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Introduction

In this doctoral thesis we study the model theory of the languages L.,
M) and Ak-Vaught sentences. The languages L), were first introduced by A.
Tarski and since then they have been studied in [Ka] by C. Karp, in [Ke] by H.
J. Keisler and in [Ba] by K. J. Barwise, among others. w;w-Vaught sentences
were first introduced by R. L. Vaught in [Va]. Earlier, L. Svenonius had studied
a special case of wjw-Vaught sentences in [Sv]. Since then Ax-Vaught sentences
have been studied in [KM| by M. Karttunen and in [HM| and [Ma2] by V. Harnik
and M. Makkai, e.g. (In [KM] Karttunen actually studies Hintikka-Rantala [HR|
languages V), with maximal semantics instead of Ak-Vaught sentences, but these
are essentially the same.) M), languages were first defined by M. Karttunen in
[KM] by modifying the definition of N).-languages (see above).

The need to study infinitary languages arose when the expressive power of
finitary languages proved to be rather limited. For example we cannot express
even in Lo, that an ordering is wellfounded.

For a long time, there have been a lot of results on languages that allow only
relatively little quantifying, like Ly, or L, , but very little has been known of
languages that allow a lot of quantifying, like L,+,., £ > w. In this doctoral thesis
the author has tried to answer the most obvious questions on the expressive power
of the languages Ly., M), and the Ax-Vaught sentences. The results are new,
of course, but the main results in Chapter 5 have been known in the case kK = w
(see [Mal]). This work continues the work started in [Oi2], [Oi3] and [Oi4]. The
reader can find in [Ke|, [Di] and [KM], e.g., what is known about such properties
of the languages L), M), and the Ax-Vaught sentences as compactness and
downward-Léwenheim-Skolem properties.

The name of this doctoral thesis, ”Games and infinitary languages,” refers
to our project in the University of Helsinki logic seminar led by J. Viinanen and
J. Oikkonen. In the project we have tried to use games instead of induction,
e.g., in defining concepts and proving theorems in the model theory of infinitary
languages (see, e.g., Definition 5.7). In [Ac] P. Aczel has shown that for every
inductive definition there is such a game of length w that by using the game we
can define the same concept as by the induction. J. Oikkonen has shown that in
many cases we can let the players play these games more than w steps and that
in this way we get new natural concepts.

This doctoral thesis is divided into three parts. In the first part, consisting
of Chapters 1 and 2, we prove an approximation theorem for the closed s-games.
This theorem is the heart of the doctoral thesis. In the second part, consisting of
Chapter 4, we take a look at the phenomenon that makes games of length > w
a lot harder to handle than games of length w, namely non-determinacy. In the
last part, consisting of Chapters 3 and 5, we study the expressive power of the

languages Ly, M), and Ak-Vaught sentences. For Chapter 5 one does not have
to read Chapter 4.



1. Closed s-games

In this doctoral thesis we deal with many different games, but the central
technical ideas we use are common to all of them. And so we begin by studying
games in general.

We will use the word ”game” in the common sense. All the games in this
paper are played by two players, which we call A and E. It is practical to assume
that A is male (he) and E is female (she) (this convention is from [Ho]). All the
moves in these games are made by choosing elements from certain sets. Most of
the games in this paper are what we will call standard games:

1.1 Definition. Let o be an ordinal, let I ={Ig:f < o} and J = {Jp:
B < o} be families of sets and let W C (Mp<alp) X (Mp<adp). Then the triple
G = (I,J,W) is a standard game (s-game in short) of length o. It is played by
A and E. In every move 3 < a, first A chooses an element g € Ip and then E
chooses an element yg € Jp. We say that E wins the game if the pair of sequences
(z,y) = ((z8)p<as (yp)p<a) chosen during the game belongs to W.

For any cardinals x and A we say that the s-game G = (I,J,W) is a A, k-
game if it is of length « and for all & <« Ial,|Ja] < A. The s-game G is an
oo, k-game if for some A G is a X, k-game. We define X, oco-games and oo, 00-
games in a similar way.

For every game we associate the concepts » 3 strategy of A for the game” and
» a strategy of E for the game.” In the case of the s-games we do this as follows:

1.2 Definition. A strategy of A (E) for the s-game G = (I,J,W) of length
o isaset F={fs: 08 < a} of functions fg : lly<pJy = I (fo:My<ply — Jp)-

Usually we are not interested in strategies in general but in winning strategies.

1.3 Definition. A strategy of a player for a game is winning if the player
can always win the game by playing according to this strategy. (We say, e.g., that
E plays according to her strategy F = {fp: B < a} for an s-game if in every move
B < o she chooses fs(zos ..., zp) ; Where Zo,...,Tp are the previous choices of A.)

Our first major goal in this paper is to prove Theorem 2.3, which is the main
tool in Chapter 5. It does not hold for all s-games, but it does for the closed ones.

1.4 Definition. An s-game G = (I, J,W) of length « is closed if there are
such sets W5 C (Tly<ply) X (Tly<pty), B < e, that

((Z4)y<ar (Yy)v<a) €W

if and only if for all f < «

((z+)~<p> (yv)'*r<ﬁ) € Wp.
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We conclude this chapter by defining approximations for the s-games.

We say that a well-founded tree T = (T, <) is neat if for any two different
points = and y without immediate predecessor, the sets {z € T : z < z} and
{z € T : 2 < y} are not the same. For any cardinals x and A we say that
T = (T,<) is a A,k-tree if it is a neat, well-founded tree and no point in T has
> X immediate successors and there are no branches of length > « in T'. As with
the games, we say that T is an co, k-tree if it is a A, k-tree for some ). Similarly
we define A, co-trees and oo, co-trees.

1.5 Definition. Let G = (I,J,W) be an s-game of length x for some
cardinal k and let T be an oo,x-tree. The T-approximation GT of G is the
following game played by A and E. They play GT as they play G except that
during the game they go up the tree T as chosen by A. The game is over when
they cannot go up the tree any more. So the rules are the following: for each move
a, first A chooses elements t, € T and z, € I, so that

1. if o is a successor, @ = 8+ 1, then t, is an immediate successor of tg;

2. if a is a limit, then t, = Supg<ats.
After this, the player E chooses yo € J,. The game continues only as long as A
can choose t, satisfying 1 and 2. When the game is over, the players have made «
moves for some o < k and they have chosen sequences r = (z)p<as ¥ = (v8) p<a
and (tg)p<a. E has won if ((z3)p<~,(ys)p<y) € W,y for all v < a.

1.6 Definition. A strategy F of A (E) for the game GT is a set F = {fa:
a < k} of functions fo :Mgcads — T X I4 (fo :Mp<aT x Ig — Jy).

Let T and T’ be ordered sets. We say that a function g : T — T is order
preserving if for any z,y € T, ¢g(z) < g(v), if z < y.

1.7 Lemma. Let G be an s-game of length «.

1. If E has a winning strategy for G, then for all co, k-trees T she has a winning
strategy for GT , too.

2. Let T and T’ be oo, k-trees. If there is an order-preserving function g : T —

T’ and E has a winning strategy for GT' , then she has a winning strategy for
GT, too.

The lemma follows immediately from the definitions.

2. An approximation theorem for closed s-games

We begin this chapter by proving a combinatorial lemma, which is due to D.
Kurepa [KD] (see [To]), as A. Levy pointed out to the author.

Let A and « be infinite cardinals and let T be a X, x-tree. We put 77 to
be the set of all totally ordered subsets S of T which are closed downward (i.e.
Yy € S whenever £ € S and y < z). We order T” by inclusion. Then we can easily
see that

(%) T' isa )k — tree.
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On the other hand T is essentially larger than T':

2.1 Lemma. There is no order-preserving function
g:T' - T.
Proof. Assume there is such g : T/ — T. We define for all a < &

o = g({y €T :38 < a(y < z)}).

Then (zq)a<x is an increasing sequence of length « in T. This contradicts our
assumption that T is a A, k-tree. o

2.2 Corollary. Let T be a \,oco-tree. We assume that for any X, k-tree U
there is an order-preserving function g : U — T. Then there is a branch of length
kinT.

Proof. The corollary follows immediately from Lemma 2.1 and (*). o

2.3 The Approximation Theorem. Let A and « be infinite cardinals,
let G = (I,J,W) be a closed X, x-game and let u satisfy the condition below. If
for all p,k-trees U the player E has a winning strategy for GV, then she has a
winning strategy for G, too.

The condition for p is the following: If X is a successor or c¢f(A) > « then

u= U{(2(ﬁ7))+ : B,~ cardinals and 8 < A,y < &k}

and otherwise
p= U{(2('\7))+ : 4 cardinal and 7 < k}.

Proof. We begin this proof by defining a-strategies, which will be the link
between Corollary 2.2 and this theorem.

2.4 Definition. Let a < k be an ordinal. An a-strategy for G is a winning
strategy of E for the s-game G* = (I*,J*,W®*), where
I*={Ig: < a}
Je={Jg:B<a}
We = {((z6)p<as (¥s)p<a) € (Mp<alp) x (Mp<atp) : ((zp)p<r, (Ys)s< €
W, for all v < o}.
(I,Jp and W., are as in the definitions of s-game and closedness.)

Let T be the set of all a-strategies for G, a < k, ordered by inclusion.
Then T is a u,oc0-tree. To prove the theorem it is enough to show that there is
a branch of length & in T'. By Corollary 2.2 it is enough to show that for any
1, k-tree U there is an order-preserving function g : U — T. To do this we let
U be any u,x-tree and define g(u) for all u € U. Let {ug : 8 < o} be the set
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{v' € U : v < u} enumerated in such ‘2 way that ug < uy if f <y < a. By
assumption, there is a winning strategy F = {f3: 8 < x} of E for GV . We define
g(u) to be the following a-strategy:

g(u) = {hp: B <o}

where
BB (ces Ty o)y = (e (Toys Uny), o) y< 3

Clearly this g is order preserving and so there is a branch of length < in T'. o
In Chapter 5 we will prove several consequences of this theorem.

3. The languages L), and A,k-Vaught sentences

In this chapter we prepare for the last two chapters by defining the languages
in which we are interested.

Let X and k be cardinals and let u be a set of relation-, function- and constant
symbols. The set u is called the signature. We recall the definition of the language
Lx(#) (Lxk in short):

3.1 Definition. If all the relation and function symbols in pu are of arity
< k then the language Ly.(r) is defined and it is the least class X such that

1. every atomic formula of the signature p belongs to X;

2. if € X then ~¢ € X;

3. if ® is a subset of X of cardinality < A and the number of free variables in
A® (andin \/®) is < k then A\ ® and \/ ® belong to X;

4. if ¢ € X and T is a set of variables of cardinality < k then V¢ and Jz¢
belong to X.

The semantics of Ly, is defined in the usual and obvious way.

The languages My.(p) (Max in short) were first introduced by M. Kart-
tunen in [KM]. Prior to that, J. Hintikka and V. Rantala had introduced in [HR]
N -languages that were defined by a similar technique. The idea behind these lan-
guages is the following. Let T be a syntax tree of some formula ¢ € L, . Then
T has, among others, the following properties:

1. Every node has < w immediate successors.
2. Every branch has length < w.

We can generalize L, by increasing the number of immediate successors and

the length of branches. The resulting language is M.

3.2 Definition. If all the relation and function symbols in u are of arity
< k then M).(p) is defined and a formula of M. (u) is a pair (T,!) where
1. T is a A, k-tree;
2. | is a labeling function with the properties:



10

a: if t € T does not have any successors then [(t) is either an atomic or
negated atomic formula of the signature p;

b: if t € T has exactly one immediate successor then I(t) is of the form 3z
or Vz, z variable;

c: if t € T has more than one immediate successor then l(t) is either \/ or

A.

To be able to define a semantics for M., we must define a certain semantic
game. Let A be a model (of the signature p) and let ¢ = (T,l) be a sentence of
M.

3.3 Definition. The semantic game S(A,$) is a game of two players, A
and E. When the game begins, the players are in the root of T and during the
game the players go up the tree T'. At each move the players are in some node
t € T and it depends on [(t) how they continue the game:

1. Ifi(t) =\ () then E (A) chooses one immediate successor of t to be the
node where the players go next.
2. Ifl(t) = 3z (Vz) then E (A) chooses an element z# from A to be an inter-

pretation of z. The players go then to the immediate successor of t.

3. If I(t) = ¢(T) then the game is over and E has won if

Ak ¢(=)[A.

The concepts a strategy of A for S(A,¢) and a strategy of E for S(A,¢) are
defined essentially as in the case of s-games.
Let ¢ be a sentence of M), and A a model.

3.4 Definition. A |= ¢ if E has a winning strategy for S(4,¢).

We list below a couple of properties of these languages that are apparent but
still worth noting.

1. For all A and k Ly, is a sublanguage of M), (Lax < My,), i.e. for any
sentence ¢ of L, there is a sentence i of M,, which is equivalent to ¢.

2. For all A\ Ly, = M), i.e. Ly, < M), and M), < L),.

3. If kK > w then there is no obvious reason why M), would be closed under
negation. One might think that we could get the negation of ¢ = (T,!) by
putting —~¢ =~ ¢ = (T,!’) where !’ is such that I’(¢) = A if and only if
{(t) =V and so on. But this is not the case because it may happen that for
some model 4 the semantic game S(A,¢) is non-determined, i.e. neither E
nor A has a winning strategy. In this case A = ¢ and A =~ ¢. In Chapter
4 we find an example of a non-determined semantic game. The question
whether all the languages M), are closed under negation or not is open to
the author.

In Chapter 5 we will need the next two theorems from [KM].
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3.5 Theorem. Assume A<* = X. If § € My+.(u), |¢| < A, has a model
then it has a model of cardinality < A.

Proof. Simply take some model A of ¢ and some element a € A and close
{a} under the winning strategy of E for S(4,¢) and under the functions of x. o

3.6 Theorem. « is weakly compact if and only if M. has the following
property: If T is a set of sentences of My, | £ |< &, and every subset of ¥ of
cardinality < k has a model, then ¥ has a model.

We omit the proof. Theorems 3.5 and 3.6 are true also for the languages Vy+,
and V., which will be defined below (see [KM]).

Let A and « be infinite cardinals. The Ax-Vaught sentences are defined as
follows.

3.7 Definition. We assume that all the relation and function symbols in

the signature p are of arity < k. Then a Ax-Vaught sentence (of the signature
w) is a formula of the following form:

6= (za N\ 3 \/ Jace J\ g0

1o €l J'aEJ., a<lk

where I, and J,, a < k, are sets of cardinality < A\ and ¢*olo-iela o < Kk, are
atomic or negated atomic formulas (of the signature p) with the variables from
the set {Zo,Y0, s TarYa }-

We will write V), for the language of all Ak-Vaught sentences. Again, in
defining semantics for the language V)., we need a certain semantic game. Let A
be a model and ¢ a Ak-Vaught sentence.

3.8 Definition. The semantic game S(A,$) is a game of two players, A
and E. For each move a < k, first A chooses an element = from A to be an
interpretation for z, and then he chooses some to € I,. When A has chosen xé‘
and 1, E chooses some yé from A to be an interpretation for y, and then she
chooses some j, € J,. After kK moves E wins if

A }= ¢1010”Ja1a (Ig)yéla ""Iﬁayé)s
for all a < k.

There is also another way to define S(A,¢): we put
I={AxIy:a<k}

J={AXxJy:a<k}
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and define W C (Ilg<x A X Io) X (ITq<kA X Jo) to be such that

((@aria)) a<s ((bas Ja)) acx) €W

if and only if
A b= ¢IOJOUJQJG (G'Oa bOa cery oy ba)

for all & < k. Then we can define S(A,¢) to be (I,J,W). So S(4,¢) is a closed
s-game of length «.

3.9 Definition. A |= ¢ if the player E has a winning strategy for S(4,9).

We make the following remarks:

1. In the definition 3.7 we could have let ¢*©7o-*aJa be conjunction or disjunction
of < X atomic or negated atomic formulas, e.g., and still get the same language
Vg -

2. In all cases My, < Vy+, and Ve < M)+ and if A is a successor cardinal
or a regular limit cardinal with A<* = X then M), < V..

3. Asin the usual proof of the Gale-Stewart Theorem, we can see that if ¢ € V),
then S(A,#) is determined, i.e. either E or A has a winning strategy. If
¢ € Vi, for some k > w then S(A,¢) does not have to be determined, as we
will see in Chapter 4.

4. The languages V), are not always closed under negation. For example V,,,(0)
is not closed under negation:

¢ = VzoVz;... /\ MNMezj #zi 17 <1}
i<w

belongs to V,,,(#) and —¢ does not because V,,,, is compact (see the notice

after Theorem 3.6). In Corollary 5.12 we have another example of a language

Vi« that is not closed under negation.

We say that ¢ belongs t0 Voox (Mooks Leox ) if it belongs to Ve (M, Lax)
for some A. Similarly we define the languages Vico (MioosLico) 20d Veooo
(Moooos Looso)-

We conclude this chapter by giving a characterization for V. -elementary
equivalence.

Let A and B be models and « an ordinal.

3.10 Definition. The Ehrenfeucht-Fraisse game of length o Fy(4A,B) is a
game of two players, A and E. For each move § < « first A chooses an element
ag € A or bg € B and then E chooses an element bg € B if A has chosen ag € £,
otherwise she chooses ag € A. After a moves E wins if the function that takes
ag to bg for all § < « is a partial isomorphism.
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As with the semantic game for the Ak-Vaught sentences, we could find such
I,J and W that F,(4,B) is (I,J,W). So F,(A4,B) is an s-game of length «
and it is closed if all the relations and functions are of arity < cf(a), as one can
immediately see.

Let « be a cardinal and A a model of cardinality A.

3.11 Definition. % Is the following sentence of Vy+:

¢l;( = (Vza /\ Yo \/ )a<n /\ ¢i°j°"'i°j°(ro,yo,---, Iaaya)

1, €A Ja €A a<k

where ¢iojo-iala (Z0, Y0y s Ta»Ya) IS the conjunction of all atomic or negated
atomic formulas ¥(zo, Yo, ..., Ta»Yo) that satisfy

A ’= d)(iOaJ‘Oa '"aia:ja)'

3.12 Lemma. (M. Karttunen) If all the relations and functions are of arity
< cf(k) then for all models B:
1. E has a winning strategy for S(8,¢") if and only if she has a winning strategy
for Fc(A,B);
2. A has a winning strategy for S(B,¢') if and only if he has a winning strategy
for F(4,8).

Proof. The lemma follows immediately from the fact that when the length
of the Ehrenfeucht-Fraisse game F, (A4, B) is some limit ordinal, we can require A
and E to choose two elements in every move § < a, one from A and one from B,

and that this requirement does not affect the existence of the winning strategies.
a

3.13 Corollary. (M. Karttunen) We assume that A4 and B are models and
all the relations and functions are of arity < cf(x) Then A = B(Vuox) if and only
if E has a winning strategy for F(A4,8).

Proof. ” <=” follows immediately from the definitions. ” =” follows from
Lemma 3.12. o

4. On determinacy

The languages My, and Vy., k& > w, are very different from the languages
Mo = Ly, and V),. One of the main differences is that the games associated
with these languages (namely S(A,¢) and F,(4,B)) are always determined in
the case £ = w but might be non-determined when & > w.

Our main goal in this chapter is the following. For all regular cardinals x,
K<* = g, we give an example of two k% -like linear orderings A and B such that
the Ehrenfeucht-Fraisse game F, (A, B) of length a is non-determined for every
a, k+2 < a<kt. We also give an example of a non-determined sentence.
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4.1 Definition. A game G is determined if either A or E has a winning
strategy. Otherwise G is non-determined. A formula ¢ of Myyoo OF Voo IS
determined if for all models A the game S(A,¢) is determined. Otherwise ¢ is
non-determined.

It is easy to see that all s-games of finite length and all closed s-games of
length w are determined. (Use the method of the ordinary proof of the Gale-
Stewart Theorem; see, e.g., [Mo].) So the games F, (4, B),S(A,¢) and S(A,v)
are determined for all models A and B and for all sentences ¢ € Moow(= Loow)
and ¢ € Vo -

Our first examples of non-determined games will be straightforward general-
izations of the so-called cub-games studied in [Ku] by D. Kueker.

Throughout this chapter k will be a regular cardinal and k<* = k (we do not
assume that « is a limit cardinal). Let e < k* and A C {z < k™ : cf(z) = k}.

4.2 Definition. Gq4(A) is a game of length « played by A and E. During
the game A and E construct a sequence by choosing elements from k¥ . E aims to
play so that the supremums of certain segments of the sequence chosen during the
game are in A. So the rules of the game are the following. At every move < «
first A chooses some element 3 < k™ larger than any element chosen earlier in
the game and then E chooses some yg < k1 larger than z3. E wins if for every
~ < a, cf(y) = &, the supremum of the sequence (yg)p<~ is in A.

These games are not always non-determined as one can easily see, but for
some A and « they are.

Let C C {z < k% : cf(z) = k}. We say that C is x-cub if it is unbounded
in kt and closed under supremums of increasing sequences of length x. In [Ku]
the next theorem has been stated in the case a = «.

4.3 Theorem.

1. If E has a winning strategy for G,(A) for some «, kK < a < kT, then there
is a k-cub set C C A.

2. If A has a winning strategy for Go(A) for some o, K < a < &+, then there
is a k-cub set C C {z < k™ : cf(z) =k} \ A.

Proof.

1. If E has a winning strategy for Go(A) for some «, k < a < &1, then she
has it for G(A), too. Let F = {fy : @ < k} be this winning strategy. Let C be
the set of those z for which cf(z) = k and {y < k" : y < z} is closed under every
fa, @ < k. Then it is easy to see that C is k-cub.

2. Let @ be the least a > k such that A has a winning strategy for G4(4).
Let F = {f, : a < &} be a winning strategy of A for Gz(A). We see immediately
that @ must be a limit ordinal.

Claim: Cf(@) = «.
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Proof of the claim: To obtain a contradiction we assume that cf(a@) = A < «.
Let (ci)i<x be a cofinal increasing sequence in @. It is useful to assume that
ap = 0 and that (a;)i<x is continuous. For every ¢ < X let B; be such that
a; + Bi = ai+1. We shall define strategies G; = {gi : k < a;} of E for G, (A) so
that
1. Gi € Gj forall i <j <A
2. If 7 < X and E plays according to G; and A according to {f, @ < «a;}, then
E wins.
The definition goes as follows.
1. If ¢ =0 then G; = 0.
If 7 is a limit, then G; = U]-<l- Gj.
3. Then consider the case ¢ = 7 + 1. Let zx and yi, k < a;, be the choices of
A and E in the game Ga;(A) when A plays according to {fa : @ < @;} and
E according to G; = {g}, : k < a;}. We define a strategy F' of A for Gpg, (A)
by putting F' = {f} : k < B8}, where

1

f]:;(ao’ ) “')n(k = fa,'+k(y0’ vy Ymy ooy @0y +eey Qny "-)m<aj,n<k'

Let G' = {g} : k < B:} be such a strategy of E that E wins the game
Gp,(A) if E plays according to G’ and A according to F'. Now we put
G: = {9} : k < a;}, where

3 _ g
9k (Z0s vy Tms o) mak = G5 (Z0s ey Tmy o) m<ks
if £ < oj and

glzc(an ceesTm, ---)m<k = g:;(za,'a veey T,y --')oszm<ks

if k> a; and o +n=k.

Because in the game G4(A), a < k', only the sequences of length x, not
the sequences of length < A, decide which one has won, we see that the strategies
G;, © < A, satisfy the properties 1 and 2 above. For the same reason E wins if she

plays according to |J; ., Gi and A according to F in the game Gg(A). But this
contradicts the choice of F'. o claim.

We show next that there is a k-cub set C C {z < kT : cf(z) = &} \ 4,
which proves the theorem. In principle we do this as in the proof of part 1 of this
theorem.

We let (a;)i<k be a cofinal increasing sequence in @. As in the proof of the
claim we can construct for every 7 < x and for every z €{®7<i} x* 3 strategy
Gz = {¢% : @ < a;} for Gqo,(A) with the following properties.

1. If E plays according to G, £ €{®<#} ¢t and A according to {fq : @ < a5}
then E wins.
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2. If z e{lw<i} o+ and z' €{®9<¥} k+ and 7 < ¢/ and for every j < 1,
z(aj)=z'(a;) then for every a < oy, g5 = gz .
3. For all z 6{7"‘1”7' <%} kT and for all j < ¢ the a;:th choice of G is always
> z(ay).
We define
h:{zeloi<il gt i<k} —rt

by letting h(z), z €{%7<i} g+ be the least element that is greater than all
the choices in the game G4, (A) when A plays according to {fq : @ < a;} and
E according to G,. We define C to be the set of those ¢ < k1 that satisfy
cf(c) =« and {y < k™ :y < c} is closed under h (which, of course, means that
if rng(z)C {y < k¥ :y < c} then h(z) <c).

Claim: C is a k-cub subset of {z < kT : cf(z) =«} \ A.

Proof of the claim: We show only that C C {z < k™ :cf(z) = k} \ 4 and
leave the other part to the reader (recall £<* = k).

Let ¢ € C and let (z;);j<x be a cofinal sequence in ¢c. We let A and E play the
game Gz(A) so that A plays according to F and E according to ;.. G(z;);<:-
Let y;, 1 < @, be the choices of E in this game. The fact that A uses his winning
strategy and the definition of G, implies that sup;«zy; € A. On the other hand,
SUD ;<q¥i =SUpP j<xZj = ¢ and so ¢ € A. o claim.

o

We say that A C {z < &t : cf(z) = k} is k-stationary if the intersection of
A and any k-cub set is non-empty.

4.4 Lemma. There exists A C {z <&t : cf(z) = &} satisfying
1. A is k-stationary
2. {z <kT: cf(z) =k} \ A is k-stationary.

Proof. By the analogous lemma for stationary sets (see, e.g., [Je] Lemma
7.6) there is such a stationary set A’ C «* that «*\ A’ is also stationary. We
put A= {z € A’ : cf(z) = k}. We show that A satisfies 1 in the lemma and leave
2 to the reader.

Let C be a k-cub set. We define C' to be what we get from C by adding to
it all the supremums of less than x elements of C. Then C’ is cub and because A
is stationary (it is an intersection of a cub set and a stationary set) the intersection
of C' and A is non-empty. But then the intersection of A and C must also be
non-empty. o

4.5 Corollary. Let A C {z < k™ : cf(z) = k} be as in Lemma 4.4. Then
G«(A) is non-determined for all o, kK < a < k™.

Proof. The corollary follows immediately from Theorem 4.3. o
By using this non-determined cub-game we can get an example of a non-
determined Ehrenfeucht-Fraisse game. In this example we will use linear orderings



T. Hyttinen 17

®,(B) defined below. They are introduced by J. Conway in order to characterize
all wy-like dense linear orderings (see [NSJ).

Let n be a saturated dense linear ordering of cardinality x without endpoints
(i.e. an 7-set which exists under the assumptions on x we have made). Let 1+7
be what we get from 7 by adding one element to n as the least element of 1+ 7.
For all B C {z < k™ : cf(z) = k} we define

®,.(B) = U 7o X {a}

a<kt

where 7o =14 7,if « € B and 7o =0, if a & B. We order ®,(B) by setting
(z,a) < (y,8) if @ < B or « = B and z < y (as members of o). For all
(z,a) € ®.(B) we put r((z,)) = a.

Let A C {z < «*: cf(z) =k} be as in Lemma 4.4. We put A = &.(A4) and
B =9.(0).

4.6 Theorem. For all ordinals a, k+2 < o < k¥, the Ehrenfeucht-Fraisse
game Fo (A, B) is non-determined.

Proof. Let ~ A= {z <kt : cf(z) = k} \ A. By Corollary 4.5 and the fact
that if E has a winning strategy for F, (A, B) then she has a winning strategy for
Fg(A,8), for all B < a, it is enough to show:

1. If k+2 < a < k' and A has a winning strategy for F,(4, B) then he has a
winning strategy for G.(~ A)

and

2. If E has a winning strategy for Fci2(A,B) then she has a winning strategy
for Gc(~ 4).

We prove only 1 and leave 2 for the reader, because its proof goes like that
of 1. To show 1 we let Kk +2 < a < kT and we assume that A has a winning
strategy for F,(A,B). We describe a winning strategy F = {f; : ¢ < a} of A for
Ga(~ A) by playing both Fy (A, B) and G,(~ A) at the same time. We let A and
E play Go(~ A) and A’ and E’ play F, (A4, 8). A’ plays according to his winning
strategy, A plays according to the strategy we are describing, E is the opponent
of A and plays arbitrarily and E’ plays so that she forces A’ to play in such a way
that from his moves A can see how to move. We begin.

1. Move i=0: A’ chooses zo from A or B according to his winning strategy.
The first move of A is now given by fo(0) = r(zo). Let ag > fo(0) be the
choice of E and let @g be the least such a > ag that o € A. Now E’ chooses
first a partial isomorphism

go:{z€ A:r(z) <ag}— {z€B:r(z) <ap},

which exists because both of these sets are saturated linear orderings of car-
dinality & without endpoints. Then E’ moves by choosing yo according to
9o, i-e. Yo = go(zo) or yo = g5 (o).
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2. Move i=j+1: A’ chooses z; according to his winning strategy. Then A chooses
fi(aoy .-y ;) = max{r(z;),a; + 1}. As before we let a; > fi(ao,..., ;) be
the choice of E and let &; be the least such a > «a; that « € A. Now E’ first
chooses such a partial isomorphism

gi:{z€A:r(z) <o} —{z€B:r(z) <}
that g; C g;. This g; exists because the sets
{z € A:o; <r(z) <}

and
{zeB:0 <r(z) <@}

are saturated linear orderings of cardinality « without endpoints (a; & A).

Then E’ chooses y; according to g;.

3. Move i limit: if sup,j<;e; =sup;<;@; € A, then A has won and we are
through. Otherwise we continue as in the successor case; the only difference

is that now g; extends | < 95 which is possible because sup ;<io; € A.

A must win the game G (7~ A) because otherwise sup j<ga; & A for all limit
B < « and so, by using the strategy described above, E’ would win the game
F,(A,B) against A’ even though A’ uses a winning strategy. Because E played
arbitrarily, the strategy of A we described above is a winning strategy. o

Because we skipped the proof of 2, the reader might wonder why the least «
for which Theorem 4.6 is true is « + 2. The reason is the following: if a; € A and
b; € B, i < k, are the choices A and E have made during the first £ moves in the
game and if sup;<.a; exists but sup;<cb; does not, then A can win the game by
two moves but not necessarily by one move. Actually it is easy to see that E has
a winning strategy for Fey1(4, B).

By modifying A and B we can construct an example of a non-determined
Ehrenfeucht-Fraisse game of length « for all kK +1 < o < kT. We modify A and
B by "naming” every increasing sequence that does not have supremum. In doing
this the idea is roughly the following: if a; € A and b; € B, ¢ < k are the choices
A and E have made during the first k moves in the game and if sup;«.a; exists
but sup;<xb; does not, then A can win the game by one move if he chooses the
"name” of the sequence (b;)i<x.

The modifications are the following. We add to the language unary predicate
symbols M(z) and N(z) and a binary predicate symbol R(z,y). M will be an
ordered set, N the set of "names” and R will connect the name to the sequence.
We define A’ and B’ so that

1. (M#*,<*) =®(A), A as in Lemma 4.4.

2. (M8, <8 =9(0).

3. For every increasing sequence (z;);<x from M# (MB’) for which sup;c«z;
does not exist, there is exactly one £ € N4 (z € N8') such that R(z,y) if
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and only if y = z; for some ¢ < & and vice versa, i.e. for every z € N4
(z € NB") there is a sequence (z;);<x from M4 (M?") such that sup;c.z;
does not exist and R(z,y) if and only if y = z; for some ¢ < &.

4.7 Theorem. F4(A’,B’) is non-determined for all o, k +1 < a < k*.

Proof. This can be proved as Theorem 4.6. Notice that for every o < T
and every partial isomorphism

Fi{zeM ir(z) <o} —{zeM? :r(z) < a}
there is exactly one partial isomorphism ¢ from

{ce M :r(z) <a}U{z e N¥: sup {r(y) : R* (2,9)} < a}

to
{zeM? :r(z) <a}u{ze N®: sup {r(v): R® (z,v)} < o}
such that f Cg. o

The author considers the next problem the most interesting open one in the
model theory of infinitary languages.

4.8 Question. Are the Ehrenfeuch-Fraisse games of length « determined
for all cardinals k? (All the relations and functions are of arity < cf(x).)

We conclude this chapter by giving an example of a non-determined sentence.
Let A be as in Theorem 4.6. As in Definition 3.11 we define ¢ € M, ++,+ and
% € Vg++, such that for all models B A or E has a winning strategy for Fc42(A4, B)

if and only if A or E has a winning strategy for S(B,¢) if and only if A or E has
a winning strategy for S(B,¢).

4.9 Lemma. ¢ and 3 are non-determined. o

5. Applications of games to the model theory of infinitary languages

Our first goal in this chapter is an approximation theorem for Ax-Vaught
sentences.

Let
¢ = (onz /\ = V )a<n /\ prodortala
1€l Ja€Ja a<lk
be a Ax-Vaught sentence, T a v, k-tree and let {= max{A,v}. We define a T-
approximation ¢7 € Mg, of ¢ by putting ¢7 = (T",1), where T' is the ¢, k-tree
and [ is the labeling function defined below. The idea here is to make ¢T be
somewhat like the following Vaught sentence

(/\ Vzq /\ Wa \/ )a<x /\ zﬁtoiwo'"t“ic’j",

ta €T ta€la Ja€Ja a<k
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where ttotoo-taiaja i giodo-~lata if (t,...,t,) form an increasing sequence in T
and otherwise it is Vz(z = z).

or

or

or

or

The set of elements of T' will be the set of all sequences of the form
(g, V18,3, 7p) p<a
(ts:¥,ip,3,58) <o ~ (ta)
(t6:Y,76, 3, 58) p<a ~ (L V)
(ta,Vsi8,3,78) < — (ta) Vs1a)

(tﬁav’ iﬁyaajﬁ)ﬁ<a — (taava iaaa)

where a <k and forall < a tg €T, ip € Ip and j3 € Jg. Furthermore, tg4,
is always an immediate successor of tg and if § is a limit ordinal then tg is the
supremum of {¢,:~ < B}. We order T by the initial segment relation.

1.

. E has a winning strategy for [S

For all z € T we define I(z) as follows.

If z = (t,;,v Zb,El,Jﬁ)p<a and z does not have any successors then [(z) =
Apca prodo--isip

If £ = (t8,V, z/_a,E! JB)B<a and z has a successor then [(z) = A.

Ifz= (tp,V, ig,a,jﬁ)g<a ~ ( ) then l( ) V.

If z= (tﬁ,v,iﬁ,a,]ﬁ)g<a ~ ( ) then l( ) A.

If £ =(t3,Y,18,3,78) <a — (ta,V tq) then I(z) = 3.

If z=(t3,Y,78,3,78) p<a ™ (tasV,%a,3) then I(z) =/ .

The next lemma follows immediately from the definitions.

5.1 Lemma. For all models A:
,)|T if and only if she has a winning

(A
strategy for S(4,¢T) (i.e. A ¢T);
A has a winning strategy for [S(A,¢)|T ifand only if he has a winning strategy
for S(A,47T).

Vaught himself has defined approximations ¢* for all w;w-Vaught sentences

¢, see [Mal] (or [Va]). One might ask how different the approximations defined
here are from those defined by Vaught. The next lemma answers this. We skip
the easy proof.

1.
2.

5.2 Lemma. Let ¢ be an w,w-Vaught sentence.
For every ordinal o there is an co,w-tree T such that = ¢T & o=,
For every oco,w-tree T there is an ordinal a such that = ¢* — T,
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We immediately get the next corollary from Lemmas 5.1 and 1.7.

5.3 Corollary. Let ¢ be an cok-Vaught sentence and T and T' oo, k-trees.
Then
L k¢ o7,

2. If there is an order preserving function g : T — T' then |= ¢T — oT.

The next theorem follows immediately from Lemma 5.1 and Theorem 2.3. In
the case kK = w it is due to R. L. Vaught ([Va]).

5.4 Approximation Theorem. If ¢ is a Ax-Vaught sentence, A is of
cardinality < A and u satisfies the condition below then

AE= /\ ¢T — ¢.

T u,x—tree

The condition for p is the following: if A is a successor or cf(A) > k then
u= U{(2(ﬁ1))+ : B,~ cardinals and B < A,y < &k}

and otherwise
b= LJ{(Z(’\"))+ .+ cardinal and v < k}.

5.5 Corollary. For all cok-Vaught sentences ¢,

Eee N 4T

T co,xk—tree

5.6 Corollary. For all models A and B
A = B(Moox) if and only if A= B(Voox)-

We recall from Chapter 3 that A = B(Vuox) if and only if E has a winning
strategy for F.(A,B).

Our second goal in this chapter is to prove, under certain asumptions on «,
that one cannot express in L.+, that there is no decreasing sequence of length
k. This generalizes the undefinability of well-order in L, , which is due to M.
Morley and E. Lopez-Escobar ([MM] and [Lo]). To do this, we have to be able to
construct models for sets of sentences of L,+,. For this reason we now present a
technique to construct a model out of constants.

Throughout the rest of this chapter, we assume that x is a regular cardinal
and k<* = k (again we do not assume that « is a limit cardinal). We also assume
that the signature p is of cardinality < x and that all the relation and function
symbols in p are of arity < .
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Let & be a set of sentences of L.+,(1), | Z|< k, and let C = {¢;:7 < &}
be a set of new constant symbols. We assume that in every sentence ¢ € T all
negations are pushed in front of atomic formulas.

Let A(C) 2 T be a fragment of L.+.(s U C) of cardinality «, i.e. A(C) is
closed under subformulas, under finite operations, under substituting free variables
by terms, and A(C) includes all atomic formulas. This A(C) exists under the
assumptions on « we have made. Let A(C) be the family of all subsets S of
A(C) of cardinality < x that have the property that for all atomic formulas ¢ of
L+, (rUC) either ¢ € S or ~¢ & S.

5.7 Definition. The Hintikka game H.(Z,A(C)) is a game of length &
played by A and E. During the game E interprets symbols of u to the set C to
make C a model of ©. This is done so that at every move a < k first A asks a
question and then E answers the question by choosing some S, € A(C). There
are eight different ways to form the question:

1. A chooses some ¢ € T ; then E must choose S, € A(C) so that ¢ € S,.
2. A chooses a closed term t; then E must choose Sq € A(C) so that t =t,t =

c€ S, for some c€ C.

3. A choosest =t'¢€ Uﬁ<a Sg, where t and t' are closed terms; then E must
choose S, € A(C) so that t' =t € S,.

4. A chooses 3T¢(Z) € Upco Sp; then E must choose So € A(C) so that
#(c) € Sy for some ¢ € C.

5. A chooses VZ¢(Z) € Ug., Sp and some sequence t of closed terms; then E
must choose S, € A(C) so that ¢(t) € Sq.

6. A chooses \/ ® € U,B<o: Sg; then E must choose S, € A(C) so that ¢ € S,
for some ¢ € ®

7. A chooses N® € Up.,Sp and ¢ € @; then E must choose Sy € A(C) so
that ¢ € Sq.
8. A chooses t = t' and §(t) from g, Sp, where t and t' are closed terms;
then E must choose S, € A(C) so that ¢(t') € S,.
E must always choose S, so that Uﬁ«x Sg C So. A wins if for some a < k E
cannot find S, satisfying the rules. Otherwise E wins.

Again we notice that H(Z,A(C)) is a closed s-game of length «.

Although the definition of the game above is due to J. Oikkonen, we call this
game the Hintikka game because it is a generalization of the concept Hintikka set:
in the case x = w E has a winning strategy for H.(Z,A(C)) if and only if ¥ can
be extended to a Hintikka set (see [Mal]).

5.8 Lemma. (k is a regular cardinal and k<* = k) Let £ and A(C) be
as above. If E has a winning strategy for Hc(Z,A(C)) then ¥ has a canonical
model A, i.e. for every a € A there is ¢ € C with ¢* = a.
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Proof. We assume that E has a winning strategy for H.(Z,A(C)). We let
A and E play the game H,(X,A(C)) so that E plays according to her winning
strategy and A as described below. The idea here is to make A ask all the possible
questions he can. For this let g : K — k X k£ be one-one and onto with the property
that if g(z) = (y,2) then y < z. In each move a < k we let Q, be the set
of all possible questions A can ask in that move. This set depends on how the
players have played earlier. In any case | @4 |< & because k<¥ = x and we can
enumerate it as Qo = {¢§ : B < x}. The question A chooses in move a is qg if
9(e) = (1,8).

Let {Sy : @ < k} be the set of answers of E in the game where E played
according to her winning strategy and A according to the strategy described above.
We let S = UQ<KSO,.

In S we have a complete description of A. We get the universe of A from
C as follows. In C we define an equivalence relation ~ by ¢ ~ ¢’ if c=¢' € S.
Because of 2, 3 and 8 in the definition of the Hintikka game, ~ is an equivalence
relation. For all ¢ € C we write [¢] = {¢/ € C : ¢’ ~ ¢} and define the universe of
A to be {[c]:c € C}.

All the symbols of pUC are interpreted to A in the obvious way. For example
if ¢ € C then ¢ = [c] and if R(z,y) is a binary relation symbol then R#([c], [¢'])
if R(c,c¢’) € S and so on. It follows immediately from the definition of the Hintikka
game that A is well-defined and a model of £. Trivially A is canonical. o

We say that T is a wide A, k-tree if it satisfies what we require from a A, k-
tree except that instead of neatness it is assumed to satisfy only the condition that
for every t € T the set

{'eT:{veT:u<t'}={eT:u<t}}

is of cardinality < A. We use this concept in the next theorem instead of the
concept of the A,k-tree to make the construction of T* easier. Notice that if
for every A,x-tree T there is an order-preserving function g : T — U, then for
every wide A, x-tree T’ there is an order-preserving function g : T/ — U. This is
because every wide )\, k-tree can be extended to a A, x-tree.

5.9 Theorem. (k is a regular cardinal and k< = k) Let u be any
signature which includes a unary predicate symbol U and a binary predicate
symbol <. We assume that ¢ is a sentence of L.+ .(u) and that for every wide
(2%)*,k-tree T there is a model A of ¢ and an order-preserving function g :
T — (U#,<#). Then there is a model A of ¢ such that (U#,<#*) contains an
increasing sequence of length k.

Proof. Let D = {dy : @ < k} be a set of new constants. To prove the
theorem it is enough to show that the set

E={gtu{di<dj:i<j<r}u{U(d;): 1<k}
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has a model. Let C = {co : @ < &} be again a set of new constants and let
A(C) and A(C) be as in the definition of the Hintikka game (now the signature
is uU D). By Lemma 5.8 it is enough to show that E has a winning strategy for
H.(Z,A(C)). By the Approximation Theorem 2.3 it is enough to show that E
has a winning strategy for [Hc(Z,A(C))]T for every (2%),k-tree T.

We show this. Let T be an arbitrary (2%)*,x-tree. The idea here is the
following. We define a model A of ¢ so that E can play the game [He(Z,A(C)])T
by putting to S, only ”what is true in A.” If she can do this, she must win. The
only problem she must face in doing this is that A can make her interpret a lot
of new constants dg to A so that in all cases df <* d%, if a < o/. So we must
make (U4, <?#) a very rich ordering.

We put

T* = {(t,N,n) : t € T,N €{*€T<t ¢ n < N(2)}.

We define an ordering of T* by putting (¢, N,n) < (¢/, N',»n') if and only if
1. t<t' and N(z) = N'(z) forall z <t
or
2. t=t"and N=N"and n<n'.

Because k is regular T* is a wide (2%)71,k-tree.

Let A be such a model of ¢ that there is an order-preserving function g :
T — (UA,<’1). By using A we can now describe a winning strategy of E for
[He(Z,A(C))]T.

We assume that A and E have played a moves. A has chosen the elements
{tp:B < a} from T and asked the questions {gp : # < a}. E has answered with
the sets {Sg : 8 < a}. For some 7,7 < k, E has interpreted all ¢g, § < 7, and
dg, B < Jj,to A and nothing else. We write cé and dg for these interpretations.
E has done this so that if some constant ¢ € C or d € D exists in some sentence
¢ in Up<a Sp, then ¢ =¢g or d = d,, for some § <17 or v < j. And everything
that is in Ug., Sp is true in A with given interpretations. E has also chosen
numbers N(tg) for all 8 < a.

On move a A chooses to € T and asks a question g,. The question ¢, can
be of one of the eight different types in the definition of the Hintikka game. We
assume that g, is of type 2 and describe how E answers. In all other cases E can
answer similarly by keeping in mind that everything in J f<a S8 istrue in A with
the given interpretations.

So A has chosen a closed term t. Let i/ < k and j' < k be such that ¢/ > ¢,
J'>jandif ¢c€ C or d € D exists in ¢ then ¢ = ¢ or d = d., for some § < ¢’
or ¥ < j'. Then E puts N(t,) = j' and for all 8, ¢+ < 8 < ¢/, E interprets
c¢p arbitrarily and for all v, j < v < j’ E interprets dy to g((ta, N',7)), where
N’ elts:f<o} i and N'(tg) = N(tg) for all B < a (recall that g is an order-
preserving function g : T* — (U4, <#)). By interpreting new constants this way,
E can be sure that if v < 8 then df; < dé.
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At this point the interpretation t* of t is fixed and E interprets ¢y to t#.
Then she can answer by choosing S, to be

U Ssu{t=t3u{t=ca}.

B<La

By playing as explained above, E wins the game because she puts to S, only
what is true in A. o

As a corollary of Theorem 5.9, we can prove a generalization of Vaught’s
Covering Theorem. In the case ¥ = w it is due to R. L. Vaught ([Va]) and the
proof we will give is analogous to that in [Va].

5.10 Theorem. (k is a regular cardinal and k<" = k) Let ® be a kT k-
Vaught sentence. If ® does not have a model, then there is some (2%)*,k-tree T
for which ®T does not have a model.

Proof. For a contradiction we assume that

® = (Vzq /\ FWa v )a<x /\ grodor-tada

1a€la Ja€Ja a<k

is a kT k-Vaught sentence of the signature x and that for every (2%)*,k-tree T
there is a model of ®T but there is not a model of ®. The idea in this proof is to
construct a sentence ¥ of L.+, that contradicts Theorem 5.9.

We take two new unary predicate symbols M(z) and U(z), one new binary
predicate symbol < and for every a < k and (...,13,78,...)g<a, 1 € Ig , Jg € J3
for all B < a, we take a new 1 + a-ary predicate symbol R(-8:i8:-)8<a

Let ¥ be the conjunction of 1 - 6 below.

1. 7(U,<) is a partial ordering and M is closed under the functions of x”
2. N{Vu¥{...,z5,Yp, -} p<a( RC8I8)8<a (u, 20, Yo, oo, T3, Ups o) fca =

plrinds-ds<a(zy yo .. 28,Yp,...)p<a) : ig € I, jg € Jgfor all B < a, < Kk}

3. Yu € U(R%(u))
4. N{Vu,v/ € UV{.., 28,98, ..} p<a(u <u' —

(R(‘.iﬁj[,..)ﬂ<a (u’ L0, Y05 s Ts Y5 ---)ﬁ<a —

R("'iﬁjﬂ"')ﬂ<“ ('LL,, T0,Y05-s 8,983 ...)g<a))
tig € Ig,jp € Jp forall < a,a< k}
5. A\{ VuV{...,zﬁ,yﬁ,...}ﬂ<a(R(""'ﬁjﬂ"')ﬂ“(u,:z:o,yo,...,zg,yﬂ,..,)ﬂ<a —

Vo' eU(u' >u—
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Vza N Fva \ (CM(za)V (M(ya) A RET210) (4!, 50,15, ..., Tas Ya)))
o€l Ja€Ja

1ig € Ig,jp € Jg forall B < o, < K}
6. N{ Yu¥{...,zp,yp, - }p<a(Ap<a RCirdr 128 (1, To, Y0, wvny Ty, Yrys oos)y < —

RG3838)8<a (1, 20, Y0, ey Tg, Ygs ) < * 1p € I, g € Jp for all B <

a is a limit ordinal and < «}

In short ¥ says the following thing. Let A be a model for the signature
pU{U,M,<}. Then

A | {RGedde<e g € I, jg € Jp, 00 < K}T

if and only if
nMﬂ l= @(U‘,<’t)”.

Because for every (2%)",k-tree T, ®T has a model, we see that for every
wide (2%)*,k-tree T’ there are a model A of ¥ and an order preserving g :
T' — (U#,<#). Because ® does not have a model, there is no model A where
(U#,<*) contains an increasing k-sequence. Because ¥ € L+, the existence of
¥ contradicts Theorem 5.9. o

As a corollary of Theorem 5.10, we will prove a generalization of Theorem
5.9. We could also get this corollary from Theorem 5.9 itself by Skolemization.
This Skolemization would go somewhat like the proof of Theorem 5.10.

5.11 Corollary. (k is a regular cardinal and k<* = k) Let pu be any
signature that includes a unary predicate symbol U and a binary predicate symbol
<. We assume that ¢ is a sentence of V,+,(n) and that for every (2%)*,k-tree
T there is an order-preserving function g : T — (U#,<*). Then there is a model
A of ¢ such that (U#,<#) consists of an increasing sequence of length .

Proof. To obtain a contradiction let ¢ € V,+,.(u) be such that for every
(2%)*,k-tree T there is a model A of ¢ and an order-preserving g : T — (U4, <4)
but there is no model A of ¢ such that (U#,<#) consist of an increasing sequence
of length k.

Let ¢ € Vi .+, be

Y = (Iza)a<x /\ U(zp) ANU(za) A (28 < Za)-
B<a<k

Then A is a kTk-Vaught sentence and it does not have a model. On the other
hand, for every (2%)*x-tree T (¢ A ¥)T has a model, because A = ¢T if and
only if there is an order-preserving function g : T — (U#,<#). This contradicts
Theorem 5.10. o
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5.12 Corollary. (k is regular cardinal and k<" = k) Let p be any signa-
ture which includes a unary predicate symbol U and a binary predicate symbol
<. Then V,+ (1) is not closed under negation.

Proof. Let ¢ € Vc+.(p) be as in the proof of Corollary 5.11. Then —%¢ ¢
V+ (1) by Corollary 5.11. o

We can also get a sort of separation theorem for M,+, as a corollary of
Theorem 5.10. (The method in the proof is analogous to that used in [Va].)
For this we need the following theorem. In its most general form it is due to J.
Oikkonen. In the case £ = w it is due to L. Svenonius and R. L. Vaught ([Sv] and
[Va).

We recall that ¥ is £} over Ly.(un) (over Mx.(r)) if it is of the form 35y,
where §Ls a set of relation (and function) symbols and ¥ € Lac(US) (¢ €
Mik(pU S)).

5.13 Theorem. (k is regular cardinal and £<* = k)
1. For all E_}_ over L+, sentences 351 there is a sentence ¢ of V,+,. such that
() £35% - ¢ ~
(i) for all models A of cardinality < k A = ¢ — 3S¢.
2. For all sentences ¢ of Vi.+, thereis a T} over L+, sentence 3St such that

We omit the proof of this theorem. In e.g. [Mal] it is proved that if IS¢ is
E} over L, ., then there is a sentence ¢ of V,, ., such that for all models A of
cardinality < w A E ¢ < 3S4. In that proof ¢ is defined so that it is easy to
see that |= 3S¢ — ¢ (E just keeps on embedding C to the model and chooses
6, € A(C) according to the model, see [Mal]; see also the proof of Theorem 5.9
in this doctoral thesis). Essentially the same proof would yield part 1 in Theorem
5.13. This is done in part in [Oil] but it is doubtful whether the reader can find
that paper. Part 2 in Theorem 5.13 can be proved by Skolemization.

Notice that if in the part 1 in Theorem 5.13 the negation of 354y is also !
over Ly+.,then = ¢ « 35y (use Downward-Lowenheim-Skolem Theorem).

5.14 Separation Theorem for M« . (k is a regular cardinal and k<* =
k) Let 3R$ and IS¢ be L] over M +,.. If 3R A ISt does not have a model
then there is a sentence § € M=)+, such that

=3Ré — 8
and _
=6 — -354.

Proof. We assume that Efqﬁ_ A3S% does not have a model. By skolemization
we can assume that 3R¢ and 3St are T} over L,+,. By Theorem 5.13 there
are sentences ® and ¥ of V .+, such that
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1. E3R¢ - ® and = 3SY —» ¥
and
2. for all models A of cardinality <x AE® — 3R¢ and A Ev— 35¢.

By the fact that Theorem 3.5 is true also for V)+,, as we noticed after The-
orem 3.6, we see that ® A ¥ does not have a model. By Theorem 5.10 there is a
(2%)*,k-tree T such that (& A )T does not have a model. But then &7 A ¥T
does not have a model. Now

'= @T N —‘\I’T
and
E-vT — v
and
E-¥ — -3Sy
and so
E &7 — -35y.
On the other hand,
E 3R — @
and
Eo— o7
and so
3Ry — @T. o
5.15 Interpolation Theorem for L.+.. (k is a regular cardinal and

k<* = k) Let ¢ € Le+.(n) and ¢ € Le+.(1'). If ¢ = then there is 0 €
M(gx)+«(u N ') such that ¢ =60 and 0 =4. o

With a refinement of the proof of Theorem 5.13, we can show that in Theorem
5.13 ¢ can be defined to satisfy the statement: Every relation symbol (excluding
identity) which occurs positively (negatively) in ¢ occurs positively (negatively)
in %, too. But then in Theorems 5.14 and 5.15 6 satisfies the statement: Every
relation symbol (excluding identity) which occurs positively (negatively) in 6 oc-
curs positively (negatively) in ¢, too. With our method we cannot get any closer
to the Lyndon Interpolation Theorem.

Let

M3 = {¢ € M. : the negation of ¢ belongs to M),}.

We recall that A(Ly.) (A(Myk)) is the set of those T1 over Ly, (over M),)
formulas ¥ for which the negation of ¥ is also £} over Ly, (over M),).
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5.16 Corollary. (k is a regular cardinal and k<* = k)
A(LK,"'K,) (= A(M,¢+,¢)) <_: M(n2,¢)+n. ]

5.17 Beth’s Theorem for M,+,. (kK is regular cardinal and k<* = &)
Let ¢(P) € M+, (nU{P}) and let ¢(P’') be the sentence formed by replacing P
everywhere by P’. We assume that

¢(P) A ¢(P') = VI(P(z) < P'(3)).
Then there is 8 € M(ze)+ (1) such that
¢(P) = VZ(P(z) < 0(3)).
Proof. Let ¢ be new constants. Then
(8(P) A P(2)) A (6(P') A=P'(2))

does not have a model and 6(Z) will satisfy what we required if 4(¢) is the sepa-
rating sentence of these sentences. o

5._18 Separation Theorenl_for Ai“‘ Let k be weakly compact. Let 372-45
and 3S5vY be E{ over My, . If 3R¢ A IS does not have a model, then there is a
sentence 0 € M,, such that

= JR¢ — 6
and

E 68— -3Sy.

Proof. Because «k is weakly compact M, = Us<x Ma+ (this fact is noticed

in [KM)). So 3R¢ and 3S¢ are T! over M,+, for some A < k. Again because &
is weakly compact we can choose A to be regular and A<* = X\. And so Theorem
5.18 follows from Theorem 5.14. o

We could also have got this theorem directly from Theorem 5.13, i.e. to prove
Theorem 5.18 we do not need the machinery we have developed in this doctoral
thesis; but we do need it for Theorem 5.14. So in the situation of Theorem 5.14,
we need more machinery to prove less. It would be interesting to know if we can
find 6 from M+, in Theorem 5.14.

Theorem 5.18 has the following three corollaries.

5.19 Corollary. Let x be weakly compact. Then
A(Lke) (= A(Me)) =M,

Proof. ” C” follows from Theorem 5.18.

727 follows from part 2 in Theorem 5.13 and the fact that if & is weakly
compact then Myex = Uy My+). O
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5.20 Beth’s Theorem for M,.. Let k be weakly compact. Let ¢(P) €
M,.(p U {P}) and let ¢(P') be the sentence formed by replacing P everywhere
by P’. We assume that

¢(P) A ¢(P') | VZ(P(Z) < P'(Z)).
Then there is § € M, (p) such that

¢(P) E VZ(P(z) «~ 6(z)).

Proof. Let ¢ be new constants. Then
(¢(P) A P(2)) A (¢(P") A—P'(2))

does not have a model and 6(Z) will satisfy what we required if 8(c) is the separant
of these sentences. o

We say that theory T in the language M), is complete if it has the following
property: if ¢ € My, and for some model A of T A|=¢ then €T ,ie. T isa
maximal consistent theory in M),.

5.21 Robinson Consistency Theorem for M,,. Let k be weakly com-
pact, let 4’ and p" be two signatures and let u be u'Nu’'. Suppose T is a complete
theory in Mex(p) and Ty D T, T2 D T are consistent theories in My (u') and

M, (u"), respectively. Furthermore suppose Ty and T; are of cardinality < k.
Then Ty U T, is consistent.

Proof. By Theorem 3.6 it is enough to show that for every ¢ € T; and
Y € T, the set {@, ¥} is consistent. If it is not, then JR¢ A St does not have a
model, R is the set.of those relation and function symbols in ¢ that are not in
and S is the set of those relation and function symbols in v that are not in u.
If 9 is the separant of these sentences, it belongs to T and thus to T2, also. But
this is impossible because {#,v} is not consistent. o
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