fy; then D, C A, and so o is not a winning
strategy. (J

XEA

7. Stationary strong measure zero sets

In an unpublished paper Galvin, Mycielski and Solovay proved a nice characterization
for strong measure zero sets of reals. The theorem was announced in [9]. Their theorem
says that a set of reals A has strong measure zero if and only if for every open dense set D
there is x € 2% such that x + A C D. The proof uses a variant of the point-open game. We
will generalize the theorem for C;, Theorem 7.8. The classical proof uses compactness
of 2%, but 2*! is not w;-compact by Lemma 2.6. Instead of compactness we will use the
{&*-principle. We thank Stevo Todorcevic for his valuable help with this.

Let NCub = {E C w; | E does not contain a cub set}.
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countable
l Lusin
171Gy < |A| <N l
small |A| < clov(/\/l) concentrated
II 7 G4

'

Rothberger’s property

strong measure zero CM

Figure 1: Properties of a negligible set A.

7.1. Definition. {* is the principle {~(w;, Nj,NCub). Let ($n)a<w, be a O*-
sequence where $p, = {fan | 1 € W}

If V = Lthen $*. See [5].

A set is I1? if it is an w;-intersection of open sets.

7.2. Lemma. Let (s, )acw, be asequence of functions such that dom(s,) € [wi~a]®
andran(s,) C wy. Then
i) {xe N |{a]|sa Cx} # @} isadense open set,
ii) {x € N1 | {a | sa C x} has cardinality X, } is a dense II3 set,
iti) {x € N1 | {a | soa C x} is stationary} is a dense set.
Proof. Let D be any of the sets above. D is non-empty since we can define x € D as
follows. We define inductively ag = 0, as = ¢ s[sup(dom(sa, )], x[dom(sa,) = sa,
and x(£) = 0 otherwise. Then {a | so Cx} D {as |6 € wi} € Cuband sox € D. Now
it is easy to see that D is dense, since s"(x[(wi~£(s))) € D for every s € Seq. The set

{x|{a|sa Cx}[=Ni}is
N U s
d<wy 6<E<wy
soitis I79. O

The following lemma gives us a tool to handle open and dense sets. It also gives
us a way to avoid the use of compactness. In the proof we will use an abbreviation

[, 8) ={¢ | a < €< B
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7.3. Lemma. Assume that ($ o) is a {*-sequence, where o = {fon € a® | n € w}.
Assume that D C N is open and dense. There exists a sequence (Sq,)a<w, 0f countable
functions such that dom(s,) € [w;~a]¥ and ran(s,) C w; with the property

D' ={x € N |{a | so C x} is stationary} C D.

Proof. For each o we let 3 = a and we choose, by induction onn € w, an ordinal 37,
and a function s7, : [3, B35, ) — wi, such that

[fanUs2 U...Us"] CD.

This is possible, since D is open and dense. Let s, = |J, ., 5&. Now assume that x € D'.
Then {« | s, C x} is stationary and {a | x[a € 4} is cub by $*. Thus there is
a € wp and n € w such that x[ao = f,, and s, C x. By the choice of s, we have

x€[fanUslU...Us"]CD.O

7.4. Proposition. If A has strong measure zero and (o¢)e<., IS a sequence then
there are f¢, £ < wy, such that

Ac () U Ul ae).

b€w £>6

Proof.  Split wy = s, Xa Where X5 € [w1]“!, § < wi, are disjoint. Since A has
strong measure zero there are f¢ such that A C gy, U(fe, a¢) for all 6 € wy. Then
{€ | f € U(fe, ag)} has cardinality w; for all f € A, and the claim follows. O

In the previous proposition {£ | f € U(fe, ae)} has cardinality w; for all f € A.
Although we can not prove the Galvin-Mycielski-Solovay theorem for strong measure
zero sets, we can get a similar theorem for a stronger notion, where we require that this
set is stationary.

7.5. Definition. AsetA C N has property stationary C or stationary strong measure
zero, if for every (¢a)a<w, € wi' thereis (I) € [[, .., wi* such that

Ac () Ul

Ccuba€eC

A set A C N has property stationary o-C, if for every (€4)a<w, € wi' there is
(Za) € Ilacw, [wi*]* such that

sen U Um

Ccuba€CIeZ,
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7.6. Lemma. i) Stationary C implies stationary o-C and stationary o-C im-
plies strong measure zero.
ii) The sets with property stationary o-C is an N,-ideal.
Proof. i) Implications from stationary C to stationary o-C and from stationary o-C to
o-C are clear. o-C implies strong measure zero by Lemma 4.4.
ii) Assume that the sets Ag, 3 < w;, have property stationary o-C. Let (¢,) be a an
arbitrary sequence. Choose (ZZ) such that

asc (1 U UM

C cub aec,ezg

Let Z, = Uﬁ<a Zg. Let x € Ap for some 3 € w;. If Cis any cub set, there is some
a € Csuchthataw > 8,1 € I8 C 7, and x € [I]. Thus Up<., Ap has property stationary
o-C. O

There are many open problems with these concepts. We do not know whether every

small set has stationary strong measure zero. Of course, if A is small then it is stationary
o-C. We do not know if stationary C is equivalent to stationary o-C.

7.7. Lemma. Assume {*. There are M, a € w|, where M, is countable set of
countable models such that for each model (w,, R) the set

{CM € wi I (CY,R[O() € Ma}

contains a cub set.

Proof. Let ($on C | n € w, a € wy) be a {*-sequence. Thus for each X C w;

{a]3InXNna=3Cun)}

contains a cub set. Let k be the arity of R. Let 7 : w’f — w) be a bijection. There is a

cub set C of limit ordinals such that for all & € C, 7|« is a bijection from o* onto a. Let
M, = (o, 771 4,) if it is a model; otherwise let My, = @. Let My = {M, | n € w}.
Let M = (wy, R) be any model, and X = 7R = {7(X) | X € R}. Then {a | (X N =
$an)} contains a cub set D. If a € C N D then there is n such that Rfa = 7 0. O

Now we can prove the main theorem of this section.

7.8. Theorem. Assume {*. Let X C 2“'. Then i) implies ii) and ii) implies iii),
where
i) X has stationary strong measure zero,
ii) for every open dense set D there is x € 2*' such thatx + X C D,
iii) X has strong measure zero.
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Proof. Since {* implies CH the set Q of all ultimately constant functions has cardinality
N. Solet @ = {gq | @ < w;}. Assume that X has the property ii). Then X has strong
measure zero since if (q)a<w, is arbitrary then (J, ., U(ga,€q) is open and dense.
Thus, there is x € 2! such thatx+X C ., U(qa,ca)ie. X C Ua<w1 Ux+4a,ca)-

For the harder implication we assume that X has stationary strong measure zero. Let
D be a dense open set.

We will define two games which are variants of the point-open game. Let I} be a
game (€4, I )acw, Where on round a player I chooses ¢, € w; and then player IT chooses
I, € 2°=~. Player I wins the game I} if there is x € 2“' such that

x+ () UlJ <D

C cubaeC

Let I be a game (¢, 1 )acw, Where the player IT wins if

xc () Yl

C cuba€eC

We will prove the following two claims.
1. Claim. I has a winning strategy in I'.

2. Claim. I does not have a winning strategy in I5.

Thus there is a play (¢4, a)acw, Which is a winning play for I in I but at the same
time is a winning play for IT in I;. So we have that

x+XxCx+ () YU €D
C cubaeC

Proof of Claim 1. Let (s,)a<w, be a sequence for D given by Lemma 7.3. We may
assume that mindom(s,) > supdom(sg) for all & > (. Here is I's plan. There are
auxiliary moves T¢ € Seq which I uses to define his winning strategy. His first move
is g = supdom(sg) + 1. After IT has chosen his Iy of length ¢, player I will choose
To € 2% such that sg C Ip+ Ty. Atthe ath move I will play ¢, = supdom(s, )+ 1. After
II has chosen his I,, of length ¢, I will then choose T,, € 2°* such that | f<a T: C T,
and s, C Io + To. Letx € (o, [Tal I € x + e e Uaeclle] then {a [ so C f}is
stationary i.e. f € D.

Proof of Claim 2. Let (Mg )a<w, Where My = {M,, | n € w} is a $*-sequence
of models from Lemma 7.7. Assume that o is a strategy for I. We will define a play in
which I uses o and IT wins the game [5. Let

ba = sup{o((Ie)e<a) | I({Ie)e<a € Man)}-
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Since X has stationary strong measure zero we can choose sequences /,, @ < wj, such
that ¢(1,) = 6, and

(1) xc () Y

C cuba€eC

Lete, = 0({I¢)e<a) foreach a < wy. By {* there is a cub set C such that if o € C then
there is n € w such that (I¢)¢<o € Myy,. Thus e, < 6, forevery a € C. If C' is any cub
set then X C (J,ccne ] by (1). O

7.9. Conjecture. A set X C 2“' has strong measure zero if and only if X has station-
ary strong measure zero.

8. GMA and negligible sets

Martin’s axiom (MA) decides many properties of negligible subsets of the Baire
space [7]. For example MA implies that the union of A < 2% meager sets is meager.
(See e.g. [18].) In [31] Shelah introduced a version of generalized Martin’s axiom (GMA)
which he used to prove similar results for higher cardinals. More information about other
versions of GMA is in [39]. Here, we will look for the applications of GMA to the
structure of negligible susets of N.

Let (P, <), |P| < 2%, be a partial order. Elements of P are called conditions. As
usual we denote p | g iff there is r such that » < p and r < g. The greatest lower bound of
conditions of p and g is denoted by p A g. The greatest lower bound of conditions of p,,
n € w, is denoted by inf,ec,, py,. D C P is dense, if for all p € P there is g € D such that
g < p. G C Pisafilter, if

i) pAg€ Gforallp,qg € G,
ii) ifp€ Gandp < gtheng € G.
If D is a family of subsets of P then we say that G C P is D-generic, if GN D # & for

allD e D.
Shelah’s weak generalized Martin’s axiom for X, (GMA) is the following:

Assume that a partial order (P, <) satisfies
i) if p | g where p,q € Pthenp A g € P.
i) ifpp>p1>...>p,>...,n € w,theninf,e, p, € P.
iii) if p¢ € P, for all £ < w;, then there is a cub set C C w; and a
regressive function f : w, — wy such that

Vo, 5 € C[Cf(a)va(/B) > w, f(a) =f(6) = Pa lpﬁ]'

Thenif D = {Dg¢ | £ < A} where A < 2™ is a family of dense subsets
of P, there is a D-generic filter G C P.
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Notice that iii) is a strengthening of N,-c.c.

Shelah proves the consistency of CH, 2% > N, and GMA relative to consistency of
ZFC. As an application he proves Theorem 8.2 below. We use an additional assumption
to ensure that |P| < 2“'. First a simple lemma.

8.1. Lemma. Assume that P has cardinality w,. Then P satisfies the following: If
Pe € P, £ < wy, then there is a cub set C C w, and a regressive function f : wy, — wy
such that for all o, 3 € Cif cf(a),cf(8) > w and f(a) = f(B) then F(po) = F(pg). In
particular P satisfies GMA iii).
Proof. Let (po)a<w, be a sequence of conditions. For each a let g(a) = min{f3 | ps =
Do} and

_ [s(a), ifgla) <a
flo) = {O, otherwise.

Clearly f is regressive. Now v = sup{a | g(a) = a} < wy, since otherwise there would
be w, elements in P. Now C = w,\7 is the required cub set. O

8.2. Theorem ([31]). Assume that \* < 2% for each A\ < 2%'. Assume CH, 28>
N, and GMA. Then the union of A < 28! meager subsets of N is meager.
Proof. Let B¢, £ < A, be nowhere dense sets. Let P be the set of all countable sequences
of pairs
P = {(Us, E¢))e<y, v < wi,

such that

i) each Uy is the union of countably many basic neighborhoods [s];
ii) each E¢ is countable subset of A; and
iii) for each &, U is disjoint from UaeEg B..

A condition p’ = (U}, Ey))e< is stronger than p = ((Ug, E¢))e<, if 7' = 7 and for
each £ < 7, Ué D Ug and E’E DE;.

Clearly P satisfies GMA i) and ii). To show that P satisfies condition iii of
GMA let Q = {(Ug¢)e<y | (Ue,Ec)e<y € P} and define a function F : P — Q
by F((Ug,E¢)e<y) = (Ue)e<r. Note that conditions p = ((Ug, E¢))e< and g =
((Ug, E;))e<~ are compatible, if v = 7" and for all § < v, Ug = U, ie. F(p) = F(q).
By CH, the set Q has cardinality |(Seq<“')<“!| = wj. So applying Lemma 8.1 if p; € P,
€ < w,, then there is a cub set C C w, and a regressive function f : w, — w, such that
for all o, B € Cif cf(a),cf(8) > w and f(a) = f(B) then F(p,) = F(ps), and hence
Pao | ps- Hence P satisfies GMA iii).

For each o < A and all ¢ < wy, s € Seq, let

D, = {p|p={((UeE¢))e<y, o € Egs for some § < v}
Ee, = {plp={((Uc,Ec))ccry, UeNs| # o}
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Since each B¢, £ < ), is nowhere dense, it is clear that for all £ and s, every condition p
can be extended to a condition p’ € Eg,, and hence each Eg; is dense in P. (Just choose
[s] € [s]~ Useg, Bs and put Uy = Ug U [s'] and E; = E¢.) Each D, is also dense in P,
since if p is a condition, then p’ = p*(([s], {a})) € D4, where [s] " B, = @. By GMA,
there exists a filter G C P such that GN D, # @ forall a < A, and G N E¢; # & for all
&, s. Foreach € < w; we let

He=|J{Ue | GpeGp= (..., (Ue, Ee),...)}

Since Eg, is dense for all s, H, is a dense open set.

Now if v < A, then because D,, is a dense, there exists §{ < w; such that H is disjoint
from B,,, and hence B,, is disjoint from ﬂé <w, He. Therefore, J,, ¢, Ba is disjoint from
ﬂg <w, He. O

Carlson showed that MA implies 2¢-additivity of the ideal of strong measure zero
sets of the Baire space, see [7]. It is an open problem whether this result generalizes
to 2%'-additiveness of the ideal of strong measure zero sets of A/} under CH and GMA.
However, we can prove the following theorem.

8.3. Theorem. Assume CH and GMA. If A C N has cardinality < 2% then A has
strong measure zero.

Proof. Let Q = {q¢ | £ < wi}. Let (a¢) be an arbitrary increasing sequence. Let
P = (Seq, D). Clearly P satisfies conditions i), ii) and iii) of GMA. For each f € A, let

Dy = {s € Seq | F[f € U(gye), ae)l}-

Dy is dense, because if s € Seq, ((s) = &, then s’ = s7°(6) € Dy where § € w is such
that f € U(gs,a¢). For each v < wy, let E, be the dense set {s | v € dom(s)}. Let
D={Ds;|feA}U{E, | v < w}. Since |D| < 2% by GMA there is a D-generic G.
Let h = UG. Now foreachf € A, f € U£<w1 U(qn(e), a¢), since there is § < w; such
that 2] € Dy. O

8.4. Definition. A set E C N of cardinality 2N s g generalized Lusin set or a
GLusin set, if |[E N R| < 2*' for every nowhere dense set R.

8.5. Theorem. Assume CH, 2™ > X, and GMA. There is a GLusin set.
Proof.  Let {R¢ | £ < 2%} be the set of all closed nowhere dense sets. Under CH,
2% > R, and GMA we can apply Theorem 8.2. Then U6<§ Rs # N forevery £ < 2%,
So we can define E = {eg | € < 2™} where e & {es | 6 < £} U Us<e Rs- E is GLusin
because if R is nowhere dense then ENR C ENR C {e¢ | £ < v} where 7 is such that
R=R,. 0O

We lift the results in Goldstern, Judah and Shelah [10] one cardinal up:
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8.6. Theorem. If2%' is a regular cardinal and there exists a generalized Lusin set,
then
i) every subset of N of cardinality less than 2™ has strong measure zero,
ii) there exists a strong measure zero set of cardinality 2%, and
iii) every generalized Lusin set has strong measure zero.
Proof. i) Let A be a generalized Lusin set and X C C), |X| < 2% and M a meager set. In
view of the first part of Theorem 7.8 it suffices to prove that there is an ' € C; such that
(f+X)NM = @. Foreachf € C;, —f +M is meager and therefore [AN (—f +M)| < 2%,
Since 2™ is regular, AN (J;cx(—f + M) is not empty. If f belongs to this set we have that
F+X)NM=o.
ii) follows from iii).
iii) Let (a¢) be arbitrary. The set G = (U, U(ge, aa¢) is comeager, so [ANG| <
2%, By i) there are f¢, £ < wy, such that ANG C g, U(fe, a2¢+1). Therefore

AC U U(ge, aze) U U U(fe, aze41)-
E<wi E<wi

8.7. Corollary. Assume CH, 28" > N, is regular and GMA. There is a strong
measure zero set of size 2%

We believe that

8.8. Conjecture. Con(ZF) implies Con(ZFC + CH + GBC).

Since GBC implies wGBC, the existence of a Kurepa-tree implies ~GBC (Proposition
4.8), hence the consistency strength of GBC is at least as strong as the existence of an
inaccessible cardinal. Thus the consistency of GBC would be a strong refutation of
Kurepa’s hypothesis. Of course 2! > w, and ~-GMA must hold in the model for GBC.

9. Measure in

We show that difficulties arise when we try to define a measure in .

9.1. Definition. Let D C [w;]“'. A set A is D-measurable, if for every X € D there
are a closed F and an open G such that F C A C G and G\ F is X-small. A is measurable,
if it is [w;]*'-measurable.

We do not know whether all open and closed sets are measurable.

Another possibility to define measurability is the following.

9.2. Definition. A set A is D-measurable’, if there is a Borel set B such that AA B
is D-null. A is measurable', if it is [w;]*'-measurable’.
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It is easy to prove that if A,, n € w, are measurable so are A/;\A( and Unew An. We
do not know how to prove that |, Aa is measurable whenever the A,, a < wy, are.
A family (A.)a<w, is locally countable, if for every f € N there is & < w; such that
{a | U(f,€) NA, # @} is countable.

9.3. Lemma. If (Fs)s<., is a locally countable family of closed sets, then|J;_,, F's
is closed.
Proof. Letf & (s, Fs- Since (Fs) is a locally countable family, there is ¢ such that
I={6|U(f,§)NFs # @} is countable. Let {§, = { Usup{min{S | U(f,B) NFs = &} |
6 € It. Now U(f, &) € NixUsc,, Fs- O

9.4. Lemma. If As, 6 < wy, are measurable and the family (As)s<., is locally
countable then | 4 cw, As is measurable.
Proof. Let X € [w]*" be arbitrary. We split X = (Js_,, Xs5. Choose open set Gs and
closed set Fs such that Fs C As C Gs and Gs~Fs is Xs-small. Let G = U6<w1 Gs and
F = s, Fs- By Lemma 9.3 F is closed. It suffices to prove that G\ F is X-small. This

holds since
G~FC | (Gs~Fs)

S<w)
and (Js,,, (Gs\Fs) is X-small. O

9.5. Problem. Are the definitions of measurability equivalent? Are Borel sets mea-
surable?
The following observation is due to Ville Hakulinen. Let p be a “measure” in N
which satisfies the following conditions.
i) Clopen sets A = {f | f(0) < w,f(1) < w1}, Bo = {f | f(0) < w,f(1) < a},
C, = {f | f(0) < n,f(1) < w;} are measurable for all & € w; and n € w.
ii) ran(p) is a linear order.
iii) If o < (3 then u(B,) < pu(Bg) and if n < m then pu(C,) < pu(Cp).
Then A = U,e,, Cn = Uacw, Ba» but it can not be that u(A) = sup,¢,, #(C,) and
1(A) = sup,,, #(Ba), because the former is w-cofinal and the latter is w;-cofinal.

Hence p cannot be both w-additive and w-additive.
A family F is almost disjoint, if for all A, B € F, AN B is countable.

9.6. Lemma (CH). There is a family of cardinality 2% of almost disjoint subsets of
wi.
Proof. By CH it is sufficient to produce 2% almost disjoint subsets of Seq. For each
fe2vletS(f) = {fI€ | € < wi}. Now {S(f) | f € 2*'} is the required family. O

The notion of strong measure zero is not perfectly suitable for the concept of measure
zero:
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9.7. Proposition (CH). The family
{A | A closed and does not have strong measure zero}

does not have 2“'-c.c.

Proof. IfX C w;letA(X) = {f € N1 |f(§) =0forall { € X}. The set A(X) is closed,
since A(X) = Negx{f [ f(€) = 0}. Let {X¢ C w | § < 2™} be an almost disjoint family
given by Lemma 9.6. Let Ag = A(X¢). If € # £ then [Ae N Agr| < wyt if f € Ag NAg
then f(§) = 0forall £ ¢ X N Xer;thusf € Q.

Assume that X C w; and |X| = w;. Then the set A(X) does not have strong measure
zero, since it is not (X 4 1)-small. Let B = [J.cx U(fe, £ + 1). We define an element
f € A(X)\B by letting f(£) # f¢(€) foreach ¢ € X and f(£) = O foreach § ¢ X. O

9.8. Theorem. Assume either I(w), or CH and 2% = N,. Then there is a non-
measurable set.

Proof. We will construct a set B C N such that BN C # @ and (NV;~B) N C # & for
every closed set C of cardinality > w;. The set B is called a Bernstein set. If the set B were
measurable there would be a closed set F and an open set G suchthat F C B C G and GNF
is (o 4+ 1)a<w,-small. By the property of B the sets F and N1 \G have cardinality < wy,
therefore N1~ (G~F) C (Ni~\G) U F has cardinality < w;. This contradicts Lemma
4.6.1i.

The construction of B. Let F be the set of closed sets of cardinality > w;. F has
cardinality 2™, since IT} [N} = {Ne,, (MIN[F(E)]) | f: wi — Seq} and for example
{sU{f} | f € Ni,s € Seq} C F. Let F = {F¢ | £ < 2%'}. Wellorder \;. If we
assume I(w), then by Vidninen [38] every closed set of cardinality > w; has cardinality
281 If we assume w, = 2¢!, then trivially every closed set of cardinality > w; has
cardinality 2*'. Now we are ready to define the set B by transfinite induction. Assume
that sets B¢ and B’g, £ < v, have been defined. Let f, and g, be two smallest elements in
FoN(Uee, Be U U<, B;). PutB, = {2} UlU¢<, B and B, = {g,} U, B;- Now
B = Jgcon, Be has the properties of a Bernstein set. [J
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