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1. Introduction

Let κ be a weakly compact cardinal. Consider the sets of the form {α < κ :
〈Vα, ε, U∩Vα〉 |= ¬φ}, where U ⊆ Vκ and φ is a Π1

1-sentence such that 〈Vκ, ε, U〉 |= φ.
This collection of sets generates a normal ideal over κ, a proper extension of the non-
stationary ideal over κ. Sets of positive measure with respect to this ideal are called
weakly compact. Thus every weakly compact subset of κ is stationary but not vice
versa.

The following combinatorial principle was defined by Sun in [18] and indepen-
dently by Shelah in [16]: There exists a sequence (Aα : α < κ) such that

{α < κ : A ∩ α = Aα}

is weakly compact for every set A. This strengthening of the classical diamond
principle can be referred to as the weakly compact diamond. It is applied in [16]
where Shelah and Väänänen show that weakly compact diamond together with the
assumption 2κ = κ+ implies that the logic Lκκ has no strongest extension with
certain Löwenheim-Skolem and compactness properties.

In [16] it was stated without proof that weakly compact diamond holds for every
measurable cardinal, holds in the constructible universe for every weakly compact
cardinal, and can be obtained through forcing. After providing proofs of these three
claims we discovered that Sun had independently proved the first two claims in [18].
Indeed in both proofs of the first claim, measurability is replaced with ineffability,
a considerably weaker assumption. However this work initiated a broader study of
normal ideals over regular cardinals and related diamond principles with the main
focus on weak compactness.

In Section 2.4 the concept of an n-club is defined and it is proved that the n-club
sets generate the Π1

n-filter, provided that it is proper. The Π1
1-filter is the dual of the

weakly compact ideal. In the light of the results presented in this paper it can be
argued that the n-clubs are a rather natural and canonical generalisation of closed
unbounded sets. In Section 5.3 it is shown that a weakly compact set may be killed
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using forcing, by shooting a 1-club through its complement. It is interesting to note
that the weak compactness of the complement of the set to be killed is the only
assumption necessary for this argument. In this respect the weakly compact ideal
behaves like the non-stationary ideal on ℵ1.

In Section 3.1 a general definition for ideals like NDℵ1 , the “no diamond” ideal, is
provided and some basic facts about these ideals are presented. Then the facts about
ineffability and the axiom of constructibility implying weakly compact diamond are
proved in a slightly more general form in sections 3.3 and 4.2.

Forcing arguments are developed in Section 5. Weakly compact diamond holds
in many forcing extensions, but it can also be killed using a forcing notion that
preserves weak compactness. The consistency of the failure of weakly compact
diamond on a weakly compact cardinal follows from a result by Hauser [8].

This monograph is part of the doctoral dissertation of the author, which also
includes the paper [9].

2. Ideals over regular cardinals

An ideal over a regular cardinal κ is a nonempty collection I ⊆ P(κ) which
is closed under finite unions and subsets. The trivial ideal over κ is {∅} and an
ideal is called proper if it is not P(κ). Thus an ideal I is proper if and only if
κ /∈ I. The trivial ideal is a special case of a principal ideal; an ideal of the form
{X ⊆ κ : X ∩ A = ∅} where A is some fixed subset of κ. The collection [κ]<κ is
sometimes called the ideal of small sets and it is proper and non-principal.

For W ⊆ P(κ) we let W ∗ denote the collection {X ⊆ κ : κ \ X ∈ W}. A
collection F ⊆ P(κ) is a filter over the regular cardinal κ if F ∗ is an ideal over κ.
If this is the case, I = F ∗ will be called the dual ideal of F and F = I∗ is called
the dual filter of I. All properties of ideals have their analogues for filters, which
can be thought of to be defined via the dual. Thus a principal filter is the dual of
a principal ideal and so forth. Also, if we find it more convenient to define some
concept for filters, then it is tacitly meant to be defined on ideals too, via the dual.

A subset of κ which is not in the ideal I is said to have positive measure with
respect to I. Thus the complement P(κ) \ I is the collection of sets of positive
measure, and it is denoted I+. If F is a filter, F+ means (F ∗)+. Likewise we can
say that sets in the ideal have measure 0 and sets in the dual filter have measure 1.
But note that this makes sense only for proper ideals, since an ideal I is proper if
and only if the dual filter is contained in I+, or equivalently, I is disjoint from its
dual.

The following observations are trivial, but we want to state them explicitly since
they are used tacitly, it seems, in virtually every proof that concerns itself with ideals.
They can also be seen as a motivation for the measure theoretic terminology.

(a) A set has positive measure if and only if it intersects every set in the filter.

(b) A set is in the filter if and only if it intersects every set of positive measure.
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(c) If E has positive measure and X is in the filter, then E ∩ X has positive
measure.

Note that this holds regardless of whether the ideal in question is proper, which
highlights our convention that there are no sets of positive measure with respect to
the non-proper ideal over κ.

We shall only be interested in proper ideals that extend the ideal of small sets.
These are necessarily non-principal. From now on we shall include the condition
[κ]<κ ⊆ I in the definition of I being an ideal over a regular cardinal κ. We would
also like to include κ /∈ I in the conditions, but we shall frequently encounter explicit
definitions of ideals which may not be proper in all situations. And some simple
facts can be more conveniently stated if P(κ) is considered to be an ideal. Thus
we shall take the following standpoint. In some contexts ideals are taken to be
proper by definition, and in some contexts not. Usually it is evident which of the
two “definitions” is meant.

2.1. Completeness

Let (Xα : α < κ) be a sequence of subsets of κ. The diagonal intersection
4α<κXα is the set ⋂

α<κ

(Xα ∪ [α, κ)) = {β < κ : β ∈
⋂

α<β

Xα}

and the diagonal union 5α<κXα is the set⋃
α<κ

(Xα ∩ [0, α)) = {β < κ : β ∈
⋃

α<β

Xα}.

Since 5α<κXα = κ\(4α<κ(κ\Xα)), a collection W ⊆ P(κ) is closed under diagonal
intersections if and only if W ∗ is closed under diagonal unions.

Let I be an ideal over κ and let µ be another regular cardinal. The ideal I is said
to be µ-complete if it is closed under unions of cardinality less than µ. As is cus-
tomary, ℵ1-completeness is referred to as σ-completeness or countable completeness.
An ideal is normal if it is closed under diagonal unions.

2.1.1. Lemma. If a collection W ⊆ P(κ) is closed under subsets, diagonal
unions, and the operations X 7→ X ∪ α for α < κ, then W is a normal κ-complete
ideal.

Proof. We only need to verify that W is closed under unions of cardinality less
than κ. But this is clear since

⋃
ξ<αXξ ⊆ (5ξ<κXξ) ∪ α for any ordinal α < κ and

sequence (Xξ : ξ < κ) of subsets of κ. 2
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The canonical example of a normal ideal is the ideal of non-stationary sets, i.e. the
collection of subsets of κ that are disjoint from some closed unbounded subset of κ.
We shall denote this ideal by NSκ. In fact NSκ is the least normal ideal over κ. This
is because any closed unbounded set C may be written as 4α<κ[min(C ∩ (α, κ)), κ),
a diagonal intersection of final segments.

It is clear that an ideal over κ can not be µ-complete for any µ > κ. By
Lemma 2.1.1 it follows that every normal ideal over κ is κ-complete. Thus one can
say that normality is a stronger requirement than µ-completeness for any relevant µ.
The facts discussed above depend on our convention that all ideals extend the ideal
of small sets by definition. This is the main motivation for having this convention.

A function f from a set of ordinals to the ordinals is regressive if f(α) < α
for every α ∈ dom(f) \ {0}. The connection between normal ideals and regressive
functions is the following:

2.1.2. Lemma. Suppose that W ⊆ P(κ) is closed under subsets. The following
conditions are equivalent:

(i) W is closed under diagonal unions

(ii) For every X ⊆ κ and f : X → κ, if f is a regressive function such that
f−1{α} ∈ W for every α < κ then X ∈ W .

Proof. Suppose that W is closed under diagonal unions and f : X → κ is
regressive. If β ∈ X then β ∈ f−1{f(β)} and thus X ⊆ 5α<κf

−1{α}. It follows
that X must be in W if f−1{α} ∈ W for every α < κ.

For the other direction fix a sequence (Xα : α < κ) of sets in W and let X =
5α<κXα. It is straightforward to define a regressive function f : X → κ such that
β ∈ Xf(β) for every β ∈ X. Now f−1{α} ⊆ Xα ∈ W for every α < κ. 2

Condition (ii) for NSℵ1 in the previous lemma is the classical Fodor’s lemma.

2.2. Saturated ideals

Let I be an ideal. Two sets X and Y in I+ are said to be almost disjoint with
respect to I if X ∩ Y ∈ I. Let µ be a regular or finite cardinal. The ideal I is µ-
saturated if every subcollection of I+ of pairwise almost disjoint sets has cardinality
less than µ. The least µ such that I is µ-saturated is denoted sat I.

Consider I+ to be ordered by inclusion. Then I is µ-saturated if and only if
I+ satisfies the µ-chain condition in the sense of the standard definition for forcing
notions.

A 2-saturated ideal is a prime ideal. As an exception to the convention that the
same terminology is used for analogous properties of filters, the dual filter of a prime
ideal is an ultrafilter. For a prime ideal I over κ it holds that I ∪ I∗ = P(κ) and
thus a prime ideal is a maximal ideal.
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For an ideal I over κ and a set E ⊆ κ we let I|E denote the collection {X ⊆
κ : X ∩ E ∈ I}. It is straightforward to see that I|E is an ideal with the same
closure properties that I satisfies, i.e. if I is µ-complete then I|E is µ-complete and
if I is normal then I|E is normal. Note that I|E is the ideal generated by the set
I ∪ {κ \ E}. A basic observation is that

(a) I ⊆ I|E

(b) I|E = I if and only if E ∈ I∗

(c) I|E is proper if and only if E /∈ I.

For the sake of completeness we wish to present the following two lemmas that
are due to Baumgartner, Taylor, and Wagon [4].

2.2.1. Lemma. Let I and J be ideals over a regular cardinal κ such that I ⊆ J ,
and let µ be a regular cardinal. If either one of the conditions

(i) I is µ-saturated and J is µ-complete

(ii) I is κ+-saturated and J is normal

hold, then J = I|E for some E ⊆ κ.

Proof. Assume that I is µ-saturated and suppose that J is µ-complete unless
µ = κ+ in which case we assume that J is normal. Let {Xi : i < γ} be a maximal
collection of sets in J \ I that are pairwise almost disjoint with respect to I. Since
I is µ-saturated, γ < µ. Let S = 5i<κXi if γ = κ or else let S =

⋃
i<γ Xi. Let

E = κ \ S. We shall show that J = I|E.
By our assumptions S ∈ J and thus it is clear that I|E ⊆ J . It is straightforward

to see that E∩Xi ⊆ i+1 for every i < γ (in fact E∩Xi = ∅ in the case S =
⋃

i<γ Xi.)
Let X ∈ J \ I be arbitrary. Since X ∩E ∩Xi ⊆ E ∩Xi ∈ I, the set X ∩E is almost
disjoint from Xi for every i < γ. By the maximality of {Xi : i < γ} we must have
X ∩ E ∈ I. 2

Note that the conclusion J = I|E of the lemma above can be thought of as
meaning that J has a maximal element with respect to I. Namely S ∈ J is maximal
in the sense that X \ S ∈ I for every X ∈ J if and only if J = I|(κ \ S).

2.2.2. Lemma. Let I be an ideal over a regular cardinal κ and let µ be another
regular cardinal.

(a) If I is µ-complete but not µ-saturated then I can be extended to a µ-complete
ideal which is not of the form I|E.

(b) If I is normal but not κ+-saturated then I can be extended to a normal ideal
which is not of the form I|E.
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Proof. Let {Xi : i < µ} be a subcollection of P(κ) and suppose that Xi∩Xj ∈ I
whenever i 6= j. Let K be an ideal over µ and consider the collection J of all X ⊆ κ
such that

{i < µ : X ∩Xi /∈ I} ∈ K.
It is straightforward to check that J is an ideal and that I ∪ {Xi : i < µ} ⊆ J .
Clearly J is a proper ideal if and only if {i < µ : Xi /∈ I} /∈ K. If J ⊆ I|E for some
E ⊆ κ then E ∈ J directly by the definition and the fact that {Xi : i < µ} ⊆ I|E.
Thus if J is a proper ideal it can not be of the form I|E.

For (a) let K = [µ]<µ. Then since both I and K are µ-complete, also J must be
µ-complete. Using the fact that I is not µ-saturated we can assume that Xi /∈ I for
every i < µ. Collecting the facts stated above, we have a proof of (a). For (b) we
still use K = [µ]<µ but with µ = κ+. Again it is not hard to verify that J is normal
because I is normal and K is κ+-complete. 2

2.3. Indescribability

We shall be dealing with higher order formulae in an extended language of set
theory that in addition to the relation symbol ∈ may include a finite number of
unary predicate symbols and binary relation symbols. The higher order variables
are always unary.

We shall often neglect to explicitly state the language we are using, but instead a
statement like 〈Vκ,∈, U〉 |= φ is tacitly expressing that φ is in the language consisting
of ∈ and one unary predicate symbol U . In fact any finite number of predicates and
relations may be coded into one unary predicate using a first order definable coding.
Thus we shall always use only one unary predicate unless some other language is
motivated by notational convenience.

A formula is always equivalent with a formula in prenex normal form in which
the quantifiers of the highest order are all collected in the beginning of the formula.
Furthermore adjacent quantifiers of the same kind and order may be contracted into
one, by coding the two variables into one by a first order definable coding.

Suppose that quantifiers of the highest order appearing in a formula φ have
order p+ 1. Let us assume that the quantifiers of order p+ 1 are all collected in the
beginning of φ and that they alternate so that no two existential nor two universal
quantifiers are next to each other. Let n be the number of quantifiers of order p+ 1
in φ. Then if the first quantifier is existential φ is said to be a Σp

n-formula and if the
first quantifier is universal then φ is a Πp

n-formula.
Also formulae that are obviously equivalent to a Πp

n-formula or a Σp
n-formula are

said to be Πp
n or Σp

n respectively. This hierarchy of formulae and definable concepts
is often referred to as the Levy hierarchy because a study of it was initiated by
Levy in [13]. We shall mainly be interested in Π1

n-formulae since they provide a
generalisation of the non-stationary ideal that seems to be fruitful in many ways.
By Π1

0-formulae we mean first order formulae in a language including at least one
unary predicate.
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Let φ(m) be a Π1
n-formula where the free variable m is of first order. We say

that φ(m) is universal if the following holds: For every Π1
n-sentence σ there exists

a number m < ω such that 〈Vκ,∈, U〉 |= σ if and only if 〈Vκ,∈, U〉 |= φ[m] for any
regular uncountable cardinal κ and predicate U ⊆ Vκ. We extend the definition to
other formulae in the Levy hierarchy in the obvious way.

We shall now define an universal Π1
1-formula φ(m). Fix some Gödel numbering of

formulae with one free second order variable X and with all other variables bound
and of first order. Let φm(X) denote the formula numbered with m. Simply by
formalising the truth definition we can find a formula θ(T,X) with the following
properties: Apart from the free second order variables T and X displayed, θ(T,X)
contains only bounded first order variables. Furthermore for every X ⊆ Vκ,

〈Vκ,∈, U〉 |= θ[T,X]

if and only if T is the set of pairs (m, a) such that m < ω, a is an assignment
function ω → Vκ for the first order variables, and 〈Vκ,∈, U〉 |=a φm[X]. Since every
Π1

1-sentence σ is equivalent to the sentence ∀Xφm(X) for some m < ω,

∀X∀T (θ(T,X) → ∀a ∈ ωVκ((m, a) ∈ T ))

is an universal formula. Note that the building blocks defined above can also be put
together as

∃X∃T (θ(T,X) ∧ ∀a ∈ ωVκ((m, a) ∈ T ))

which is an universal Σ1
1-formula.

The following results about universal formulae have been well known since early
developments of the subject.

2.3.1. Lemma. There exists an universal Π1
n-formula for every positive integer

n.

Proof. We argued above that universal Π1
1-formulae exist. The only change re-

quired to that argument is that the second order variable X in φm(X) and θ(T,X)
must be replaced by a string of n second order variables. Then

∀X∃Y ∃T (θ(T,X, Y ) ∧ ∀a ∈ ωVκ((m, a) ∈ T ))

is an universal Π1
2-formula and

∀X∃Y ∀Z∀T (θ(T,X, Y, Z) → ∀a ∈ ωVκ((m, a) ∈ T ))

is an universal Π1
3-formula and so forth, where the two forms alternate depending

on whether n is even or odd. Note that θ is a different formula for each n. 2



12 Alex Hellsten

Of course universal Σ1
n-formulae exist too, and in fact the result generalises to

all higher order formulae in the Levy hierarchy, but we shall only be needing the
result of Lemma 2.3.1.

In the case of order p+ 1 the variables X and T are of order p+ 1 and all other
variables in φm(X) and θ(T,X) are bounded and of order at most p. The assignment
functions a have to assign values to all variables of order at most p. Thus the pairs
(m, a) ∈ T and the functions a must be coded using a flat pairing function in order
to have T ∈ Vκ+p. After these changes the proof is the same as in the second order
case.

A subset X of a regular cardinal κ is Π1
n-indescribable if for every Π1

n-sentence φ
and every unary predicate U ⊆ Vκ such that 〈Vκ,∈, U〉 |= φ, there exists an ordinal
α ∈ X such that 〈Vα,∈, U ∩ Vα〉 |= φ. A subset of κ which is not Π1

n-indescribable
is said to be Π1

n-describable.
The following two lemmas also constitute well known observations (see e.g.

Jech [10, Lemma 32.3]).

2.3.2. Lemma. A set X ⊆ α is first order indescribable if and only if α is
inaccessible and X is stationary.

2.3.3. Lemma. A set is Σ1
n+1-indescribable if and only it is Π1

n-indescribable.

The following result is due to Levy [13].

2.3.4. Theorem. For every natural number n and cardinal κ the collection of
Π1

n-describable subsets of κ is a normal ideal.

Proof. Let W be the collection of Π1
n-describable subsets of κ. It is evident that

W is closed under subsets and rather easy to see that X ∪ α ∈ W for every X ∈ W
and α < κ. By Lemma 2.1.1 it then suffices to check that W is closed under diagonal
unions.

Let f : X → κ be regressive where X ⊆ κ and suppose that f−1{i} ∈ W for
every i < κ. Thus for each i < κ there is a Π1

n-sentence φi and a predicate Ui ⊆ Vκ

such that 〈Vκ,∈, Ui〉 |= φi and

〈Vα,∈, Ui ∩ Vα〉 |= ¬φi (1)

whenever f(α) = i.
By Lemma 2.3.1 there exists an universal Π1

n-formula. Let φ(Ui,m) be the for-
mula obtained from the universal formula by replacing occurrences of the unary
predicate symbol with the second order variable Ui. Let g be a function κ→ ω such
that φi is equivalent to φ(Ui, g(i)). Put U = {(ξ, i) : ξ ∈ Ui}. Now

〈Vκ,∈, U, g〉 |= ∀i(φ(Ui, g(i))) (2)
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and the right hand side is a Π1
n-sentence if formalised properly. Of course Ui and

g(i) are expressed in the formalisation using the predicate symbols for U and g.
Now suppose that α ∈ X and fix i = f(α). Since (1) holds and i < α,

〈Vα,∈, U ∩ Vα, g|α〉 6|= ∀i(φ(Ui ∩ Vα, g(i)))

where the right hand side is the same as in (2) when rendered formally. Thus X ∈ W
and by Lemma 2.1.2 it follows that W is closed under diagonal unions. 2

We shall simply talk about the Π1
n-ideal over κ when we mean the ideal of Π1

n-
describable subsets of κ. In some connections where the cardinal κ is clear from
the context we let the symbol Π1

n denote this ideal. By Lemma 2.3.2 the Π1
0-ideal

over κ is proper if and only if κ is inaccessible, and then it coincides with NSκ. The
Π1

1-indescribable sets are also called weakly compact and the Π1
1-ideal over κ will be

denoted WCκ. Sometimes we refer to WCκ as the weakly compact ideal.

2.4. n-closed sets

Lemma 2.3.1 has the following well known application.

2.4.1. Lemma. For every n < ω there exists a Π1
n+1-sentence φ such that a set

X ⊆ κ is Π1
n-indescribable if and only if 〈Vκ,∈, X〉 |= φ.

Proof. We can find a Π1
1-sentence that in 〈Vκ,∈, X〉 expresses that κ is inacces-

sible and X is stationary. Thus the case n = 0 is handled by Lemma 2.3.2. Assume
that n is positive for the rest of the proof.

Let φ(U,m) be obtained from an universal Π1
n-formula in the same way as in the

proof of Theorem 2.3.4. A proper formalisation of

∀U∀m(φ(U,m) → ∃α ∈ X(〈Vα,∈〉 |= φ(m,U ∩ Vα)))

is the required Π1
n+1-sentence involving the unary predicate X. The formalisation

of 〈Vα,∈〉 |= φ(m,U ∩ Vα) can be assumed to imply that α is a regular uncountable
cardinal. 2

A subset X of κ is (n + 1)-closed if α ∈ X whenever α < κ and X ∩ α is Π1
n-

indescribable as a subset of α. If X is both (n+1)-closed and Π1
n-indescribable then

X is said to be a (n+ 1)-club subset of κ. We let 0-club stand for closed unbounded.
In [18] Sun introduced a notion of 1-club as follows. A subset X of κ is 1-club

if it is stationary and closed in the sense that for every regular α < κ, if X ∩ α
is stationary then α ∈ X. For this notion Sun also proved Theorem 2.4.2 in the
case n = 1. For our purposes the difference between our definition of 1-club using
Π1

0-indescribability from Sun’s notion is merely technical. In fact Sun’s notion can
be seen as the analogue using weak indescribability.
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2.4.2. Theorem. If a cardinal κ is Π1
n-indescribable then a set X ⊆ κ is in the

Π1
n-filter if and only it contains an n-club.

Proof. For n = 0 the theorem follows from Lemma 2.3.2. Suppose now that
n ≥ 1 and X is n-club. We shall show that X is in the Π1

n-filter. Let E be
Π1

n-indescribable. By Lemma 2.4.1 there is a Π1
n-sentence φ that expresses Π1

n−1-
indescribability. Thus 〈Vκ,∈, X〉 |= φ and therefore there exists an ordinal α ∈ E
such that 〈Vα,∈, X ∩ α〉 |= φ. It follows that α ∈ X ∩ E.

For the other direction suppose that X = {α < κ : 〈Vα,∈, U ∩ Vα〉 |= φ} where
U ⊆ Vκ and φ is a Π1

n-sentence such that 〈Vκ,∈, U〉 |= φ. We shall show that
X is n-club. Clearly X is Π1

n−1-indescribable. Towards contradiction assume that
α /∈ X although α < κ and X ∩ α is Π1

n−1-indescribable. By Lemma 2.3.3 the
set X ∩ α is also Σ1

n-indescribable and since 〈Vα,∈, U ∩ Vα〉 |= ¬φ there exists an
ordinal β ∈ X ∩ α such that 〈Vβ,∈, U ∩ Vβ〉 |= ¬φ. But this is a contradiction by
the definition of X. 2

The Mahlo operation M(X) on subsets of κ has traditionally been defined by
putting

M(X) = {α < κ : cf α > ω and X ∩ α is stationary}.
We define the operations Mn : [κ]κ → P(κ) for n < ω as follows:

Mn(X) = {α < κ : X ∩ α is Π1
n-indescribable}.

We conclude this section by a simple fact that for n = 0 is analogous to a result
proved by Baumgartner, Taylor, and Wagon [4] for the Mahlo operation. Their
formulation is slightly different and related to the concept of an M -ideal defined
in [4]. Note that the conclusion Mn(E) ∈ (Π1

n+1)
∗ can be seen a straightforward

generalisation of the fact that the set of limit points of an unbounded set is closed
unbounded.

2.4.3. Lemma. If E is a Π1
n-indescribable subset of κ then the set Mn(E) is in

the Π1
n+1-filter but not in the filter (Π1

n|E)∗, whereby Π1
n|E 6= Π1

n+1.

Proof. That Mn(E) is in the Π1
n+1-filter is an almost immediate corollary of

Lemma 2.4.1. Suppose towards contradiction that Mn(E) ∈ (Π1
n|E)∗. It means

that there exists a set X in the Π1
n-filter such that X ∩ E ⊆ Mn(E). We can even

assume that X = {α < κ : 〈Vα,∈, U ∩ Vα〉 |= φ} for some U ⊆ Vκ and Π1
n-sentence

φ. Let α = min(X ∩ E). Since α ∈ Mn(E) there exists an ordinal β ∈ X ∩ E ∩ α,
a contradiction. 2

An immediate corollary of Theorem 2.3.4 and Lemmas 2.2.1 and 2.4.3 is that
the Π1

n-ideal over κ is not κ+-saturated whenever the Π1
n+1-ideal is proper. (If Π1

n+1

is not proper then trivially Π1
n|E = Π1

n+1 for any E ∈ Π1
n.) In [4] it is proved that

it suffices that κ is greatly Mahlo for NSκ not to be κ+-saturated. The version of
Lemma 2.4.3 for the Mahlo operation is a central ingredient in Solovay’s [17] classical
result that any stationary subset of a regular cardinal κ can be split into κ pairwise
disjoint stationary sets.
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3. Operations on ideals

3.1. Diamond principles

Let I be a normal ideal over a regular cardinal κ. By 3(I) we shall denote the
following statement: There exists a sequence (Aα : α < κ) such that

{α < κ : A ∩ α = Aα} /∈ I

for every set A. The classical diamond principle 3κ is 3(NSκ). A sequence witness-
ing that 3(I) holds, as (Aα : α < κ) above, is said to be a 3(I)-sequence.

The next result is well known in many settings (see e.g. [11] or [6]) but it is
seldom, if ever, noted that it applies to any normal ideal whatsoever. This is why
we give a complete proof. However it seems that the case I = NSκ is in some sense
the most interesting since the proof relies on closed unbounded sets.

3.1.1. Lemma. For any normal ideal I over κ, 3(I) holds if and only if there
exists a sequence (Wα : α < κ) such that |Wα| = |α| for every α < κ and

{α < κ : A ∩ α ∈ Wα} /∈ I

for every set A.

Proof. Clearly only one direction of the equivalence requires an argument. As-
sume that (Wα : α < κ) is as above. Let f : κ × κ → κ be a bijection. There
is a closed unbounded set C such that f [α × α] = α for every α ∈ C. Because
κ \ C ∈ NSκ and NSκ ⊆ I it is straightforward to use f to construct an indexed
family (Bi

α : i < α < κ) such that

{α < κ : B ∩ (α× α) = Bi
α for some i < α} /∈ I (3)

for every set B. To be more precise this is achieved by picking the sets Bi
α in such

a way that {f [Bi
α] : i < α} = Wα ∩P(α) whenever α ∈ C.

Let Ai
α = {ξ < α : (ξ, i) ∈ Bi

α} when i < α < κ and let Ai
α be arbitrary when

α ≤ i < κ. Consider the sequences (Ai
α : α < κ) for i < κ. We shall derive a

contradiction from the assumption that none of these sequences is a 3(I)-sequence.
So we assume that for every i < κ there exists a set Ai such that Xi = {α <

κ : Ai ∩ α 6= Ai
α} is in the dual filter F of I. By normality X = ∆i<κXi ∈ F .

Let B =
⋃

i<κ(Ai × {i}). If α ∈ X then for all i < α we have α ∈ Xi and thus
Ai∩α 6= Ai

α. But if α is in the left hand side of (3) then Ai∩α = Ai
α for some i < α

because for ξ, i < α we have ξ ∈ Ai ∩ α iff (ξ, i) ∈ B and (ξ, i) ∈ Bi
α iff ξ ∈ Ai

α. By
(3) we have arrived at a contradiction. 2

There is an immediate simple connection between diamond principles and satu-
ration of ideals. Let A and B be subsets of κ and let γ < κ be the least ordinal such
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that A ∩ {γ} 6= B ∩ {γ} i.e. γ is the least ordinal where the sets A and B differ.
Then for any sequence (Aα : α < κ) we have {α < κ : A ∩ α = Aα} ∩ {α < κ :
B ∩ α = Aα} ⊆ γ + 1. Thus 3(I) implies that I is not 2κ-saturated.

For a normal ideal I over κ, let 3∗(I) denote the following statement: There
exists a sequence (Wα : α < κ) such that |Wα| = |α| for every α < κ and

{α < κ : A ∩ α ∈ Wα} ∈ I∗

for every set A. Of course an analogous change to the initial formulation of 3(I)
would result in a provably false statement. We shall also talk about 3∗(I)-sequences
in a similar fashion as with 3(I).

By Lemma 3.1.1 it is clear that 3∗(I) → 3(I) for any normal ideal I. Let I and
J be normal ideals such that I ⊆ J . Then 3(J) implies 3(I) but 3∗(I) implies
3∗(J). Thus the principle 3∗(NSκ), traditionally denoted by 3∗

κ, is the strongest of
these statements and implies both 3(I) and 3∗(I) for every normal ideal I over κ.

Let I be a normal ideal, let E ∈ I+, and consider the following statements:

(a) There exists a sequence (Aα : α ∈ E) such that {α ∈ E : A∩ α = Aα} ∈ I+

for every set A.

(b) There exists a sequence (Wα : α ∈ E) such that |Wα| = |α| for every α ∈ E
and for every set A there exists a set X ∈ I∗ such that A∩α ∈ Wα for every
α ∈ X ∩ E.

Traditionally (a) for I = NSκ has been denoted 3E or 3κ(E) and (b) similarly
3∗

E or 3∗
κ(E). But it is not hard to see that in fact (a) and (b) are equivalent to

3(I|E) and 3∗(I|E) respectively. Therefore there is no need for us to introduce
special notation for this kind of principles. But we may still use e.g. 3κ(E) as a
shorthand for 3(NSκ|E).

For a normal ideal I over κ we define the collections ND(I) ⊆ P(κ) and SD(I) ⊆
P(κ) as follows:

ND(I) = {X ⊆ κ : 3(I|X) fails}

SD(I) = {X ⊆ κ : 3∗(I|X) holds}.

The letters ND and SD refer to “no diamond” and “strong diamond” respectively.
It turns out that these collections are ideals. By NDκ and SDκ we shall denote

the ideals ND(NSκ) and SD(NSκ) respectively. ND I is proper iff 3(I) holds, and
SD I is proper iff 3∗(I) fails.

The ideal NDℵ1 has been studied in literature. The result that NDℵ1 is normal
is due to Saharon Shelah and was announced in [5] where Devlin proves that NDℵ1

is countably complete.

3.1.2. Theorem. If I is a normal ideal over κ then ND(I) and SD(I) are both
normal ideals over κ and ND(I) ∩ SD(I) = I.
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Proof. It is easy to see that ND(I) is closed under subsets and that X ∈ ND(I)
and α < κ implies X ∪ α ∈ ND(I). The same holds for SD(I). Thus, to see that
ND(I) and SD(I) are normal ideals it suffices, by Lemma 2.1.1, to check that the
collections in question are closed under diagonal unions.

Let X ⊆ κ and let f : X → κ be a regressive function such that f−1{i} ∈ ND(I)
for every i < κ. We shall show that X ∈ ND(I) by proving that an arbitrary
sequence (Aα : α < κ) can not be a 3(I|X)-sequence. It follows by Lemma 2.1.2
that ND(I) is closed under diagonal unions.

Let g : κ× κ→ κ be a bijection and let C be a closed unbounded set such that
g[α× α] = α for every α ∈ C. For ordinals i and α in κ we put

Ai
α = {ξ : (ξ, i) ∈ g−1[Aα]}. (4)

Since (Ai
α : α < κ) can not be a 3(I|f−1{i})-sequence there exists a set Ai ⊆ κ and

a set Yi ∈ I∗ such that

{α ∈ f−1{i} : Ai ∩ α = Ai
α} ∩ Yi = ∅. (5)

Let A = g[
⋃

i<κ(Ai × {i})]. We shall conclude the proof of X ∈ ND(I) by showing
that

{α ∈ X : A ∩ α = Aα} ∩ 4i<κYi ∩ C = ∅. (6)

For α ∈ C we have A ∩ α = g[
⋃

i<α((Ai ∩ α) × {i})]. So if A ∩ α = Aα we must
have Ai

α = Ai ∩ α for every i < α by (4). But if α ∈ X and we fix i = f(α) it then
follows from (5) that α /∈ Yi and thus (6) holds.

For SD(I) the proof is somewhat easier. Suppose again that X ⊆ κ and f : X →
κ is a regressive function such that f−1{i} ∈ SD(I) for every i < κ. So for each
i < κ there exists a 3∗(I|f−1{i})-sequence (W i

α : α < κ).
Let A be an arbitrary set. Now Xi = {α ∈ f−1{i} : A ∩ α /∈ W i

α} ∈ I for every
i < κ and thus

{α ∈ X : A ∩ α /∈ W f(α)
α } = 5i<κXi ∈ I

whereby (W f(α)
α : α < κ) is a 3∗(I|X)-sequence.

Finally it is a triviality that I ⊆ ND(I) and I ⊆ SD(I) and by Lemma 3.1.1 we
have that E ∈ SD(I) \ I implies E /∈ ND(I). 2

3.2. Subtlety and ineffability

To make some phrasings more fluent we shall talk about a subset sequence when
we mean a sequence (Ai : i ∈ X) such that Ai ⊆ i for every i ∈ X.

Let X be a set of ordinals. A set H ⊆ X is homogeneous for a sequence (Aα :
α ∈ X) if Aα = Aβ ∩ α for every pair of ordinals α < β in H. A simple observation
sometimes used in proofs is that if H is a set of ordinals, then H is homogeneous
for the sequence (Ai : i ∈ X) if and only if there exists a set A such that H ⊆ {i ∈
X : A ∩ i = Ai}.
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Let I be an ideal over κ. By Sb I we denote the collection of sets X ⊆ κ with the
property that there exists a set Y ∈ I∗ and a subset sequence (Aα : α ∈ X ∩ Y ) for
which there is no homogeneous set of cardinality 2. By In I we mean the collection
of sets X ⊆ κ such that there exists a subset sequence (Aα : α ∈ X) for which every
homogeneous set belongs to I.

To a large extent the following is due to Baumgartner [2].

3.2.1. Lemma. If I is an ideal over κ and NSκ ⊆ In I then In I is a normal
ideal extending I.

Proof. To begin with it is not difficult to see that In I is an ideal whenever I is
an ideal and that I ⊆ In I. We shall now use Lemma 2.1.2 to check the normality.

Let X ⊆ κ, let f : X → κ be regressive and for each β < κ, suppose that the
subset sequence (Aβ

α : α ∈ f−1{β}) witnesses that f−1{β} ∈ In I. Let g : κ× κ→ 2
be a bijection. Because we already know that In I is an ideal such that NSκ ⊆ In I
we may assume that g[α× 2] = α for every α ∈ X. Put

Aα = g[(Af(α)
α × {0}) ∪ (f(α)× {1})]

for each α ∈ X. Let A be arbitrary and put H = {α ∈ X : A∩α = Aα}. For ξ < α
both in H we have g−1[Aξ] = g−1[Aα] ∩ (ξ × ξ) and thus f must be constant on H.
Let β be the constant value of f in H. If H is unbounded in κ then

g−1[A] =
⋃

α∈H

g−1[Aα] =
⋃

α∈H

(Aβ
α × {0}) ∪ (β × {1})

whereby H is homogeneous for (Aβ
α : α ∈ f−1{β}). It follows that H ∈ I. 2

Note that we did not require in the previous lemma that I must be normal, but
only that NSκ ⊆ In I. This is utilised through the following fact.

3.2.2. Lemma. NSκ ⊆ In([κ]<κ).

Proof. Let C be a closed unbounded subset of κ. Let H ⊆ κ\C be homogeneous
for the subset sequence (max(C ∩ α) : α ∈ κ \ C). Now suppose that α ∈ H and
β = min(C \α). Then we must have H ⊆ β and it follows that κ \C ∈ In([κ]<κ). 2

Since [κ]<κ is the smallest possible ideal over κ by our strict definition, it follows
that In I is always a normal ideal. The operation Sb is not as well behaved as In.

3.2.3. Lemma. Let I be an ideal over κ and let µ be another regular cardinal.
Then Sb I is an ideal extending I and if I is normal then Sb I is normal. If NSκ ⊆
Sb I and I is µ-complete then Sb I is µ-complete.
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Proof. As in the proof of Lemma 3.2.1 it is easy to see that Sb I is an ideal such
that I ⊆ Sb I. We shall deal with normality through Lemma 2.1.1.

Let f : X → κ be regressive and for each β < κ, suppose that Yβ ∈ I∗ and
(Aβ

α : α ∈ f−1{β} ∩ Yβ) witness that f−1{β} ∈ Sb I. Let g : κ × κ → κ be a
bijection. As in the proof of the normality of In I we can assume that g[α× α] = α
for every α ∈ X. Still as in the proof of Lemma 3.2.1, put

Aα = g[(Af(α)
α × {0}) ∪ (f(α)× {1})]

for α ∈ X. Let Y = ∆β<κYβ. If {ξ, α} ⊆ X ∩ Y and Aξ = Aα ∩ ξ then f(ξ) = f(α)

and A
f(ξ)
ξ = Af(α)

α ∩ ξ. Since {ξ, α} ⊆ Y it then follows that {ξ, α} ⊆ Yf(ξ) and
therefore we must have ξ = α. We conclude that X ∈ Sb I.

For the µ-completeness we can use the same argument as above, if we assume
that ran(f) ⊆ µ and put Y =

⋂
β<µ Yβ. But in this case I does not necessary extend

NSκ so we need the assumption NSκ ⊆ Sb I to be able to assume that g[α× α] = α
for all α ∈ X without loosing generality. 2

3.2.4. Lemma. Let I and J be ideals over κ. If J ⊆ In I then Sb J ⊆ In I.

Proof. Suppose that X ⊆ κ, Y ∈ J∗, and the subset sequence (Aα : α ∈ X ∩ Y )
has no homogeneous sets of cardinality 2. We wish to prove that X ∈ In I but since
Y ∈ (In I)∗ it suffices to prove that X ∩ Y ∈ In I, but this of course is immediate.

2

By lemmas 3.2.2 and 3.2.4 and the obvious fact that the operation In is monotone,
we have

NSκ ⊆ Sb NSκ ⊆ In([κ]<κ) ⊆ In NSκ

where each of the four collections involved is a normal ideal over κ by lemmas 3.2.1
and 3.2.3. The cardinal κ is said to be subtle if Sb NSκ is proper, almost ineffable if
In([κ]<κ) is proper, and ineffable if In NSκ is proper. These notions were introduced
by Jensen and Kunen [11]. The letter combinations Sb and In used for the operations
involved refer to these concepts. The sets that have positive measure with respect
to the ideals above are also called subtle, almost ineffable, and ineffable respectively.

One can consider applying the operations defined in sections 3.1 and 3.2 re-
peatedly. Furthermore the union of a collection of ideals over a regular cardinal
κ is itself an ideal over κ. Therefore let us put In0 I = I, Inα+1 = In(Inα I), and
Inα I =

⋃
β<α Inβ I for limit ordinals α. We shall use analogous notation for the

other operations defined.
If an operation is repeated as above, then sooner or later a fixpoint Inα I must

be reached for which Inα+1 I = Inα I. Let In∞ I denote this fixpoint. If In∞ NSκ is
proper we say that the cardinal κ is totally ineffable and if Sb∞ NSκ is proper then
κ is totally subtle. By a simple induction argument Lemma 3.2.4 also holds with Sb
replaced by Sb∞. Thus almost ineffable cardinals are totally subtle.
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By virtue of Lemma 3.2.1 the ideal Inα I is normal for any successor ordinal α
regardless of whether I is normal or not. In [2] Baumgartner studied the ideals
Inα NSκ and proved that if κ is totally subtle and Inα NSκ = In∞ NSκ then α ≥ κ+.

Let f be a function on [κ]2. We call f a partition as we think of the set [κ]2

being partitioned into parts labeled by the elements in ran f . A subset H of κ is
homogeneous for the partition f if f is constant on the set [H]2. For X ⊆ κ and
an ideal I over κ we write X → (I+)2 if we want to say that X has the following
partition property: For every function f : [κ]2 → 2 there exists a homogeneous set
H ⊆ X such that H ∈ I+. If S is not a subset of κ but S ⊆ P(κ) then S → (I+)2

is taken to mean that every X ∈ S has the partition property X → (I+)2.

3.2.5. Lemma. Let I be an ideal over a regular cardinal κ and let X ⊆ κ. If
NSκ ⊆ I then X /∈ In I if and only if X → (I+)2.

Proof. Suppose that X /∈ In I and f : [X]2 → 2 is arbitrary. Let Aβ = {α ∈
X∩β : f(α, β) = 1} for every β ∈ X. Fix A so that H = {β ∈ X : A∩β = Aβ} /∈ I.
Now either H ∩ A or H \ A is the homogeneous set we are looking for.

Now suppose that X → (I+)2 and the subset sequence (Aα : α ∈ X) is arbitrary.
Define f : [X]2 → 2 by letting f(α, β) = 1 iff Aα lexicographically precedes Aβ. (We
consider the lexicographic ordering of the characteristic functions with domain κ.)

Pick a set H /∈ I that is homogeneous for f . We define A ⊆ κ by defining A ∩ ξ
by induction on ξ < κ using the following requirement: For each ξ there exists an
ordinal η(ξ) < κ such that A ∩ ξ = Aα ∩ ξ for every α ∈ H \ η(ξ). The limit
steps are trivial and the successor steps are easily handled by the properties of the
lexicographic ordering. Now H ′ = {α ∈ H ∩ accκ : η[α] ⊆ α} /∈ I (accκ is the set
of limit ordinals below κ) and Aα = A ∩ α whenever α ∈ H ′. 2

If D is a normal measure on κ then D → (D)2 whereby In∞ I ⊆ D∗ for any
normal ideal I ⊆ D∗. Since we know that NSκ ⊆ D∗, Lemma 3.2.5 implies that
measurable cardinals are totally ineffable.

3.3. Subtlety and diamonds

If I and J are ideals over a regular cardinal κ then the collection

{X ∪ Y : X ∈ I, Y ∈ J}

is an ideal over κ. Clearly this is the ideal generated by I and J , i.e. the smallest
ideal containing both I and J . We shall denote it by 〈I ∪ J〉. The ideals I and J
are said to be coherent if 〈I ∪ J〉 is proper. In [1] Baumgartner proves the following
result:

3.3.1. Lemma. Let κ be a regular cardinal.

(a) 〈Π1
1 ∪ Sb NSκ〉 = In([κ]<κ).
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(b) 〈Π1
n+2 ∪ Sb NSκ〉 = In Π1

n for all n < ω.

Especially it follows that almost ineffable sets are weakly compact and ineffable
sets are Π1

2-indescribable. By Lemma 3.2.4 and monotonicity of the operation Sb it
follows that Sb Π1

1 = In([κ]<κ) and Sb Π1
n+2 = In Π1

n.

3.3.2. Lemma. Let I be an ideal over a regular cardinal κ.

(a) κ ∈ In(I|E) if and only if E ∈ In I.

(b) κ ∈ Sb(I|E) implies that E ∈ Sb I.

Proof. Any subset sequence (Aα : α < κ) witnesses that κ ∈ In(I|E) if and
only if its restriction (Aα : α ∈ E) witnesses that E ∈ In I. Given Y ⊆ κ put
Z = Y ∪ (κ \ E). Then Y ∈ (I|E)∗ iff Z ∈ I∗. If the sequence (Aα : α ∈ Y )
witnesses that κ ∈ Sb(I|E) then the sequence (Aα : α ∈ E ∩ Z) witnesses that
E ∈ Sb I. 2

As a consequence of the following lemma, 3∗
κ fails whenever κ is ineffable which

is a result due to Jensen and Kunen [11]. They also proved that the converse holds
if V = L. Thus in L we have that 3∗

κ holds if and only if κ is not ineffable.

3.3.3. Lemma. SD I ⊆ In I for every normal ideal I over a regular cardinal κ.

Proof. Suppose that κ ∈ SD I and (Wα : α < κ) is a 3∗(I)-sequence. Pick a
subset sequence (Aα : α < κ) such that Aα /∈ Wα for every α < κ. There can not
exist a set A such that {α < κ : A ∩ α = Aα} /∈ I. Therefore κ ∈ In I. Since I
was arbitrary it follows that 3∗(I|E) implies that κ ∈ In(I|E) for any E ⊆ κ. By
Lemma 3.3.2 we are done. 2

In [11] it was also pointed out that 3κ holds at any subtle cardinal κ (see [12]).
In fact 3κ(E) holds for any subtle set E. Thus NDκ ⊆ Sb NSκ in terms of the
notations for the ideals. The proof of this fact generalises to other levels in the Levy
hierarchy in a rather straightforward way. Sun [18] proved that 3(WCκ) holds for
almost ineffable cardinals.

3.3.4. Theorem. Let κ be a regular cardinal.

(a) ND(Π1
1) ⊆ In([κ]<κ).

(b) ND(Π1
n+2) ⊆ In Π1

n for all n < ω.

Proof. We shall prove (a). The proof of (b) is nearly the same. Let E be an
almost ineffable subset of κ. By induction on α ≤ κ we define sets Aα ⊆ α, Uα ⊆ Vα,
and Π1

1-formulae φα such that the conditions
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(i) 〈Vα,∈, Uα〉 |= φα

(ii) If ξ ∈ E ∩ α and 〈Vξ,∈, Uα ∩ Vξ〉 |= φα then Aα ∩ ξ 6= Aξ

hold whenever it is possible to make them hold at a step α ≤ κ in the construction.
To be precise we do not choose actual Π1

1-formulae (whatever that means) but rather
natural numbers that code the appropriate formulae.

For ordinals α ≤ κ such that conditions (i) and (ii) are met, put

Xα = {ξ ∈ E ∩ α : 〈Vξ,∈, Uα ∩ Vξ〉 |= φα} (7)

and let Xα = α otherwise. By the construction (Aα : α < κ) will be a 3κ(WCκ|E)-
sequence if and only if Xκ = κ. (Note that we intend condition (ii) to imply 0 /∈ Xα,
although the expression in the condition may not be meaningful for ξ = 0). We shall
complete the argument by deriving a contradiction from the assumption Xκ 6= κ.

We first notice that Xα 6= α for every α ∈ Xκ. This is because Aκ ∩ α, Uκ ∩ Vα,
and φκ would satisfy the conditions (i) and (ii) if they were to be chosen as Aα, Uα,
and φα respectively.

Let f be a bijection κ × Vκ × ω → κ. There is a closed unbounded set C such
that f [α×Vα×ω] = α for every α ∈ C. Let Bα = f [Aα×Uα×{φα}] for α ∈ Xκ∩C.

As pointed out earlier, the monotonicity of the operation Sb together with
Lemma 3.2.4 and Lemma 3.3.1 implies that Sb WCκ is the almost ineffable ideal.
Since Xκ ∩ C is the intersection of E /∈ Sb WCκ and a set in the weakly compact
filter, there exist ordinals ξ < α both in Xκ ∩ C such that Bα ∩ ξ = Bξ. It follows
that Aα ∩ ξ = Aξ, Uα ∩ Vξ = Uξ and φα = φξ. But this means that Xα = α which is
a contradiction since α ∈ Xκ. 2

4. Weak compactness

From now on we shall concentrate on the weakly compact ideal WCκ and the
principle 3(WCκ) which we may call weakly compact diamond. We shall also con-
sider the principles 3(WCκ|E) where E is a weakly compact subset of κ.

4.1. Some notes on ultraproducts

Let κ be a regular cardinal. A κ-complete algebra of sets is a non-empty collection
of sets which contains the union of all its members and is closed under set difference
and unions and intersections of cardinality less than κ. Thus a σ-algebra could also
be referred to as a ℵ1-complete algebra of sets. Sometimes one talks about a field
of sets instead of an algebra of sets. A subcollection F of a κ-complete algebra of
sets S is a filter if it is closed under finite intersections and X ∈ F and X ⊆ Y ∈ S
implies that Y ∈ F . The notions of ultrafilter and a µ-complete filter where µ ≤ κ
is a regular cardinal are defined as expected.
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Let M be a transitive set. Typically M would be Vκ or a model of a large enough
finite fragment of ZFC such that κ ∈ M . By def M we shall denote the collection
of subsets of M that are definable over M . We shall require that κ ∈ def M which
clearly holds for the examples ofM mentioned above. Let S ⊆ P(κ) be a κ-complete
algebra of sets such that def(M) ∩P(κ) ⊆ S.

For a first order formula φ(x1, . . . , xn) and for functions f1, . . . , fn ∈ κM we put

Xφ[f1,...,fn] = {α < κ : φM [f1(α), . . . , fn(α)]}.

If the functions f1, . . . , fn are in def M then Xφ[f1,...,fn] ∈ S because of the require-
ment κ ∈ def M . Let U be an ultrafilter on S. The condition Xf=g ∈ U defines
an equivalence relation =U on the set def(M) ∩ κM and the condition Xf∈g ∈ U
defines a binary relation [f ] ∈U [g] on the set of equivalence classes. Consider the
structure N = 〈(def(M) ∩ κM)/ =U ,∈U〉.

4.1.1. Lemma. Let φ(x1, . . . , xn) be a first order formula and let f1, . . . , fn ∈
def(M) ∩ κM . If def M contains a well-ordering of M then

N |= φ[[f1], . . . , [fn]] if and only if Xφ[f1,...,fn] ∈ U.

Proof. By induction on the complexity of φ as in the standard  Loś’s Theorem.
The well-ordering of M is used in the existential quantifier step where it is required
to find a function f ∈ def(M) ∩ κM such that

φM [f(α), f1(α), . . . , fn(α)]

holds for all α < κ with the property that there exists at least one x ∈M for which
φM [x, f1(α), . . . , fn(α)] holds. 2

By the above lemma N is extensional. Let us now assume that U is σ-complete.
Then N is also well-founded. Let N be the Mostowski collapse of N. N is called
the definable ultrapower of M modulo U . The corresponding canonical embedding
j : M → N is defined by j(x) = π([fx]) where π is the Mostowski collapse and
fx is the constant function κ → M with value x. By Lemma 4.1.1 the canonical
embedding j is an elementary embedding.

Hereafter we shall let [f ] denote the element of N that is the image of the
equivalence class of f : κ → M under the Mostowski collapse, rather than the
equivalence class itself.

4.1.2. Lemma. If U is a κ-complete ultrafilter over κ and every regressive
function in def(M) ∩ κκ is constant on a set in U , then κ = [idκ] and for any
X ∈M ∩P(κ) it holds that X ∈ U if and only if κ ∈ j(X).

Proof. For the second claim, just compare idκ and the constant function fX . 2
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Through lemmas 4.1.4 and 4.1.6 below we shall make extensive use of the fol-
lowing characterisation of weak compactness due to Baumgartner [2].

4.1.3. Theorem. Let S ⊆ P(κ) be a κ-complete algebra of sets and F a col-
lection of regressive functions on κ such that |F | = |S| = κ, κ ∈ S, and f−1{α} ∈ S
for all f ∈ F and α < κ. If X ∈ S is weakly compact then there exists a κ-complete
ultrafilter U on S such that X ∈ U and each f ∈ F is constant on a set in U . Con-
versely if such an ultrafilter U exists for every S and F as above such that X ∈ S
then X is weakly compact.

4.1.4. Lemma. If E is a weakly compact subset of κ and M is a transitive
set such that E ∈ M and κ ∈ def M then there exists a transitive set N and an
elementary embedding j : M → N such that κ ∈ j(E).

What is the role of def M in the arguments above? We shall now consider
replacing def M by some other collection D such that M ⊆ D ⊆ P(M). To be able
to use Theorem 4.1.3 we must have |D ∩P(κ)| = κ. Apart from that there are
only two points to be watched. One is that for any functions f1, . . . , fn ∈ D ∩ κM
and any first order formula φ(x1, . . . , xn) we must have Xφ[f1,...,fn] ∈ D∩P(κ). The
other is that the function f : κ→M constructed in the proof of Lemma 4.1.1 must
be in D.

Given M and an ultrafilter U , let us call N the κω-definable ultrapower of M
modulo U , if the transitive set N is defined exactly as the definable ultrapower,
except that def M is replaced by the collection of all subsets of M that are Lκω-
definable over M .

4.1.5. Lemma. If <κM ⊆M and N is the κω-definable ultrapower of M mod-
ulo U , then <κN ⊆ N .

Proof. Suppose that α < κ and (fi : i < α) represents an α-sequence in N . So
each fi is a function κ → M which is Lκω-definable over M . For ξ < κ let sξ be
the sequence (fi(ξ) : i < α). Since <κM ⊆M we have sξ ∈M for every ξ < κ. Let
f : κ→M be defined by f(ξ) = sξ. Clearly f is Lκω-definable over M since we may
use a disjunction involving the formulae defining the functions fi. Thus [f ] is an
element in N and it is straightforward to see that [f ] is the sequence ([fi] : i < α).

2

4.1.6. Lemma. If E is a weakly compact subset of κ and M is a transitive set
such that M<κ ⊆ M , E ∈ M , and κ ∈ M then there exists a transitive set N and
an elementary embedding j : M → N such that N<κ ⊆ N and κ ∈ j(E).
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4.2. Weakly compact diamond

The following result was proved by Sun [18] in the case E = κ. Note that by
the discussion preceding Lemma 3.3.3 this result is of interest only for ineffable
cardinals.

4.2.1. Theorem. If V = L then 3(WCκ|E) holds for every weakly compact
subset E of a weakly compact cardinal κ.

Proof. We pick sets Aα ⊆ α and Uα ⊆ Vα and Π1
1-sentences φα by induction on

α ≤ κ in the same manner as in the proof of Theorem 3.3.4. Only now we require
that (Aα, Uα) is the <L-least pair for which the conditions

(i) 〈Vα,∈, Uα〉 |= φ

(ii) If ξ ∈ E ∩ α and 〈Vξ,∈, Uα ∩ Vξ〉 |= φ then Aα ∩ ξ 6= Aξ

can be satisfied if they can be satisfied at all for some Π1
1-sentence φ. Here we have

dropped the subscript on φ since we only need to refer to one particular sentence in
the forthcoming argument. Also

Xα = {ξ ∈ E ∩ α : 〈Vξ,∈, Uα ∩ Vξ〉 |= φ} (8)

is defined exactly as in the proof of Theorem 3.3.4 and the theorem is proved by
deriving a contradiction from the antithesis Xκ = κ. So suppose that there exists a
Π1

1-sentence φ satisfying conditions (i) and (ii) for α = κ.
For each pair (A,U) of subsets of κ such that (A,U) <L (Aκ, Uκ) there exists a

countable collection WA,U ⊆ Vκ+1 which contains witnesses for that fact that the pair
(A,U) was not chosen in place of (Aκ, Uκ) in the construction. More exactly if (ii)
holds for (A,U) <L (Aκ, Uκ) and some Π1

1-sentence φ which evaluated in 〈Vκ,∈, U〉
is equivalent to ∀X ⊆ Vκ(〈Vκ,∈, U〉 |= ψ[X]) then there exists a set X ∈ WA,U such
that 〈Vκ,∈, U〉 6|= ψ[X]. The set

W =
⋃
{WA,U : (A,U) ∈ P(κ)× Vκ+1, (A,U) <L (Aκ, Uκ)}

has cardinality κ since P(κ)× Vκ+1 ⊆ Lκ+ and |Lα| = |α| for every infinite ordinal
α. Let M be a transitive set such that |M | = κ, ((Aα, Uα) : α ≤ κ) ∈ M , E ∈ M ,
Vκ ∪W ⊆M , and M satisfies a large enough finite fragment of ZFC.

Because E is weakly compact it is immediate from (8) that Xκ is weakly com-
pact. Clearly Xκ ∈ def M . By Lemma 4.1.4 there exists a transitive set N and an
elementary embedding j : M → N such that κ ∈ j(Xκ). Because V M

κ+1 ⊆ V N
κ+1 the

set W is also contained in N . Thus the construction is absolute up to the point that
(j((Aα : α ≤ κ)))κ = Aκ. But j(Aκ) ∩ κ = Aκ and κ ∈ j(Xκ) by our choice of the
embedding j. This is a contradiction by (ii) and (8) and the elementarity of j. 2



26 Alex Hellsten

5. Weak Compactness in generic extensions

5.1. Forcing preliminaries

We use the Boolean algebraic convention regarding the ordering relation of forc-
ing notions i.e. a condition p is stronger than a condition q if p ≤ q. Trees are tacitly
reversed as soon as they are used as forcing notions.

If we say that τ is a name for some object x in the generic extension then we
shall take it to mean that any condition forces τ to have whatever properties we
have attributed to x.

When we say that P is an iteration of the sequence (Q̇α : α < η) we mean
that P is an iteration of length η and Q̇α is the name of the forcing notion used to
construct Pα+1 from Pα. Since there for a condition p ∈ Pα usually is a proper class
of Pα-names τ such that p 
 “τ ∈ Q̇α”, one must somehow choose a representative
set of such names that will then be the set

{q(α) : q ∈ P, q|α = p}.

Often one picks all possible names up to equivalence without further specifying the
choice, but we need to be more restrictive in some cases. Therefore we take the
following somewhat nonstandard approach. With each Q̇α we associate a set of
Pα-names that we denote by dom Q̇α. Then we require that for every p ∈ P and
α ∈ dom p, we have p(α) ∈ dom Q̇α and p|α 
 “p(α) ∈ Q̇α”.

One may think of dom Q̇α as a property of the name Q̇α and even as the actual
domain of the set Q̇α if names are formally defined Shoenfield style. But one may
also, if one prefers, think of dom Q̇α as merely a notational convention for specifying
how the definition of an iteration is to be interpreted in detail. Anyhow we shall
require that for any Pα-generic set G the interpretation of the name Q̇α is

⋃
p∈G{τG :

τ ∈ dom Q̇α, p 
 “τ ∈ Q̇α”}.
We consider the conditions of an iteration of length α to be partial functions on

α. The support of a condition p is identified with the domain of p. This is convenient
in in many situations, but as a technicality (see the proof of Lemma 5.1.2, where
this approach is less convenient) we must require that if α = max dom p and p(α) is
a name for a maximal element of Q̇α then p ≤ p|α ≤ p.

As exemplified in the last paragraph, iterations are not partial orders in the strict
sense, since they are not antisymmetric. But antisymmetry of forcing notions is not
needed for the development of the theory of forcing. We consider a forcing notion
to be a base set endowed with a transitive and reflexive binary relation ≤. Such
objects are also called preorders. The inequality p ≤ q ≤ p defines an equivalence
relation which furthermore is a congruence with respect to the relation ≤. Thus
there is a canonical partial ordering of the equivalence classes.

We shall say that two forcing notions P and Q are isomorphic if there exists
a surjective function h : P → Q such that h(p) ≤ h(q) if and only if p ≤ q for
every p and q in P . If P is antisymmetric then such a function h is necessarily
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injective. If P is not antisymmetric h still induces an injective mapping when we
pass to equivalence classes, making the use of the term “isomorphism” permissible.

The following fact is well known. Note that the premises of the lemma imply
that Pα is a direct limit.

5.1.1. Lemma. Let α be a limit ordinal of cofinality κ and let P be an iteration
of length α such that Pβ satisfies the κ-cc for every β < α. If there exists a stationary
set of ordinals β < α such that Pβ is a direct limit then Pα satisfies the κ-cc.

For an iteration P of length α, an ordinal β < α, and a Pβ-generic set Gβ we
put

P β = {p|[β, α) : p ∈ P and p|β ∈ Gβ}
and define the ordering of P β as follows: f ≤ g if there exists a condition p ∈ Gβ

such that p ∪ f and p ∪ g are conditions in P and p ∪ f ≤ p ∪ g. We may write P β
γ

for β < γ < α without fearing ambiguity since

(Pγ)β = {f |γ : f ∈ P β} = {f ∈ P β : dom f ⊆ γ}

and the orderings of (Pγ)β and P β agree. If H is P β-generic over V [Gβ] then the set

G = {p ∈ P : p|β ∈ Gβ and p|[β, α) ∈ H}

is P -generic over V and Gβ = G ∩ Pβ. It is useful to note that when choosing a
condition p ∈ P to represent a particular condition p|[β, α) ∈ H, we may assume
that p ∈ G. In the situation described above we shall denote G by Gβ ∗ H. If we
identify a condition p ∈ P with the pair (p|β, p|[β, α)) then this is in conformance
with standard notation.

Another well known fact is that P β is isomorphic to an iteration R of a sequence
(Ṡγ : γ < η) through an isomorphism h : P β → R such that the conditions

(i) dom(h(f)) = {γ : β + γ ∈ dom f}

(ii) The interpretations of Q̇β+γ and Ṡγ coincide for every γ < η

hold. We shall say that P β is a direct limit whenever R is a direct limit and similarly
for inverse limits. By our definition of isomorphism R is unique only when we pass
to equivalence classes. Therefore we shall say that a forcing notion P of length α
is an inverse limit if there for every partial function p on α such that p|β ∈ Pβ for
every β < α exists a condition q ∈ P such that q|β ≤ p|β ≤ q|β for every β < α.
Then there will be no ambiguity in the statement that P β is an inverse limit.

5.1.2. Lemma. Suppose that P is an iteration of (Q̇α : α < η), β < η, and κ
is a regular cardinal. If P satisfies the conditions

(i) For every Pβ-name τ and condition p ∈ Pα where β ≤ α < η, if p 


“τ ∈ Q̇α” then there exists a name σ ∈ dom Q̇α such that p 
 “σ = τ”
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(ii) Pα is either a direct or an inverse limit for every limit ordinal α such that
β < α ≤ η

(iii) Pβ satisfies the κ-cc

(iv) Pα is an inverse limit for every limit ordinal α > β such that cf α ≤ κ

then for every limit ordinal α > β, P β
α is a direct limit iff Pα is a direct limit and

P β
α is an inverse limit iff Pα is an inverse limit.

Proof. The only implication which is not straightforward is the fact that if Pα is
an inverse limit then P β

α is an inverse limit.
So let ḟ be a Pβ-name for partial function on α such that 
 “ḟ |γ ∈ Ṗ β” for all

γ < α. By condition (i) we can define a partial function p on α \ β such that

(v) p(γ) ∈ dom Q̇γ for every γ ∈ dom p

(vi) If 
 “ḟ(γ) is undefined” then p(γ) is undefined

(vii) 
 “γ ∈ dom ḟ → ḟ(γ) = p(γ)”

(viii) 
 “p(γ) is maximal in Q̇γ if defined when ḟ(γ) is undefined”.

We claim that p is a condition in Pα. It is clear that 
 “p(γ) ∈ Q̇γ” for every
γ ∈ dom p. It remains to check that dom p conforms with the definition of Pα. Let
γ be a limit ordinal such that β < γ ≤ α. If Pγ is not a direct limit then Pγ must
be an inverse limit and everything is fine. Suppose now that Pγ is a direct limit.
We must check that dom(p) ∩ γ is a bounded subset of γ. But


 “dom(ḟ) ∩ γ is a bounded subset of γ”

and thus using conditions (iii) and (iv) we can find an ordinal δ < γ such that

 “dom(ḟ) ∩ γ ⊆ δ”. By condition (vi) we have now seen that p ∈ Pα.

Fix a Pβ-generic set Gβ and let f be the interpretation of ḟ . Now p ∈ P β
α since

p|β is the empty function. Fix an arbitrary ordinal γ such that β < γ < α. Since
f |γ ∈ P β there exists a condition q ∈ P such that q|β ∈ Gβ and f |γ = q|[β, α). Also
(q|β)∪(p|γ) is a condition in P and q ≤ (q|β)∪(p|γ) ≤ q. Therefore f |γ ≤ p|γ ≤ f |γ.

2

Suppose now that M and N are transitive classes or sets and j : M → N is an
elementary embedding. Also assume that P ∈ M where P is an iteration of length
α and j(P )β = P where β < j(α) and the models M and N satisfy a large enough
finite fragment of ZFC to make the use of the forcing theorem possible. Let G be
P -generic over both M and N and let H be j(P )β-generic over N [G]. As noted
earlier N [G][H] is a generic extension by the forcing notion j(P ). If it in addition
holds that j(p)|[β, α) ∈ H for every p ∈ G then the equation

j(τG) = j(τ)G∗H
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holds for every P -name τ such that τG ∈M . Furthermore, if the equation is applied
to the class of all P -names τ , taking the right hand side as a definition of the left
hand side, it defines an elementary embedding j : M [G] → N [G][H]. It is natural
and convenient to denote this extended embedding by j too, since its restriction to
M is the original j. Obviously j(G) = G ∗H.

Consider the following game between players I and II on a forcing notion P . The
length of the game is an ordinal α. The players take turns picking conditions in P
that will eventually form a decreasing sequence (pi : i < α) if player II is to win the
game. The conditions pi are picked in increasing order of the index so that player I
picks pi for i even and player II for i odd.

If the game successfully goes on for α rounds then player II wins. The game
ends in the victory of player I if the moves played at some point form a decreasing
sequence that has length less than α but no lower bound in P , making the next
move impossible. If κ is a regular cardinal and player II has a winning strategy in
this game for every α < κ then the forcing notion P is said to be κ-game closed.
Let Gα(P ) denote the game described above.

5.1.3. Lemma. Let P be an iteration of the sequence (Q̇α : α < η) and let κ be
a regular cardinal. If P satisfies the conditions

(i) For every α < η and β < κ there exists a name τβ for a winning strategy for
player II in Gβ(Q̇α) such that given any sequence (ρi : i < ξ) in the ground
model of Pα-names for elements of Q̇α, there exists a name ρ ∈ dom Q̇α

such that 
 “ρ = τβ(ρi : i < ξ)”

(ii) If γ ≤ η is a limit ordinal such that Pγ is a direct limit then cf γ ≥ κ

(iii) If γ ≤ η is a limit ordinal such that Pγ is an inverse limit then there exists
a strictly increasing continuous sequence (γi : i < ζ) such that supi<ζ γi = γ
and Pγi

is an inverse limit for every limit ordinal i < ζ

then P is κ-game closed.

Proof. Fix β < κ. By induction on α ≤ η we shall construct winning strategies
σα : [Pα]<κ → Pα for player II in Gβ(Pα) such that

(iv) (σα(pi : i < ξ))|γ = σγ(pi|γ : i < ξ) for all γ < α

(v) dom(σα(pi : i < ξ)) =
⋃

i<ξ dom pi.

Suppose Pα is a direct limit. Then cf α ≥ κ whereby [Pα]<κ =
⋃

γ<α([Pγ]<κ). By
conditions (iv) and (v) the winning strategies constructed at earlier stages extend
each other. Thus we can put σα =

⋃
γ<α σγ. This is also the only possible way to

construct σα if conditions (iv) and (v) are to remain true.
Let us then deal with the case where Pα is an inverse limit. Now we must have⋃

γ<α σγ ⊆ σα but the inclusion is proper. Suppose that (pi : i < ξ) is a decreasing
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sequence such that
⋃

i<ξ dom pi is an unbounded subset of α. It is straightforward
to check that putting

σα(pi : i < ξ) =
⋃

γ<α

σγ(pi|γ : i < ξ)

does the job.
Finally suppose that α = γ + 1. We shall define σα(pi : i < ξ) by induction on

ξ. Since player II moves on odd indexes ξ is a successor ordinal in all relevant cases.
Condition (i) is tailored for this step. We consider (ρi : i < ξ) to be (pi(γ) : i < ξ)
and put

σα(pi : i < ξ) = σγ(pi|γ : i < ξ) _(ρ)

where ρ is as in condition (i). 2

It is evident that if P is κ-game closed then P is α-Baire for every α < κ. That
P is α-Baire is equivalent to the fact that forcing with P does not add any new
functions with domain α. Obviously κ-closed forcing notions are κ-game closed.

Note that from the last proof we can extract a somewhat stronger result than the
one appearing in the formulation of Lemma 5.1.3. Namely conditions (iv) and (v)
can be taken as properties of the final winning strategy ση that are often useful in
applications of the lemma. Let us call a winning strategy with the above mentioned
properties uniform. In Section 5.4 we shall need to refer to a uniform winning
strategy.

For a regular cardinal κ and a cardinal λ ≥ κ, let Cκ(λ) denote the standard
forcing notion for adding λ many Cohen subsets of κ. Formally we shall view Cκ(λ)
as the set of all partial functions f : λ → 2 such that |f | < κ, ordered by reverse
inclusion. Sometimes it is convenient, for technical reasons, to replace λ by a set S
of cardinality λ. Of course Cκ(S) is then isomorphic to Cκ(λ).

An iterated forcing notion P is said to have Easton support if the only restriction
placed on the supports is that |dom(p) ∩ µ| < µ for every p ∈ P and every regular
cardinal µ. In terms of limits, Easton support means taking direct limits at regular
cardinals and inverse limits otherwise.

5.2. Weakly compact diamond by forcing

Let κ be a weakly compact cardinal and let P = Pκ+1 be the Easton support
iteration of (Q̇α : α ≤ κ) where Q̇α is a name for Cα(α) whenever α is an Mahlo
cardinal and a name for the trivial forcing notion {1} otherwise.

The forcing notion P defined above is due to Jack Silver (unpublished) who
used ideas originating from unpublished work of Ronald Jensen (see [14]). This
technique is known as reverse Easton forcing and was originally used to violate the
GCH at various large cardinals. It is well known that κ remains weakly compact
in the generic extension V P . The proof of Lemma 5.2.3 is essentially a proof of
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the preservation of weak compactness augmented with the ideas from the standard
proof of the fact that 3κ holds in an extension by Cκ(κ).

Let us assume that the sets dom Q̇α contain all relevant names up to equivalence
and have the lowest possible rank.

5.2.1. Lemma. If α ≤ κ is inaccessible then Pα ⊆ Vα and if α is a Mahlo
cardinal then Pα is α-cc, dom Q̇α ⊆ Vα, and |Pα+1| = α.

Proof. Let α ≤ κ be inaccessible. Using the assumption made about the sets Q̇β

it is straightforward to check by induction that Pβ ∈ Vα for all β < α. Since Pα is
a direct limit Pα ⊆ Vα.

Suppose now that α is a Mahlo cardinal. Then the set of ordinals β < α such
that Pβ is a direct limit is stationary. By Lemma 5.1.1 Pα satisfies the α-cc. Using
this fact and the assumption about dom Q̇α being of lowest possible rank, it is again
straightforward to see that dom Q̇α ⊆ Vα. It follows that |Pα+1| = α. 2

It follows from the previous lemma that any Mahlo cardinal α ≤ κ remains
a regular cardinal in an extension by Pα. In fact we were a bit sloppy with the
definition of P since the use of the notation Cα(α) assumed α to be regular.

5.2.2. Lemma. If α < κ is a Mahlo cardinal then V Pα+1 and V P have the same
subsets of α.

Proof. By Lemma 5.2.1 Pα+1 satisfies the α+-cc and thus by Lemma 5.1.2 for
limit ordinals γ such that α + 1 < γ ≤ κ it holds that Pα+1

γ is a direct limit when
γ is regular and an inverse limit otherwise. Still by the fact that Pα+1 satisfies the
α+-cc all regular cardinals above α remain regular in V Pα+1 . Since


 “Q̇γ is α+-closed”

for all γ such that α+1 ≤ γ < κ we see that Pα+1 is isomorphic to an iteration that is
α+-game closed by Lemma 5.1.3. Note that condition (i) of Lemma 5.1.3 is trivially
fulfilled since the names dom Q̇γ contains all relevant names up to equivalence. 2

5.2.3. Lemma. If E is a weakly compact subset of κ in the ground model then
3(WCκ|E) holds in V P .

Proof. Given a P -generic set G we obtain a function g : κ → 2 by putting
g =

⋃
p∈G p(κ)Gκ . Define a function F on κ by

F (α) = {β < α : g(
∑
i<α

i+ β) = 1}

and let Ḟ be a P -name for F . (The sums appearing in the definition of F are ordinal
sums.) We shall show that F is the required sequence.
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Let φ be a Π1
1-sentence, let U̇ be a P -name for a subset of Vκ of the generic

extension, and suppose that

p 
 “〈Vκ,∈, U̇〉 |= φ” (9)

for some p ∈ P . Let Ȧ be a P -name for an arbitrary subset of κ. The lemma will
be proved if we can find a condition q ≤ p such that

q 
 “Ȧ ∩ α = Ḟ (α), α ∈ Ě, and 〈Vα,∈, U̇ ∩ Vα〉 |= φ” (10)

for some ordinal α < κ. Let us assume that the names Ḟ , U̇ , and Ȧ discussed above
have the lowest possible rank.

Using the reflection principle we can pick a set M ′ of cardinality κ that reflects
the formulae (9) and (10). Let us also assume that

Vκ ∪ {P,E, Ḟ , U̇ , Ȧ} ⊆M ′

and M ′ satisfies a large enough finite fragment of ZFC. Let π : M ′ → M be the
Mostowski collapse of M ′. By Lemma 5.2.1 and similar arguments the sets P , E,
Ḟ , U̇ , and Ȧ and their respective elements remain fixed under the isomorphism π.

Using Lemma 4.1.4 we pick a transitive set N and an elementary embedding
j : M → N such that κ ∈ j(E). The property of being a Mahlo cardinal is
obviously preserved when moving to submodels. Therefore κ is a Mahlo cardinal in
N .

By Lemma 5.2.1 applied on j(P ) in N we have j(P )κ = j(P )∩Vκ = Pκ. We can
assume that the sets dom Q̇α used in the definition of P are picked in a canonical
way using some well ordering in Vκ+1. Absoluteness then gives j(P )κ+1 = Pκ+1 = P
whereby P ∈ N . Let p ∈ P be arbitrary. Since Pκ is a direct limit there exists an
ordinal α < κ such that p|κ = p|α. By the properties of j and the fact that p|α ∈ Vκ

we then have j(p)|j(κ) = j(p|κ) = j(p|α) = p|α.
Fix some P -generic set G. From the above discussion we know that j(p)|(κ+1) ∈

G for every p ∈ G and therefore

D = {j(p)|[κ+ 1, j(κ) + 1) : p ∈ G}

is a subset of j(P )κ+1. In fact every nonempty function in D is defined only on the
singleton {j(κ)}. Using the fact that G is a filter it is straightforward to see that D
is a directed set.

We define a function d on {j(κ)} by letting d(j(κ)) be a P -name for a function
h : κ+ κ→ 2 such that

⋃
s∈G s(κ)Gκ ⊆ h and

ȦG = {α < κ : h(κ+ α) = 1}.

This is possible since {s(α)Gκ : s ∈ G} is Cκ(κ)-generic over V [Gκ]. Because P -
names are also j(P )j(κ)-names, we can require that d(j(κ)) ∈ dom(j(Q̇κ)). So d is in
fact a condition in j(P ). Because d = d|[κ+ 1, j(κ) + 1) we even have d ∈ j(P )κ+1.
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Let f = j(p)|[κ + 1, j(κ) + 1) be an arbitrary element of D. Thus we naturally
assume that p ∈ G. As noted before dom f = {j(κ)} unless f is the empty function.
By the definition of d we have p(κ)Gκ ⊆ d(j(κ))G and thus there is a condition q ∈ G
such that q 
 “p(κ) ⊆ d(j(κ))”. We may assume that q ≤ p. Now both q ∪ d and
q∪f are conditions in j(P ) and q∪d ≤ q∪f . Thus d ≤ f in the ordering of j(P )κ+1.

Let H be a j(P )κ+1-generic set over V [G] such that d ∈ H. Since d extends
every condition in D we have D ⊆ H and thus by the definition of D it is clear that
j(p)|[κ+ 1, j(κ) + 1) ∈ H for every p ∈ G. So the embedding j can be extended to
an embedding j : M [G] → N [G][H] via the definition discussed in Section 5.1.

Let us now proceed with the argument outlined in the beginning of the proof.
Suppose that G is generic over V and p ∈ G where p is a condition satisfying (9).

In V [G] it holds that 〈Vκ,∈, U̇G〉 |= φ. By absoluteness of Vκ and downward
absoluteness of universal statements this holds in N [G] too. Lemma 5.2.2 can be
applied with M as the ground model and by elementarity it can therefore be applied
on j(P ) with N as the ground model. Since κ is a Mahlo cardinal N [G][H] contains
no subsets of κ besides those in N [G]. Furthermore Vκ is absolute with respect
to the generic extensions under discussion. We can conclude that the statement
〈Vκ,∈, U̇G〉 |= φ holds in N [G][H].

In addition j(Ȧ)G∗H∩κ = j(ȦG)∩κ = ȦG. Since d ∈ G∗H we have j(Ȧ)G∗H∩κ =
j(Ḟ )G∗H(κ). Similarly j(U̇G) = j(U̇)G∗H and we have j(U̇)G∗H ∩ Vκ = U̇G. Thus it
holds in N [G][H] that there exists an ordinal α < j(κ) such that

j(Ȧ)G∗H ∩ α = j(Ḟ )G∗H(α), α ∈ j(E) and 〈Vα,∈, j(U̇)G∗H ∩ Vα〉 |= φ.

By elementarity it is true in M [G] that there exists an ordinal α < κ such that

ȦG ∩ α = ḞG(α), α ∈ E and 〈Vα,∈, U̇G ∩ Vα〉 |= φ

and therefore it is true in M that there exists an ordinal α < κ and a condition
q ≤ p such that (10) holds.

Through the fact that the collapsing isomorphism π : M ′ → M does not move
the parameters involved, (10) holds in M ′. As M ′ was chosen to reflect (10) the
same holds in V . 2

Thus we have proved the following result that was announced without proof
in [16] in the case E = κ. Hamkins [7] has independently obtained related results.

5.2.4. Theorem. If E is a weakly compact subset of κ then there exists a generic
extension in which 3(WCκ|E) holds.

Note that in the above proof we needed to argue that (10) holds in V since we
started out by assuming that (9) holds in V . Had we only assumed that (9) holds
in M , we would have had trouble arguing that (9) holds in N , since for all we know
N might contain subsets of Vκ that are not present in M .
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There is a well known version of Lemma 5.1.3, where κ-game closed forcing
notions are replaced by forcing notion that are α-directed closed for all α < κ. For
Lemma 5.2.3 this result would have sufficed. Furthermore, if we were only interested
in the preservation of weak compactness, we could have picked the condition d in
the proof of Lemma 5.2.3 just by referring to the fact that D is a small enough
directed set.

5.3. Killing a weakly compact set

It follows from Lemma 5.2.3 that the forcing notion of the previous section does
not only preserve weak compactness of κ, but preserves every weakly compact set.
Can one kill a weakly compact set by forcing while preserving the weak compactness
of κ? We shall now give an affirmative answer to this question. It even turns out
that there are no extraneous requirements on the set to be killed. In the spirit of [3]
it follows that a set is not weakly compact because of some intrinsic property of the
set itself.

For A ⊆ κ, we shall denote the tree consisting of bounded 1-closed subsets of A
by T 1(A). (We consider T 1(A) to be ordered by end extension.) Let E be a weakly
compact subset of κ. Let P = Pκ+1 be the Easton support iteration of (Q̇α : α ≤ κ)
where Q̇α is a name for T 1(E ∩α) whenever α is Mahlo and E ∩α is an unbounded
subset of α. For other ordinals α ≤ κ we let Q̇α be a name for the trivial forcing
notion. Be aware that we are reusing the letter P and some other symbols, but there
should be no confusion since we shall not make any explicit references to the earlier
forcing notion. Rather it is convenient since we can refer to the fact that some of
the lemmas in Section 5.2 hold verbatim for the forcing notion defined above.

We are interested in the case were both E and its complement are weakly com-
pact. We claim that forcing with P kills the weak compactness of κ \ E while
preserving the weak compactness of κ. We would like to emphasise that no other
requirements are placed on E. Note also that the situation at hand is drastically
different from killing stationary sets by forcing. Stationary sets can never, at a later
stage, regain the property of being stationary once it is lost. This is not the case
with weak compactness.

5.3.1. Lemma. If α is regular and A is an unbounded subset of α then the set
Dβ = {p ∈ T 1(A) : sup(p) ≥ β} is dense in T 1(A) for every β < α and T 1(A) is
α-game closed.

Proof. It is immediately clear that the sets Dβ are dense since it suffices to add
one point to a condition in order to extend it to a condition in one of the sets Dβ.

Player II can ensure a victory already in the first round of the game Gβ(T 1(A)).
If p0 is the first move made by player I and there exists an inaccessible cardinal
γ such that β ≤ γ < α then player II chooses p1 ∈ Dγ. It is then impossible for
player II to loose since any limit ordinal j ≤ β has small enough cofinality so that
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⋃
i<j sup(pi) can not be inaccessible unless the sequence (pi : i < j) is eventually

constant. In either case
⋃

i<j pi is a condition in T 1(A) and a valid move for player
I. 2

As in Section 5.2 we shall assume that the sets dom Q̇α used in the definition
of P contain all relevant names up to equivalence but are of lowest possible rank.
Both the formulation and the proof of Lemma 5.2.1 hold verbatim for the forcing
notion P of this section. The same goes for Lemma 5.2.2 except that in the proof
we must refer to Lemma 5.3.1 rather than the fact that Cγ(γ) is α-closed for every
regular γ above α.

5.3.2. Lemma. Every set S ⊆ E that is weakly compact in the ground model is
weakly compact in V P .

Proof. The argument we give is very similar to the proof of Lemma 5.2.3 if we
omit the references to the name Ȧ. Thus, given a Π1

1-sentence φ and a P -name U̇
for a subset of Vκ, then for every condition p ∈ P such that

p 
 “〈Vκ,∈, U̇〉 |= φ” (11)

we shall find a condition q ≤ p and an ordinal α < κ such that

q 
 “α ∈ Š, and 〈Vα,∈, U̇ ∩ Vα〉 |= φ”. (12)

We choose the models M and N and the elementary embedding j : M → N exactly
as in the proof of Lemma 5.2.3 except that let S take the role of E so that κ ∈ j(S).

Again it is clear that j(P )κ = Pκ and we use absoluteness to argue that j(P )κ+1 =
P . This time we have the parameter E involved in the definition, but it causes no
trouble since j(E) ∩ κ = E.

Now we define the function d on {j(κ)} by letting d(j(κ)) be a P -name for⋃
s∈G s(κ)Gκ ∪ {κ}. Fixing a P -generic set G we let C denote d(j(κ))G. Working in

V [G] we shall conclude the proof by checking that C ∈ T 1(j(E)). This suffices since
one can then proceed as in the proof of Lemma 5.2.3, picking a j(P )κ+1-generic set
H over V [G] such that d ∈ H and defining the extended elementary embedding
j : M [G] → N [G][H].

Directly by the definition it is clear that C ⊆ j(E). Since being 1-closed is
upwards absolute C ∩ γ is 1-closed for every γ < κ. It follows that C is 1-closed as
a subset of j(κ) since C ∩ κ is an unbounded subset of κ by Lemma 5.3.1. 2

5.3.3. Lemma. The weakly compact filter of V P contains E and every set that
was in the weakly compact filter of the ground model.

Proof. Let G be a P -generic set. The 1-club subsets of κ in the ground model
remain 1-closed in V P . Likewise C =

⋃
p∈G p(κ)Gκ is 1-closed as a subset of κ by



36 Alex Hellsten

similar arguments as in the proof of the previous lemma. It remains to prove that
the above mentioned sets are stationary in V [G] which in fact implies that they are
weakly compact.

If X is in the weakly compact filter in the ground model then X ∩ E is weakly
compact in the ground model and remains weakly compact in V P by Lemma 5.3.2.
In the setting of the proof of Lemma 5.3.2 it holds that

j(C) =
⋃

p∈G∗H
p(j(κ))(G∗H)j(κ)

and thus d(j(κ))G ⊆ j(C). It follows that κ ∈ j(C). We can then redo the argument
yielding Lemma 5.3.2 with C replacing S, and letting Ċ be a name for C we obtain

q 
 “α ∈ Ċ, and 〈Vα,∈, U̇ ∩ Vα〉 |= φ”

rather than (12). 2

Summarising what was said in Lemmas 5.3.2 and 5.3.3 we have the following
result:

5.3.4. Theorem. If both S and its complement are weakly compact subsets of
κ then there exists a generic extension in which the weakly compact ideal is proper,
extends the weakly compact ideal of the ground model, and contains the set S.

5.4. Killing weakly compact diamond

Let E denote the set of regular cardinals below κ and let m and n be positive nat-
ural numbers. Hauser [8] has proved that it is consistent that 3κ(E) fails although
κ is Πm

n -indescribable and GCH holds. Of course the consistency of the existence of
a Πm

n -indescribable cardinal must be assumed, and the result is an equiconsistency
result, to be more accurate. When κ is weakly compact, E is in the weakly compact
filter, so NSκ|E ⊆ WCκ whereby 3κ(WC) implies 3κ(E). Thus 3κ(WC) may fail
at a weakly compact cardinal. In this section we shall prove the consistency of the
failure of the weakly compact diamond in a more explicit way.

Suppose that α is a Mahlo cardinal, Ā is an α-sequence (Ai : i < α), and S is a
set of ordinals. Let K1

S(Ā) be the collection of pairs (C,A) such that

(i) C is a 1-closed and bounded subset of α

(ii) A ⊆ supC

(iii) If i ∈ C ∩ S then A ∩ i 6= Ai.

We order K1
S(Ā) by letting (C ′, A′) ≤ (C,A) if the conditions

(iv) C ′ ∩ (sup(C) + 1) = C



Diamonds on large cardinals 37

(v) A′ ∩ supC = A

hold.
Assume that V = L and S is a weakly compact subset of κ. We shall define an

iteration P of (Q̇α : α < κ+). The limit Pα is direct if α is regular or if cf α is Mahlo
and α < (cf α)+. All other limits are inverse.

Simultaneously with the sequence (Q̇α : α < κ+) we shall define a sequence
(τα : α < κ+). If there exists a Mahlo cardinal β ≤ κ such that β ≤ α < β+ then
(τα, Q̇α) is the <L-least pair such that

(vi) τα is a Pα-name for a subset sequence indexed by β

(vii) (τα, Q̇α) 6= (τξ, Q̇ξ) whenever β ≤ ξ < α

(viii) Q̇α is a name for K1
S(τα)

(ix) dom Q̇α is the set of all relevant Pβ-names up to equivalence and is of lowest
possible rank

if such a pair exists. Otherwise τα is arbitrary and Q̇α is the canonical name for the
trivial forcing notion. If the conditions above hold then for any s ∈ Pα+1, Cs(α) and
As(α) denote Pα-names such that

s|α 
 “š(α) = (Cs(α), As(α))”.

By conditions (viii) and (ix) Cs(α) and As(α) can actually be assumed to be Pβ-names
and the condition s|α could be replaced by s|β above.

We shall often encounter sets written as
⋃

s∈Gα+1
Cs(α) or

⋃
s∈Gα+1

As(α) where G
is a fixed generic set. In this setting Cs(α) and As(α) do not denote the names but
rather their interpretations by Gα where G is the same generic set as in the subscript
of the union symbol.

Again both the statement and the proof of Lemma 5.2.1 holds verbatim for our
latest forcing notion. But now Lemma 5.2.1 does not tell us anything about P itself
since P has length κ+ and not κ+ 1 as was the case with the forcing notions dealt
with earlier. Nevertheless our forthcoming arguments rely on the fact that P to some
extent resembles an iteration of length κ+ 1. The idea is that for a Mahlo cardinal
β ≤ κ one can think of the steps between β and β+ as a single step consisting of a
product forcing.

5.4.1. Lemma. Let β ≤ κ be a Mahlo cardinal. In V Pβ there is an embedding
P β

β+ → Cβ(β+) that preserves incompatibility.

Proof. We shall find an embedding into Cβ((β+ \β)×2×β) rather than Cβ(β+).
Fix a Pβ-generic set Gβ. Given a condition p ∈ Pβ+ such that p|β ∈ Gβ we shall
define a partial function f : (β+ \ β) × 2 × β → 2. For α ∈ dom p let Cα and Aα

denote the interpretations of the Pβ-names Cp(α) and Ap(α) respectively.
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If α ∈ dom(p) \β then f |({α}×{0}×β) is like the characteristic function of Cα

with domain {α} × {0} × sup(Cα + 1). Furthermore f |({α} × {1} × β) has domain
{α} × {1} × sup(Cα) and is like the characteristic function of Aα. If α ≥ β but
α /∈ dom p then dom(f |({α} × 2 × β)) is empty. The embedding i is defined by
letting p|[β, β+) be mapped to f .

Suppose p and q are conditions in Pβ+ such that p|β and q|β are in Gβ. Let
f = p|[β, β+) and g = q|[β, β+) and suppose that i(f) and i(g) are compatible in
Cβ((β+ \ β)× 2× β). Then for α ∈ (dom(p) ∩ dom(q)) \ β we have either

i(f)|({α} × 2× β) ⊆ i(g)|({α} × 2× β)

or vice versa. We define a function h by letting h(α) = f(α) if the situation is as
above and h(α) = g(α) if the subset relation is reversed. For ordinals α ≥ β such
that only one of f(α) and g(α) is defined we let h(α) equal the defined one.

There exists is common extension r ∈ Gβ of p|β and q|β such that r ∪ h is a
common extension of r∪ f ≤ r∪ g and thereby a common extension of p and q. For
P β

β+ it follows that h is a common extension of f and g. 2

5.4.2. Lemma. Let β ≤ κ be a Mahlo cardinal. Pβ+ satisfies the β+-cc.

Proof. Since Cβ(β+) satisfies the β+-cc, Lemma 5.4.1 implies that P β satisfies
the β+-cc in V Pβ . On the other hand Pβ even satisfies the β-cc by the analogue of
Lemma 5.2.1. 2

5.4.3. Lemma. If α is regular and Ā is an α-sequence then the set Dβ =
{(C,A) ∈ K1

S(Ā) : sup(C) ≥ β} is dense in K1
S(Ā) for every β < α and K1

S(Ā)
is α-game closed.

5.4.4. Lemma. If β < κ is a Mahlo cardinal then V Pβ+ and V P have the same
subsets of β.

Proof. Because Pβ+ is β+-cc by Lemma 5.4.2, we can apply Lemma 5.1.2 to P β+
.

Thus for limit ordinals γ such that β+ < γ < κ+ the limit P β+

γ is direct if γ is regular
or cf γ is Mahlo and γ < (cf γ)+. We are going to finish the proof by showing that
an application of Lemma 5.1.3 yields that P β+

is b+-game closed.
Clearly conditions (ii) and (iii) of Lemma 5.1.3 are fulfilled. For condition (i) we

need to note that the winning strategy is definable using parameters only from the
ground model, but the definition is indeed very simple, as was seen in the proof of
Lemma 5.4.3. 2

As an immediate corollary of the previous lemma is the following:

5.4.5. Lemma. The name Q̇α represents a non-trivial forcing notion for every
ordinal α < κ+ such that cf α is Mahlo and α < (cf α)+.
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We shall develop an argument similar to the proofs of Lemmas 5.2.3 and 5.3.2
to show that P preserves weakly compact sets. Since the details are slightly more
involved we shall break it into a sequence of lemmas and fix some mathematical
objects for the duration of this section as we go along.

Assume that E is weakly compact subset of κ and

p 
κ+ “〈Vκ,∈, U̇〉 |= φ” (13)

where p ∈ P , U̇ is a nice name for a subset of κ and φ is a Π1
1-sentence. By

Lemma 5.4.2 there exists an ordinal η < κ+ such that p ∈ Pη and U̇ is a Pη-name.
Fix an arbitrary η < κ+ with these properties. For convenience we shall assume
that η ≥ κ.

5.4.6. Lemma. p 
ζ “〈Vκ,∈, U̇〉 |= φ” whenever η ≤ ζ ≤ κ+.

Proof. This is because Vκ is absolute w.r.t. V Pζ and V Pκ+ , p ∈ Gζ implies
p ∈ Gκ+ , and Π1

1-truth is downward absolute. 2

Pick a set M ′ of cardinality κ that reflects the formulae (13) and

q 
 “α ∈ Š, and 〈Vα,∈, U̇ ∩ Vα〉 |= φ” (14)

such that <κM ′ ⊆ M ′ and M ′ contains a bijection κ → η. Furthermore make sure
that M ′ satisfies a large enough finite fragment of ZFC, Vκ ⊆ M ′, η + 1 ⊆ M ′, and
E, S, Pη, and U̇ are elements of M ′. Let π : M ′ →M be the Mostowski collapse.

5.4.7. Lemma. For every α ≤ η we have

(a) Pα ⊆M ′

(b) π|Pα = idPα

(c) π(Pα) = Pα

and furthermore E, S, and U̇ are mapped on themselves by π.

Proof. (c) always follows from the others, and all is clear for α ≤ κ. For α > κ
we proceed by induction. Inverse limits work since <κM ′ ⊆ M ′. For α = β + 1 we
(just) need to show that dom Q̇β ⊆ M ′ and π| dom Q̇β = id. But this is clear since
M ′ contains all antichains of Pκ. 2

By Lemma 4.1.6 we can find a transitive set N and an elementary embedding
j : M → N so that <κN ⊆ N and κ ∈ j(E). Let ζ = (κ+)N . By our choice of M ′

we have η < ζ < j(κ).

5.4.8. Lemma. j(Pη)α = Pα for all α ≤ ζ.
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Proof. The conclusion is immediate for α ≤ κ. We proceed by induction. Since
<κN ⊆ N cofinality is absolute for ordinals α < ζ. For the same reason cf ζ = κ
(|N | = κ by its definition). Thus the choices between direct and inverse limits are
the same for j(Pη)α and Pα.

Suppose that Pα is an inverse limit and p ∈ Pα. Again <κN ⊆ N together with
the induction hypothesis implies that p ∈ j(Pη)α. We have now handeled the limit
steps of the induction.

Now suppose that α = β+1 > κ. Here we just need to check that the conditions
(vi)–(ix) in the definition of P are absolute for N . But these conditions can be
rendered to refer to formulae in the forcing language only in quantifier free ways. 2

We shall need to refer to the above lemma for α = η, but note that η can be
arbitrarily large.

We define a function d on {j(α) : κ ≤ α < η} by letting d(j(α)) be a Pα+1-name
for the pair (

⋃
s∈Gα+1

Cs(α) ∪ {κ},⋃s∈Gα+1
As(α)). Furthermore we choose d(j(α))

from dom(j(Q̇α)) whenever possible.

5.4.9. Lemma. Suppose that κ ≤ ν ≤ η. If there exists a condition p ∈ Gj(ν)

such that dom d ⊆ dom p ⊆ [ζ, j(η)) and

p|j(α) 
 “d(j(α)) ∈ Q̇j(α) and p(j(α)) ≤ d(j(α))”

for every α ∈ [κ, ν) then j extends to an elementary embedding j : M [Gν ] →
N [Gj(ν)].

Proof. For notational simplicity we shall assume that ν = η. For other ordinals
ν the proof is the same apart from taking the appropriate restrictions. We need to
show that j(q) ∈ Gj(η) whenever q ∈ Gη. We shall first show that q ∪ p ≤ j(q) and
then finish the proof by checking that q ∪ p ∈ Gj(η) (we know that q ∪ p ∈ j(Pη)
since η < j(κ)).

First note that |dom q| < κ whereby dom(j(q)) = j[dom q]. We also have
j(q)|j(κ) = j(q)|κ = q|κ. Thus q ≤ j(q)|j(κ) and dom(j(q)) ⊆ dom(q ∪ d). Since
j(q(α)) = q(α) for all α ∈ dom q we have q ∪ p|j(α) 
 “d(j(α)) ≤ j(q(α))” for all
α ∈ dom(q) ∩ [κ, η). Thus q ∪ p ≤ j(q). Finally there is a common extension of q
and p in Gj(η) and since q ∪ p = inf{q, p} it is clear that q ∪ p ∈ Gj(η). 2

5.4.10. Lemma. Suppose that κ /∈ j(S) and κ ≤ ν ≤ η. Then d|j(ν) ∈ j(Pν).

Proof. First note that {j(α) : κ ≤ α < η} = j(f)|κ where f is any function in
M that maps κ onto [κ, η), and therefore dom d ∈ N . It is also easy to check that
dom d is bounded below every j(κ)-cofinal cardinal.

By Lemma 5.4.8 the Pα+1-name d(j(α)) is also a j(Pν)j(κ)-name for all α ∈
[κ, η). We shall now proceed by induction on ν. The limit steps are clear by the
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facts mentioned above. Suppose that ν = α + 1. By the induction hypothesis
d|j(α) ∈ j(Pα) and by Lemma 5.4.9 it follows that

d|j(α) 
 “j(τα)i = (τα)i” (15)

for all i < κ. Here the subscript i is used to indicate the ith element of the sequence
that is the interpretation of the name in question. By the induction hypothesis we
only need to worry about d(j(α)) to see that d|j(ν) ∈ j(Pν). By (15) and the fact
that κ /∈ j(S) we are basically done. We are left with checking that

d|j(α) 
 “
⋃

s∈Gα+1
Cs(α) ∪ {κ} is 1-closed”

but this is similar to the last paragraph of the proof of Lemma 5.3.2 and relies on
Lemma 5.4.3. 2

5.4.11. Lemma. If E ⊆ κ is disjoint from S and weakly compact in the ground
model then 3(WCκ|E) holds in V P .

Proof. Let Ȧ be an arbitrary P -name for a subset of κ. Since η was chosen to
be arbitrary large we can assume that Ȧ is a Pη-name. Since we are now assuming
that E is disjoint from S we have κ /∈ j(S) and therefore d is a condition in j(Pη)
by Lemma 5.4.10.

Fix a Pη-generic set G and consider the set B ⊆ κ+κ such that B∩κ = (Ad(j(κ)))G

and ȦG = {α < κ : κ + α ∈ B}. Fix an ordinal γ < j(κ) such that κ + κ ≤ γ
and γ /∈ j(S). Such ordinals certainly exists since j(E) and j(S) are disjoint. Let
q be a condition that is exactly like d except that q(j(κ)) is a name for the pair
(B, (Cd(j(κ)))G ∪ {γ}). Clearly q ≤ d.

Now the proof proceeds as the proof of Lemma 5.4.18 except that we assume that
q ∈ Gj(η). Using Lemma 5.4.10 the claim follows in similar fashion as we obtained
the result of Lemma 5.2.3; the diamond sequence is essentially the set

⋃
s∈Gκ+1

As(κ).
2

One could hope to be able to prove the preservation of every weakly compact
set using Lemma 5.4.9. The argument would be similar as the one in the proof
of Lemma 5.4.10. But now we face the possibility that κ ∈ j(S), when trying to
inductively extend the condition p of Lemma 5.4.9. So in addition we would have
to find a condition q ∈ j(Pν) such that q ≤ p, dom(q) ∩ ζ is empty, and

q 
 “
⋃

s∈Gα+1
As(α) 6= j(τα)κ”

so that we could define an extended condition p′ by letting p′|j(ν) = q and p′(j(ν)) =
d(j(ν)).

However, without any substantial restrictions on which names τα can be chosen
in the definition of P , we will inevitably face a situation in which

p 
 “
⋃

s∈Gα+1
As(α) = j(τα)κ”
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making the choice of q above impossible. On the other hand, any narrowed down
set of possible names τα which enables us to put q = p is too restrictive. A simple
argument as in the proof of Lemma 5.4.11 would then show that the forcing does
not perform the intended task. Notice that a diamond sequence could equally well
be “read” from some other coordinate besides κ, the coordinate that was used in
the proof of Lemma 5.4.11.

Restricting the set of possible names τα does not seem to be fruitful. Instead we
shall use ideas developed by Hauser [8] to find an extension of the embedding j by
replacing a part of the generic set with an isomorphic copy.

We say that a subset S of κ+ is a complete set of coordinates (with respect to
P ) if p|S ∈ P for every condition p ∈ P . In this setting P |S denotes {p|S : p ∈ P}.

5.4.12. Lemma. If S and S ′ are complete sets of coordinates such that κ ⊆
S ⊆ S ′ then P |S is a complete suborder of P |S ′.

Proof. Let p and q be conditions in P and let α ∈ dom(p) ∩ dom(q) \ κ. By
condition (ix) in the definition of P we have p|α 
 “p(α) ≤ q(α)” if and only if
p|κ 
 “p(α) ≤ q(α)”. Thus it is clear that p|S ′ ≤ q|S ′ implies p|S ≤ q|S. Using the
observation above it is straightforward to check the claim of the lemma. 2

Let π be a bijective partial function κ+ → κ+. If

(i) π|κ = idκ

(ii) Both the domain and range of π are complete sets of coordinates

(iii) p 7→ p ◦ π−1 defines an isomorphism between P | domπ and P | ran π

then we say that π is P -complete. Note that the definition is symmetric in the sense
that π is P -complete if and only if π−1 is P -complete.

5.4.13. Lemma. Suppose that π is P -complete, α ⊆ domπ, α /∈ domπ, |π| <
κ+ and β < κ+. Then there exists an ordinal γ such that β ≤ γ < κ+ and the
extended function π ∪ {(α, γ)} is a P -complete bijection.

Proof. Consider the Pα-name τα. Since α ⊆ domπ we can look upon τα as a
(P | domπ)-name. Here we have to note that Pα is a complete suborder of P | domπ,
but this is obvious since we are restricting to an initial segment α of domπ.

Let τπ
α denote the (P | ran π)-name that corresponds to τα under the isomorphism

p 7→ p ◦ π−1. By Lemma 5.4.12 we can look upon τπ
α as a Pγ-name for a subset

sequence indexed by κ, where γ is any ordinal such that sup ran π ≤ γ < κ+.
Condition (vii) in the definition of P is taken to talk of the names literally as sets.
Therefore there is unboundedly many ordinals γ below κ+ such that τγ is equivalent
to τπ

α . Let us fix such an ordinal γ ≥ max{β, sup ran π}. We shall prove that γ is
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as desired. Let us denote the extended mapping by π too, since there can be no
confusion. Thus we have π(α) = γ.

Let p ∈ P | dom(π) be arbitrary. We shall first show that p ◦ π−1 ∈ Pκ+ . Now
suppose that α ∈ dom p. (It should be clear from the argument that follows that
other ordinals in dom p do not present any problems.) We must prove that

p(α) ∈ dom Q̇π(α) (16)

where Q̇π(α) is a name for K1
S(τπ(α)) and that

(p ◦ π−1)|π(α) 
 “p(α) ∈ K1
Š
(τπ(α))”. (17)

But by our choice of π(α) we have (p ◦π−1)|π(α) = p|(κ+ \ {α}) ◦π−1. Furthermore
τπ(α) corresponds essentially to τα under the isomorphism between P |(dom(π)\{α})
and P |(ran(π) \ {π(α)}), and p(α), being a Pκ-name corresponds to itself. Thus

p|(κ+ \ {α}) 
 “p(α) ∈ K1
Š
(τα)” (18)

is in fact equivalent to (17). But τα is a Pα-name and therefore the forcing language
statement in (18) depends only on the Pα-generic part of a given generic set. So in
fact

p|α 
 “p(α) ∈ K1
Š
(τα)” (19)

is equivalent to (17), and (19) holds directly by the definition of P .
Since the equivalence between (17) and (19) holds not only for p(α) but also for

other Pκ-names, (16) holds by absoluteness of the choice of the names Q̇α. Using
nearly the same argument we can see that the mapping p 7→ p ◦ π−1 from P | domπ
into P | ran π is surjective. That the ordering is preserved by the mapping is obvious
by arguments similar to those in the proof of Lemma 5.4.12.

The domain of the extended function π is clearly complete, since α ⊆ domπ.
Now we are left with proving that ranπ is complete, but this also becomes clear
when one considers the equivalence of (17) and (19). 2

5.4.14. Lemma. Suppose that S is a collection of P -complete partial functions
κ+ → κ+ such that π ⊆ π′ or π′ ⊆ π for every pair of functions π and π′ from S.
Then

⋃
S is a P -complete function.

Proof. Let A =
⋃

π∈S domπ and let p ∈ P . We shall show that p|A ∈ P .
Let α ∈ dom(p) ∩ A be arbitrary. We are using induction on α so let us assume
that p|(A ∩ α) ∈ P . There exists a function π ∈ S such that α ∈ domπ. Now
p|(dom(π) ∩ α) 
 “p(α) ∈ Q̇α”. Since p|(A ∩ α) ≤ p|(dom(π) ∩ α) we are done.

The above argument works for unions of P -complete sets of coordinates in full
generality. Thus also B =

⋃
π∈S ran π is P -complete. Now let π =

⋃
S and suppose

that p ∈ P | domπ. It is not difficult to show that p ◦ π−1 ∈ P . Note that just by
considering properties of sets of ordinals, every strictly increasing sequence (γi : i <
κ) of ordinals in ran π contains a subsequence (γi : i ∈ I) such that |I| = κ and
(π−1(γi) : i ∈ I) is strictly increasing. Thus dom(p ◦ π−1) conforms to the definition
of P . 2
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5.4.15. Lemma. Any P -complete partial function π : κ+ → κ+ such that |π| <
κ+ can be extended to a P -complete total function κ+ → κ+.

Proof. The before-mentioned symmetry allows us to apply Lemma 5.4.13 not
only to a P -complete function π but also to the inverse π−1. Thus using a standard
back and forth type argument it is straightforward to use Lemmas 5.4.13 and 5.4.14
to complete a given partial function to a total one. 2

In the argument that follows we shall cheat slightly. Actually Lemmas 5.4.16
and 5.4.17 are intertwined in an induction argument in the same way that Lem-
mas 5.4.9 and 5.4.10 are. But we shall actually refer to a modified version of
Lemma 5.4.17 before proving it, in order not to break the natural flow of the pre-
sentation.

Fix a Pζ-name σ for a uniform winning strategy for player II in Gζ(j(Pη)ζ). We
shall inductively define a P -complete function π : η → ζ simultaneously with a
sequence (ḟν : κ ≤ ν < η) of Pζ-names for forcing conditions in j(Pη)ζ such that the
conditions introduced below are upheld for as long as possible. As one might expect
we shall then prove that the conditions indeed can be realised throughout the entire
construction. The construction takes place in N .

The induction is on ν where κ ≤ ν < η. We shall try to make sure that

(iv) π|(ν + 1) is P -complete

and that the following holds in any generic extension by Pζ :

(v) (fi : i < ν) is a decreasing sequence of conditions in j(Pη)ζ that form
the moves of player I in some instance of Gζ(j(Pη)ζ) where player II plays
according to the interpretation of σ

(vi) j(ν) = max dom fν and fν(j(ν)) is a Pπ(ν)+1-name such that


 “fν(j(ν)) = (
⋃

s∈Ġπ(ν)+1
Cs(π(ν)) ∪ {κ},

⋃
s∈Ġπ(ν)+1

As(π(ν)))”.

Note that condition (vi) closely resembles the definition of the function d apart from
the coordinates being shifted by π.

5.4.16. Lemma. There exist a function π : η → ζ and a sequence (ḟν : κ ≤ ν <
η) satisfying the conditions in the definition for all ordinals ν such that κ ≤ ν < η.

Proof. Suppose that (ρi : κ ≤ i < ν) and π|ν are defined successfully maintaining
conditions (iv)–(vi) for ordinals smaller than ν. We shall define π(ν) and ḟν so that
the conditions hold for ν.

Arguing in an arbitrary generic extension of N by Pζ , we can use the induction
hypothesis about condition (v) to conclude that there exists a lower bound f for
{fi : i < ν}. Fix such a condition f and if ν happens to be a successor ordinal,
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let f be the choice of player II by the winning strategy. (Recall that player I plays
first at limit ordinals.) Since the winning strategy is uniform we can require that
f ∈ j(Pν)ζ .

Consider a further generic extension by j(Pν)ζ such that f is in the generic set.
Let j(τν)κ denote the κth element in the sequence that is the interpretation of the
j(Pν)-name j(τν). By standard density arguments there exist at most one ordinal
α < ζ for which

⋃
s∈Gα+1

As(α) = j(τν)κ.
Let us now go back to argue in the generic extension by Pζ and let j(τν)κ denote

a j(Pη)ζ-name for the object under discussion. By the previous remarks we can find
a condition f ∗ ∈ j(Pν)ζ and a fixed ordinal αν such that f ∗ ≤ f and

f ∗ 
 “
⋃

s∈Gα+1
As(α) 6= j(τν)κ” (20)

for all ordinals α such that αν < α < ζ.
Continuing the argument in N we consider Pζ-names for the objects αν and f ∗.

Since Pζ satisfies the ζ-cc by Lemma 5.4.2 applied inside N , the possible values of
αν are bounded below ζ. Now we fix π(ν) above this upper bound so that

αν < π(ν) (21)

holds in any generic extension by Pζ where αν is the realisation of the name we
chose and π(ν) is fixed in the ground model N .

At the same time we can make sure that π|(ν+1) is P -complete which is possible
by Lemma 5.4.13. If ν is a limit ordinal we shall also need to refer to Lemma 5.4.14
to first conclude that π|ν is P -complete.

To deal with condition (vi) we first need to note that {j(ν) : κ ≤ ν < η} ∈ N ,
but this was already dealt with at the beginning of the proof of Lemma 5.4.10. Now
pick ḟν such that f ∗ = fν |j(ν) in any generic extension by Pζ , and condition (vi) is
satisfied. The only thing left to verify is that fν actually is a condition in j(Pη)ζ .

At this point we are going refer to the fact that f ∗ behaves for j(Pν)ζ as fη does
for j(Pη)ζ in Lemma 5.4.17. The suspicious reader may read Lemma 5.4.17 and
the definitions before and after it, replacing η by ν. So similarly as in the proof of
Lemma 5.4.10 we may extend j to see that

f ∗ 
 “j(τν)i = (τν)i”

for all i < κ. Furthermore

f ∗ 
 “
⋃

s∈Gπ(ν)+1
Cs(π(ν)) ∪ {κ} is 1-closed”

but now also the potential problem that occurs if κ ∈ j(S) is handled by (20) and
(21). 2

Let p be the condition fixed by (13). Fix a Pζ-generic set Gζ such that p ◦ π−1 ∈
Gζ . Since π is P -complete {q ◦ π−1 : q ∈ Pη} = P | ran π is a complete suborder of
Pζ . Thus by putting

Gπ
η = {q ∈ Pη : q ◦ π−1 ∈ Gζ}
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we obtain a Pη-generic set Gπ
η such that p ∈ Gπ

η . Consider the forcing notion j(Pη)ζ

in the extension N [Gζ ] and let fη be a lower bound for the sequence (fν : ν < η).
Fix a j(Pη)ζ-generic set H over N [Gζ ] such that fη ∈ H.

5.4.17. Lemma. q◦π−1∪fη is a condition in j(Pη) such that q◦π−1∪fη ≤ j(q)
for every q ∈ Pη and therefore j(q) ∈ Gζ ∗H for every condition q ∈ Gπ

η .

Proof. Let q ∈ Pη. As before we know that dom(j(q)) = j[dom q]. Since
j(q)|j(κ) = q|κ = (q ◦ π−1)|κ, we can conclude that q ◦ π−1 ≤ j(q)|j(κ) and
dom(j(q)) ⊆ dom((q ◦π−1)∪fη). Let α ∈ dom(q)∩ [κ, η) be arbitrary. We first note
that j(q)(j(α)) = q(α) = (q ◦ π−1)(π(α)). By condition (vi) in the definition of the
sequence (fα : α < η) we have

(q ◦ π−1)|(π(α) + 1) 
 “fα(j(α)) ≤ (p ◦ π−1)(π(α))”

and since fη ≤ fα we can conclude that q◦π−1∪fη ≤ j(q). Since (q◦π−1)∪fη ∈ Gη∗H
the second claim is obviously true. 2

By Lemma 5.4.17 the equation

j(τGπ
η
) = j(τ)Gζ∗H

is well behaved and can be used to define an extended elementary embedding j :
M [Gπ

η ] → N [Gζ ][H]. Let us fix such an embedding. Let us also extend π to a total
P -complete bijection ζ → ζ. This is possible by applying Lemma 5.4.15 inside N .
We shall denote the extended function by π too, so that our original function is π|η.
Now we are set to prove the crucial lemma.

5.4.18. Lemma. Every set E ⊆ κ that is weakly compact in the ground model
is weakly compact in V P .

Proof. Recall that we had fixed a weakly compact set E such that κ ∈ j(E).
Since this set E was completely arbitrary we can let it exemplify the E of the
lemma. Let U̇π denote the Pζ-name that corresponds to the Pη-name U̇ under the
automorphism p 7→ p ◦ π−1 of Pζ . Since

p 
ζ “〈Vκ,∈, U̇〉 |= φ”

by (13) and Lemma 5.4.6, it then clearly follows that

p ◦ π−1 
ζ “〈Vκ,∈, U̇π〉 |= φ”.

Now U̇π
Gζ

= U̇Gπ
η

and since the condition p ◦π−1 ∈ Gζ we have that 〈Vκ,∈, U̇Gπ
η
〉 |= φ

holds in V [Gζ ] and thus in N [Gζ ].
Since it is true (Lemma 5.4.4) in N [Gζ ] that j(Pη)ζ does not add subsets of

κ the statement holds in N [Gζ ][H]. By definition j(U̇Gπ
η
) = j(U̇)Gζ∗H . Thus by
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elementarity and the fact that U̇Gπ
η

= j(U̇Gπ
η
) ∩ Vκ it holds in M [Gπ

η ] that there

exists an ordinal α ∈ E such that 〈Vα,∈, U̇Gπ
η
∩ Vα〉 |= φ.

Since p ∈ Gπ
η it holds in M that there exists an ordinal α ∈ E and a condition

q ≤ p in Pη such that
q 
η “〈Vα,∈, U̇ ∩ Vα〉 |= φ”

and by the choice of M ′ this holds in V too. Finally by absoluteness with respect
to the generic extensions involved, the above holds with η replaced with κ+. 2

Having proved that weak compactness is preserved, we move on to checking that
forcing with P really kills the desired version of weakly compact diamond.

5.4.19. Lemma. For every α < κ+ the interpretation of τα is not a 3(WCκ|S)-
sequence in V P .

Proof. In similar fashion as for Lemma 5.3.3 we need to show that

C =
⋃

s∈Gα+1

Cs(α)

is stationary in V P . Since η < κ+ may be arbitrary large, we may assume that
α < η. By Lemma 5.4.2 it is enough to show that C is stationary in V Pη . But
Cd(j(κ)) ⊆ j(C) so κ ∈ j(C) and the argument of Lemma 5.4.18 yields that C is
weakly compact in V Pη . 2

5.4.20. Lemma. 3(WCκ|S) fails in V P .

Proof. By the previous lemma we only have to check that every subset sequence
indexed by κ in V P is the realisation of τα for some α < κ+. 2

The result of this section is a combination of Lemmas 5.4.11, 5.4.18, and 5.4.20.

5.4.21. Theorem. If S is a weakly compact subset of κ then there exists a
generic extension that preserves every weakly compact subset of κ and in which
3(WCκ|S) fails and 3(WCκ|E) holds for every weakly compact E in the ground
model such that E is disjoint from S.
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