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Väisälän rahasto), to the Academy of Finland, to the University of Helsinki, and to
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1. I

Pluripotential theory is a nonlinear theory which offers effective methods for the pur-
poses of multidimensional complex analysis. Although its main objects, plurisuper-
harmonic functions, were introduced in the early 1940’s independently by P. Lelong
[Lel42a, Lel42b] and K. Oka [Oka42], the main theory is developed during the last quar-
ter of the 20th century. Fundamental works and surveys in pluripotential theory are made
by P. Lelong [Lel68], E. Bedford and B. A. Taylor [BT76, BT82], A. Sadullæv [Sad81],
U. Cegrell [Ceg88], M. Klimek [Kli91], E. Bedford [Bed93], and C. Kiselman [Kis00].

Traditionally, plurisubharmonic functions rather than plurisuperharmonic ones have
been studied in pluripotential theory. This is natural because the generalized complex
Monge–Ampère operator acting on a plurisubharmonic function gives a nonnegative
value and it is a positive measure without a minus sign attached to the operator. However,
we consider plurisuperharmonic functions in this study, and this aspect has also its ad-
vantages. These are more or less related to the fact that nonnegative plurisuperharmonic
functions can be nonzero and simultaneously have zero boundary values. Of course, this
choice is made only for the sake of convenience in this context, and the known results for
plurisubharmonic functions are easy to convert to this setting.

The basic concepts and known results in pluripotential theory are introduced in Part 1
of this study. Plurisuperharmonic functions in an open subset of �n for n > 2 form a
proper subclass of superharmonic functions, while these two classes coincide for n = 1.
Many of the basic properties are thus carried over directly to the plurisuperharmonic case.
However, the main interest in the study of pluripotential theory arises from the difference
between these function classes. For example, distribution theory gives a general machin-
ery in classical potential theory that is not available in pluripotential theory.

The idea of the approach in Section 6 is based on a recent article by J. Kinnunen and
O. Martio [KM00] where they study the relation between the signed Hardy–Littlewood
maximal function and superharmonicity. We define a slightly different maximal func-
tion so that the original properties are still valid. However, an iteration of our maximal
function produces the least plurisuperharmonic majorant of a function instead of the least
superharmonic one.
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Capacity is a set function arising in potential theory as the analogue of the physical
concept of the electrostatic capacity. Capacity is defined for a condenser, that is, an open
set with a relatively compact subset inside. We study some specific properties of the
relative Monge–Ampère capacity defined by E. Bedford and B. A. Taylor [BT82] that is
a Choquet capacity [Cho54] adapted to pluripotential theory.

Classical potential theory in �m and pluripotential theory in �n have their own char-
acteristics, but potential theory in the plane is common to the both. A central part of
this intersection, capacities in the plane, is studied in Part 2. In fact, these considerations
are well-acquainted in classical theory. A fundamental reference for potential theory in
the complex plane is the monograph by M. Tsuji [Tsu59]. T. Ransford [Ran95] has re-
cently written a survey of this field. As our contribution to this theory, we show that the
Green capacity and the variational 2-capacity coincide with the relative Monge–Ampère
capacity in the plane.

Part 3 is devoted to the study of holomorphic mappings and their potential theoretic
aspects. It is plain that holomorphic mappings preserve plurisuperharmonic functions but
we introduce a push forward function for proper holomorphic mappings. This function
preserves plurisuperharmonic functions as well. Moreover, we study integral transfor-
mation formulas for holomorphic mappings both with the Lebesgue measure and with
the Monge–Ampère operator acting on a plurisuperharmonic function that gives a Radon
measure. After these considerations we have enough information to state capacity in-
equalities for holomorphic mappings. If f : Ω → Ω′ is a holomorphic mapping and
E b Ω, then we prove under some additional conditions that

Nmin( f , E) cap( f (E),Ω′) 6 Mmin( f , E) cap( f (E),Ω′)

6 cap(E,Ω) 6 Nmax( f ,Ω)n cap( f (E),Ω′),

where Mmin( f , ·) denotes the minimal multiplicity and Nmin( f , ·) and Nmax( f , ·) denote the
crude minimal and maximal multiplicities of f in a subset of Ω.

The theory of quasiregular mappings provides a wide background of this study; both
nonconstant quasiregular mappings and proper holomorphic mappings are discrete, open
and sense-preserving. For the theory of holomorphic mappings we refer to the books
of L. Hörmander [Hör66], Steven G. Krantz [Kra92] and W. Rudin [Rud80]. Proper
holomorphic mappings are thoroughly concidered in the articles by R. Remmert and
K. Stein [RS60] and by E. Bedford [Bed84]. In the 1960’s and early 1970’s, quasireg-
ular mappings were intensively studied in Helsinki by the group O. Martio, S. Rickman
and J. Väisälä [MRV69, MRV70, MRV71]. In addition to these articles, there are mono-
graphs on this theory, for example, by M. Vuorinen [Vuo88], Yu. G. Reshetnyak [Res89],
J. Heinonen, T. Kilpeläinen and O. Martio [HKM93] and S. Rickman [Ric93].

2. N  

The n-dimensional complex space is denoted by �n, which is often identified with the
2n-dimensional Euclidean real space �2n. This identification is made so that the complex
coordinates z j = x j + iy j of a point z = (z1, . . . , zn) ∈ �n give the real coordinates x j

and y j for z = (x1, y1, . . . , xn, yn) ∈ �2n. In this context, the general notation �n contains
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also a special case �1 = �. The Euclidean norm of a point z ∈ �n is given by |z| =√
z1z̄1 + · · · + znz̄n, and the open ball with center z and radius r > 0 is the set B(z, r) =

{w ∈ �n : |z − w| < r}.
A domain in �n is defined to be a connected open subset of �n. If G is a subset of �n,

then a neighbourhood of G is a domain in �n such that it contains G. The boundary, the
interior and the closure of G are denoted by ∂G, int G and G, respectively. The notation
G b F means that G is a compact subset of F. Moreover, the 2n-dimensional Lebesgue
measure of G is denoted by m(G) whenever G is Lebesgue measurable.

An open nonempty subset of �n is denoted by Ω, in particular Ω may coincide with �n.
The class of Lebesgue p-integrable functions in Ω is denoted by Lp(Ω), and the class of
locally Lebesgue p-integrable functions in Ω is denoted by Lp

loc(Ω). In particular, L∞(Ω)
is the class of bounded functions and L∞loc(Ω) is the class of locally bounded functions in
Ω. The support of a function u : Ω → �, denoted by spt u, is the smallest closed set
such that u vanishes outside spt u. The classes of compactly supported continuous and
compactly supported infinitely smooth functions in Ω are denoted by C0(Ω) and C∞0 (Ω),
respectively.

The gradient of a C1-function u : Ω→ � is the vector

∇u = (∂1u, ∂2u, . . . , ∂2n−1u, ∂2nu) =

(
∂u
∂x1

,
∂u
∂y1

, . . . ,
∂u
∂xn

,
∂u
∂yn

)
.

More generally, let u ∈ L1
loc(Ω). A function v = (v1, . . . , v2n) ∈ L1

loc(Ω) is the weak (or
distributional) gradient of u if∫

Ω

u ∂ jϕ dm = −
∫

Ω

v j ϕ dm

for all ϕ ∈ C∞0 (Ω) and j = 1, 2, . . . , 2n. Then we denote v = ∇u. If f : Ω → �m is a
C1-mapping, then we use the standard notation

∂ fk

∂z j
=

1
2

(
∂ fk

∂x j
− i

∂ fk

∂y j

)
and

∂ fk

∂z̄ j
=

1
2

(
∂ fk

∂x j
+ i

∂ fk

∂y j

)

for every k = 1, . . . ,m and j = 1, . . . , n.
An outer measure µ on �n is said to be regular if for each set A ⊂ �n there exists a

µ-measurable set B such that A ⊂ B and µ(A) = µ(B). A measure µ on �n is called Borel
if every Borel subset of �n is µ-measurable, and a Borel regular measure µ on �n is called
a Radon measure if µ(K) < ∞ for each compact subset K of �n. We say that a sequence
of Radon measures µk on �n, k = 1, 2, . . ., is weak∗-convergent to a Radon measure µ on
�n if

lim
k→∞

∫

�n
ϕ dµk =

∫

�n
ϕ dµ

for all ϕ ∈ C0(�n). Furthermore, the support of a measure µ on �n, denoted by spt µ, is
the set of the points z ∈ �n such that µ(U) > 0 for each open neighbourhood U of z. Then
spt µ is the smallest closed subset F of �n such that µ(�n \ F) = 0.
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Part 1. Plurisuperharmonicity and related topics

In this introductory part we recall the basic concepts and some known results in pluripo-
tential theory. The proofs of the cited results can be found, for example, in the articles by
E. Bedford and B. A. Taylor [BT76, BT82] or in the monographs by M. Klimek [Kli91]
and by U. Cegrell [Ceg88]. The last section of this part introduces some new considera-
tions related to plurisuperharmonic functions that are based on a recent article by J. Kin-
nunen and O. Martio [KM00].

3. P 

Let Ω be an open subset of �n. Recall that a C2-function u : Ω → � is said to be
harmonic in Ω if it satisfies the homogeneous Laplace equation

(3.1) ∆u =

n∑

j=1


∂2u

∂x2
j

+
∂2u

∂y2
j

 = 0 in Ω.

Note that the Laplace operator can also be given as

∆u = 4
n∑

j=1

∂2u
∂z j∂z̄ j

.

D. Let u : Ω → (−∞,∞] be a lower semicontinuous function which is not
identically∞ on any component of Ω. The function u is said to be superharmonic in Ω if
for every open G b Ω and every function h which is continuous in G and harmonic in G,
the following comparison principle holds:

u|∂G > h|∂G =⇒ u|G > h|G.

The family of all superharmonic functions in Ω is denoted by SH(Ω). A function v is
called subharmonic in Ω if −v is superharmonic in Ω. Superharmonicity of a lower semi-
continuous function u : Ω→ (−∞,∞] can be defined also by the mean value principle:

u(z) >
1

m(B(z, r))

∫

B(z,r)
u(w) dm(w) whenever B(z, r) b Ω.

The mean value principle is here an equivalent condition to the comparison principle.
Furthermore, a set E is said to be polar if there is a neighbourhood U of E and a function
v ∈ SH(U) such that E ⊂ {z ∈ U : v(z) = ∞}.
D. Let u : Ω → (−∞,∞] be a lower semicontinuous function which is not
identically ∞ on any component of Ω. The function u is said to be plurisuperharmonic
in Ω if for each z ∈ Ω and w ∈ �n, the function λ 7−→ u(z + λw) is superharmonic or
identically∞ on every component of the set {λ ∈ � : z + λw ∈ Ω}.

The family of all plurisuperharmonic functions in Ω is denoted by PSH(Ω). A function
v is called plurisubharmonic in Ω if −v is plurisuperharmonic in Ω. It is well-known that
plurisuperharmonic functions are locally integrable [Kli91, Corollary 2.9.6]. Further,
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all plurisuperharmonic functions can be approximated locally from below by infinitely
smooth plurisuperharmonic functions:

3.2. Local approximation theorem. [Kli91, Theorem 2.9.2] Let u be a plurisuperhar-
monic function in Ω. If G b Ω is an open set, then there is an increasing sequence of
functions u j ∈ C∞(G) ∩ PSH(G) such that lim j→∞ u j = u in G.

Even though the definition is not local, plurisuperharmonicity is a local property [Kli91,
Theorem 2.9.1]: A function u ∈ PSH(Ω) if and only if each z ∈ Ω has a neighbourhood
G ⊂ Ω such that u|G ∈ PSH(G). In view of this result, Local approximation theorem is a
very useful tool with plurisuperharmonic functions.

A set E ⊂ �n is said to be pluripolar if there is a neighbourhood U of E and a function
u ∈ PSH(U) such that E ⊂ {z ∈ U : u(z) = ∞}. It is well-known that pluripolar sets have
Lebesgue measure zero [Kli91, Corollary 2.9.10]. Even if the above definition of pluripo-
larity is local of its nature, Josefson’s theorem [Jos78] states that every pluripolar set in �n

is globally pluripolar, i.e., contained in the set {u = ∞} for some u ∈ PSH(�n). Moreover,
a property is said to hold quasieverywhere in a subset S of �n (or for quasievery z ∈ S )
if it holds everywhere in S \ E for some pluripolar set E. It seems that pluripolar sets are
the best choice for the small sets in pluripotential theory.

Next we introduce a well-known sweeping-out process which is a two step procedure;
the result is a plurisuperharmonic function. Suppose that Ω is a domain in �n. Let ψ :
Ω→ (−∞,∞] be a function that is locally bounded below, and let

(3.3) Φ
ψ
PSH(Ω) = {u ∈ PSH(Ω) : u > ψ in Ω}

be nonempty. Then the function

(3.4) Rψ
PSH = Rψ,Ω

PSH = inf Φ
ψ
PSH(Ω)

is called the reduced function of ψ in Ω and its lower semicontinuous regularization

(3.5) R̂ψ
PSH(z) = R̂ψ,Ω

PSH(z) = lim inf
w→z
w∈Ω

Rψ
PSH(w)

is called the regularized reduced function of ψ in Ω. If Φ
ψ
PSH(Ω) is empty, then R̂ψ

PSH ≡ ∞.
It is well-known that the regularized reduced function R̂ψ

PSH is plurisuperharmonic in Ω

unless R̂ψ
PSH ≡ ∞. In the superharmonic case

(3.6) Φ
ψ
SH(Ω) = {u ∈ SH(Ω) : u > ψ in Ω},

the reduced function Rψ
SH is called the réduite, and the regularized reduced function R̂ψ

SH

is called the balayage. In fact, Rψ
PSH = Rψ

SH and R̂ψ
PSH = R̂ψ

SH in the plane, since superhar-
monic and plurisuperharmonic functions coincide there. Moreover, if ψ : Ω → (−∞,∞]
is locally bounded below, then

(3.7) R̂ψ
PSH(z) > ψ(z) for almost every z ∈ Ω.

Let u be a nonnegative function on a subset E of Ω Then we write

Φu,E
PSH(Ω) = Φ

ψ
PSH(Ω), Ru,E

PSH = Rψ
PSH, and R̂u,E

PSH = R̂ψ
PSH,
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where

ψ =


u on E,

0 on Ω \ E.

The function Ru,E
PSH is called the reduced function of u relative to E in Ω, and the function

R̂u,E
PSH is called the regularized reduced function of u relative to E in Ω. If u ≡ c is a

constant in E, then we write R̂c,E
PSH = R̂u,E

PSH, and in the plane again Ru,E
PSH = Ru,E

SH and R̂u,E
PSH =

R̂u,E
SH . In addition, 0 6 R̂u,E

PSH(z) 6 Ru,E
PSH(z) for each z ∈ Ω and R̂u,E

PSH is plurisuperharmonic in
Ω.

Note that the reduced functions R1,E
PSH and R̂1,E

PSH are closely related (but not exactly
the same, in general) to the concepts of the relative extremal function [Sic81] and the
regularized relative extremal function or PSH-measure of E relative to Ω [Sad81] in
pluripotential theory.

4. C M–À 

Let Ω be an open set in �n. The complex differential form of bidegree (p, q) or shortly
(p, q)-form in Ω is a sum

ω =
∑

I,J

ωIJ(z) dzI ∧ dz̄J,

where I = (i1, . . . , ip) and J = ( j1, . . . , jq) are increasing p- and q-indices, respectively,
dzI = dzi1 ∧ · · · ∧ dzip and dz̄J = dz̄ j1 ∧ · · · ∧ dz̄ jq ; here the wedge ∧ denotes the exterior
product. Moreover, we denote Λp,q(Ω) = {ω : ω is a (p, q)-form in Ω} and F(Ω) ∩
Λp,q(Ω) = {ω ∈ Λp,q(Ω) : the coefficients ωIJ ∈ F(Ω)} where F(Ω) is some function class
in Ω. For more details of the complex differential forms, see [Rud80, Chapter 16] and
[Kli91, Section 1.5]

Let ω ∈ C1(Ω) ∩ Λp,q(Ω) be given by ω =
∑

I,J ωIJ dzI ∧ dz̄J. Then the exterior
differential of ω is given by

dω =
∑

I,J

dωIJ ∧ dzI ∧ dz̄J =
∑

I,J

(∂ωIJ + ∂ωIJ) ∧ dzI ∧ dz̄J,

and the differential operators ∂ω and ∂ω are defined as the components of dω such that

∂ω =
∑

I,J

∂ωIJ ∧ dzI ∧ dz̄J and ∂ω =
∑

I,J

∂ωIJ ∧ dzI ∧ dz̄J.

Then ∂ω ∈ Λp+1,q(Ω) and ∂ω ∈ Λp,q+1(Ω). In particular, if f ∈ C1(Ω) is a complex-valued
function (this is, a (0, 0)-form), then d f = ∂ f + ∂ f where

∂ f =

n∑

j=1

∂ f
∂z j

dz j and ∂ f =

n∑

j=1

∂ f
∂z̄ j

dz̄ j.

Furthermore, ∂ f ∈ Λ1,0(Ω) and ∂ f ∈ Λ0,1(Ω).
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We use the standard notation d = ∂ + ∂ and dc = i(∂ − ∂) so that ddc = 2i∂∂. The
complex Monge–Ampère operator in �n is the nth exterior power of ddc, that is,

(ddc)n =

n times︷             ︸︸             ︷
ddc ∧ · · · ∧ ddc .

It is easily seen that if u ∈ C2(Ω), then

(ddcu)n = 4nn! det

[
∂2u
∂z j∂z̄k

]
dV,

where

dV(z) =

( i
2

)n

dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n

is the volume form in �n.
Let u1, . . . , uk ∈ C2(Ω), 1 6 k 6 n. If ϕ ∈ C∞0 (Ω) ∩ Λn−k,n−k(Ω) is a test form, then

∫

Ω

ddcu1 ∧ · · · ∧ ddcuk ∧ ϕ =

∫

Ω

u j ddcu1 ∧ · · · ∧ ddcu j−1 ∧ ddcu j+1 ∧ · · · ∧ ddcuk ∧ ddcϕ

for j = 1, . . . , k [BT76, Proposition 2.1]. This formula is a kind of integration by parts
property for the complex Monge–Ampère operator. Secondly, if u1, . . . , uk ∈ L∞loc(Ω) ∩
PSH(Ω), 1 6 k 6 n, then −(ddcu1 ∧ · · · ∧ ddcuk) is a positive (k, k)-current with measure
coefficients [BT76, Proposition 2.9]. These two properties have inspired to define the
complex Monge–Ampère operator inductively acting on locally bounded plurisuperhar-
monic functions.

D. Suppose that u1, . . . , un ∈ L∞loc(Ω) ∩ PSH(Ω). If 1 6 k 6 n, then ddcu1 ∧ · · · ∧
ddcuk is defined inductively by the formula

∫

Ω

ddcu1 ∧ · · · ∧ ddcuk ∧ ϕ =

∫

Ω

uk ddcu1 ∧ · · · ∧ ddcuk−1 ∧ ddcϕ,

where ϕ ∈ C∞0 (Ω) ∩ Λn−k,n−k(Ω) is any test form. Now (ddc)n defined by the previous
formula is called the generalized complex Monge–Ampère operator.

The definition above defines −(ddc)n so that it is a (n, n)-form whose coefficients are
Radon measures on Ω, see [BT76]. We usually abbreviate the whole name of this gener-
alized operator as Monge–Ampère operator without the prefix ‘generalized complex’.

Next convergence result says that −(ddc)n is continuous under monotone limits. It
is known that −(ddc)n does not behave well under nonmonotone limits [Ceg83]. For
more details of the convergence in the sense of currents, this is, in the sense of weak∗-
convergence of measures, see [Lel68, Kli91, Fed69].

4.1. Weak convergence theorem. [BT82, Theorem 2.1] Let u ∈ L∞loc(Ω) ∩ PSH(Ω). If
u j ∈ L∞loc(Ω) ∩ PSH(Ω) is a decreasing or increasing sequence of functions such that
lim j→∞ u j = u a.e. in Ω (with respect to the Lebesgue measure), then

lim
j→∞
−(ddcu j)

n = −(ddcu)n

in the sense of currents.
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There are even weaker conditions than the previous one to ensure the convergence
−(ddcu j)n → −(ddcu)n in the sense of currents, see [Xin96]. Anyway, we need informa-
tion about the strong convergence of the Monge–Ampère operator. If u is plurisuperhar-
monic in Ω, then the nonpolar part of −(ddcu)n, denoted by NP [−(ddcu)n], is the measure
which is zero on {u = ∞}, and for a Borel set E ⊂ {u < ∞}, we have∫

E
NP [−(ddcu)n] = lim

j→∞

∫

E∩{u< j}
−(ddc min(u, j))n.

In general, NP [−(ddcu)n] is not locally finite, but the following convergence property
holds:

4.2. Strong convergence theorem. [BT87, Proposition 4.4] Let a plurisuperharmonic
function u in Ω and a compact subset K ⊂ {u < ∞} be given. If u j ∈ L∞loc(Ω) ∩ PSH(Ω) is
an increasing sequence of functions which converges to u, then

lim
j→∞

∫

K
−(ddcu j)

n =

∫

K
NP [−(ddcu)n] .

Finally, the Monge–Ampère operator satisfies the superadditivity property [Kli91, Corol-
lary 3.4.9]: If u, v ∈ L∞loc(Ω) ∩ PSH(Ω), then

(4.3) − (ddc(u + v))n > −(ddcu)n − (ddcv)n.

5. R M–À 

D. [BT82] Let K be a compact set contained in Ω. The (relative) Monge–Ampère
capacity of K in Ω is defined by the formula

(5.1) cap(K,Ω) = sup
u∈PSH(Ω)

06u61

∫

K
−(ddcu)n.

If E is an arbitrary set in Ω, we put

(5.2) cap(E,Ω) = sup
{
cap(K,Ω) : K is a compact subset of E

}
.

Note that the supremum in (5.1) is taken over all plurisuperharmonic functions u with
values in the closed interval 0 6 u 6 1. In the original definition [BT82] the values of
plurisuperharmonic functions u are supposed to belong to the open interval 0 < u < 1,
however, these definitions are equivalent, see [Bed93, p. 63].

A pair (E,Ω) is said to be a condenser if Ω is an open set and E b Ω is an arbitrary set.
A condenser (E,G) is said to be in Ω if G ⊂ Ω. Moreover, a condenser (E,Ω) is said to
be a Borel condenser (respectively, a compact condenser or an open condenser) if E is a
Borel set in Ω (respectively, a compact set or an open set in Ω). Of course, both compact
and open condensers are Borel condensers.

The Monge–Ampère capacity in Ω is defined for all subsets of Ω; even for the sets
E ⊂ Ω such that dist(E, ∂Ω) = 0. However, all condensers (E,Ω) are supposed to satisfy
E b Ω in this study.
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We note that the Monge–Ampère capacity is an inner capacity. It has the following
properties [BT82, Section 3]:

(i) If (E,Ω) is a Borel condenser, then

cap(E,Ω) = sup
u∈PSH(Ω)

06u61

∫

E
−(ddcu)n.

(ii) If E1 ⊂ E2 ⊂ Ω, then cap(E1,Ω) 6 cap(E2,Ω).
(iii) If E ⊂ Ω ⊂ Ω′, then cap(E,Ω) > cap(E,Ω′).
(iv) If E1, E2, . . . are subsets of Ω, then

cap


∞⋃

j=1

E j,Ω

 6
∞∑

j=1

cap(E j,Ω).

(v) If E1 ⊂ E2 ⊂ · · · are Borel sets in Ω, then

cap


∞⋃

j=1

E j,Ω

 = lim
j→∞

cap(E j,Ω).

The outer capacity of a set E in Ω is defined by the formula

(5.3) cap∗(E,Ω) = inf{cap(U,Ω) : U ⊃ E, U open}.
The set function E 7−→ cap∗(E,Ω), E ⊂ Ω, is a Choquet capacity relative to Ω [BT82,
Section 8]. It follows from Choquet’s theorem [Cho54] that all K-analytic subsets E of Ω

(often referred to as Suslin sets of Ω) are capacitable, that is, cap∗(E,Ω) = cap(E,Ω). A
condenser (E,Ω) is said to be a capacitable condenser if E is capacitable. For example,
Borel sets are K-analytic, and thus every Borel condenser is a capacitable condenser. The
outer capacity is closely related to pluripolar sets: A set E ⊂ Ω b �n is pluripolar if and
only if cap∗(E,Ω) = 0 [Bed93, (4.3), p. 63]. For the inner capacity this is always true
only in one direction: If E ⊂ Ω b �n is pluripolar, then cap(E,Ω) = 0.

It is known that plurisuperharmonic functions are quasicontinuous with respect to the
Monge–Ampère capacity [Bed93, (4.6), p. 64]: If u ∈ PSH(Ω), then for each ε > 0, there
is an open subset U ⊂ Ω such that cap(U,Ω) < ε and u|Ω\U is continuous.

6. M   

Let Ω be an open set in �m. Suppose that u : Ω → (−∞,∞] is a Lebesgue measurable
function which is locally bounded below. The signed Hardy–Littlewood maximal function
of u is defined as

(6.1) MΩu(x) = sup
?

B(x,r)
u(y) dm(y),

where the supremum is taken over all radii r with 0 < r < dist(x, ∂Ω). Here
?

E
u dµ =

1
µ(E)

∫

E
u dµ

denotes the mean integral of u over E.
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The maximal function MΩu is defined everywhere in Ω with values in (−∞,∞] and
it is lower semicontinuous. If u is lower semicontinuous, then u(x) 6 MΩu(x) for every
x ∈ Ω. If u is not identically ∞ on any component of Ω, then MΩu(x) = u(x) for every
x ∈ Ω if and only if u is superharmonic. Proofs of these facts can be found in the article
by J. Kinnunen and O. Martio [KM00].

Suppose now that Ω is an open set in �n. Then the definition of the signed Hardy–
Littlewood maximal function is valid with the identification �n ≈ �2n. The next result
states the mean value principle for plurisuperharmonic functions in Ω, this is, the super
mean value principle for superharmonic functions on all parts of complex lines inside Ω.
It follows easily from the definition of plurisuperharmonicity and the super mean value
principles for superharmonic functions.

6.2. Plurisuper mean value principle. [Kli91, Theorem 2.9.1] Let u : Ω→ (−∞,∞] be
a lower semicontinuous function which is not identically∞ on any component of Ω. Then
the following conditions are equivalent:

(i) u is plurisuperharmonic.
(ii) If z ∈ Ω and w ∈ �n are such that 0 < |w| < dist(z, ∂Ω), then

u(z) >
1

2π

∫ 2π

0
u(z + eitw) dt =

?

∂B2(0,1)
u(z + λw) ds(λ).

(iii) If z ∈ Ω and w ∈ �n are such that 0 < |w| < dist(z, ∂Ω), then

u(z) >
?

B2(0,1)
u(z + λw) dm2(λ).

The unit disc in � is denoted here by B2(0, 1), and s and m2 denote the length measure
and the Lebesgue measure in �, respectively. Note that the previous mean integrals are
taken with respect to these measures.

D. Suppose that u : Ω → (−∞,∞] is a Borel function which is locally bounded
below. The signed pluricomplex maximal function of u is defined as

(6.3) PMΩu(z) = sup
?

B2(0,1)
u(z + λw) dm2(λ),

where the supremum is taken over all w ∈ �n such that 0 < |w| < dist(z, ∂Ω).
Note that every Borel function u : Ω → (−∞,∞] is measurable on all complex lines

in Ω. In addition, u is supposed to be locally bounded below, and hence the maximal
function (6.3) is well-defined.

6.4. Remark. If we assume generally that u : Ω → (−∞,∞] is any Borel function which
is locally bounded below, then the signed pluricomplex maximal function PMΩu is not
necessarily lower semicontinuous, which is seen by the following example. However,
the signed Hardy–Littlewood maximal function MΩu is always lower semicontinuous
[KM00, Lemma 2.1 (i)]. This difference between the maximal functions arises from the
fact that exceptional values of u in the sets of Lebesgue measure zero have no effect on
the values of the signed Hardy–Littlewood maximal function MΩu, but they may have
effect on the signed pluricomplex maximal function PMΩu.
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As an example we consider the characteristic function of the closed set A = {z ∈ �2 :
1
2 6 |z1| 6 1, |z2| = 0}. Then u is a Borel function but not lower semicontinuous, and

PM�2u(0) =
m2(B2(0, 1)) − m2(B2(0, 1

2 ))

m2(B2(0, 1))
=
π · 12 − π

(
1
2

)2

π · 12
=

3
4
.

On the other hand, if (z j) is a sequence of points in �2 outside the complex line �× {0} ⊂
�2 converging to the origin, then PM�2u(z j) = 0 for every j = 1, 2, . . ., and hence PM�2u
is not lower semicontinuous at z = 0.

However, the signed pluricomplex maximal function of any lower semicontinuous
function enjoys the same properties as the signed Hardy–Littlewood maximal function,
see [KM00]. These results are presented in the rest of this section.

6.5. Lemma. Suppose that u : Ω→ (−∞,∞] is a lower semicontinuous function. Then

(i) PMΩu is lower semicontinuous, and
(ii) u(z) 6 PMΩu(z) for every z ∈ Ω.

Proof. Since u : Ω→ (−∞,∞] is lower semicontinuous, PMΩu is defined everywhere in
Ω. Let z ∈ Ω and w ∈ �n be such that 0 < |w| < dist(z, ∂Ω). Suppose that (z j) ⊂ Ω is a
sequence such that z j → z as j → ∞. Write u0(λ) = u(z + λw) and u j(λ) = u(z j + λw)
whenever λ ∈ B2(0, 1) and j > j0 for some j0 ∈ �. The lower semicontinuity of u implies
that for every λ ∈ B2(0, 1)

u0(λ) = u(z + λw) 6 lim inf
j→∞

u(z j + λw) = lim inf
j→∞

u j(λ),

since z j + λw → z + λw as j → ∞. Since u is locally bounded below, it follows from
Fatou’s lemma that

?

B2(0,1)
u(z + λw) dm2(λ) =

?

B2(0,1)
u0(λ) dm2(λ)

6
?

B2(0,1)
lim inf

j→∞
u j(λ) dm2(λ) 6 lim inf

j→∞

?

B2(0,1)
u j(λ) dm2(λ)

= lim inf
j→∞

?

B2(0,1)
u(z j + λw) dm2(λ) 6 lim inf

j→∞
PMΩu(z j).

This yields PMΩu(z) 6 lim inf j→∞ PMΩu(z j), and thus PMΩu is lower semicontinuous.
To prove (ii), fix z ∈ Ω. We can suppose that u(z) < ∞. Let ε > 0. Since u is lower

semicontinuous, there is r > 0 such that u(z′) > u(z)− ε for every z′ ∈ B(z, r) ⊂ Ω. Hence
for every w ∈ �n such that |w| < r

PMΩu(z) >
?

B2(0,1)
u(z + λw) dm2(λ) >

?

B2(0,1)
(u(z) − ε) dm2(λ) = u(z) − ε.

Because z ∈ Ω and ε > 0 were chosen arbitrarily, it follows that PMΩu(z) > u(z) for every
z ∈ Ω. �
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6.6. Remark. If u : Ω → (−∞,∞] is a lower semicontinuous function, then we know by
[KM00, Lemma 2.1 (ii)] and the previous lemma that u(z) 6 MΩu(z) and u(z) 6 PMΩu(z)
for all z ∈ Ω. However, the signed Hardy–Littlewood maximal function MΩu and the
signed pluricomplex maximal function PMΩu are not comparable in the sense that neither
MΩu(z) 6 PMΩu(z) nor PMΩu(z) 6 MΩu(z) holds for all z ∈ Ω, in general. This is easy
to see with the following two examples.

Firstly, suppose that u : �2 → {0, 1} is the characteristic function of a domain 1
2 < |z| <

1 in �2, this is,

u(z) =


1, 1

2 < |z| < 1,

0, otherwise.

Then u is lower semicontinuos, and

M�2u(0) =
m(B(0, 1)) − m(B(0, 1

2 ))

m(B(0, 1))
=

1
2π

2 · 14 − 1
2π

2
(

1
2

)4

1
2π

2 · 14
=

15
16
.

Moreover, like the function u in Remark 6.4, our present u satisfies

PM�2u(0) =
m2(B2(0, 1)) − m2(B2(0, 1

2 ))

m2(B2(0, 1))
=

3
4
,

and thus PM�2u(0) < M�2u(0).
On the other hand, we can construct a lower semicontinuous function u in �2 such that

M�2u(z) < PM�2u(z) for some z ∈ �2. Let ε > 0. Define a function uε : �2 → {0, 1} as

uε(z) = uε(z1, z2) =


1, 1

2 < |z| < 1 and |z2| < ε,
0, otherwise.

Then uε is the characteristic function of an open set which contains the complex interval
1
2 < |z1| < 1. Obviously, M�2uε(0) ↘ 0 as ε ↘ 0. However, the signed pluricomplex
maximal function again satisfies

PM�2uε(0) =
m2(B2(0, 1)) − m2(B2(0, 1

2 ))

m2(B2(0, 1))
=

3
4
.

Therefore, if ε > 0 is small enough, then M�2uε(0) < PM�2uε(0).

6.7. Theorem. Suppose that u : Ω→ (−∞,∞] is a lower semicontinuous function which
is not identically∞ on any component of Ω. Then the following properties hold:

(i) u is superharmonic in Ω if and only if u(z) = MΩu(z) for all z ∈ Ω.
(ii) u is plurisuperharmonic in Ω if and only if u(z) = PMΩu(z) for all z ∈ Ω.

(iii) u is superharmonic but not plurisuperharmonic in Ω if and only if u(z) = MΩu(z)
for all z ∈ Ω and there is at least one point w ∈ Ω such that u(w) < PMΩu(w).

Proof. The property (i) holds by the result [KM00, Lemma 2.2]. The following proof of
(ii) follows the idea of the proof of [KM00, Lemma 2.2], but the plurisuper mean value
principle 6.2 (iii) is used instead of the usual super mean value principle.



PLURIPOTENTIAL THEORY AND CAPACITY INEQUALITIES 17

Suppose first that u is plurisuperharmonic. Then by the plurisuper mean value principle
6.2 (iii)

u(z) >
?

B2(0,1)
u(z + λw) dm2(λ)

for every z ∈ Ω and w ∈ �n such that 0 < |w| < dist(z, ∂Ω). Taking the supremum
over all such w we have u(z) > PMΩu(z) for every z ∈ Ω. On the other hand, the lower
semicontinuity of plurisuperharmonic functions together with Lemma 6.5 (ii) implies that
u(z) 6 PMΩu(z) for every z ∈ Ω. Therefore PMΩu(z) = u(z) for every z ∈ Ω.

Suppose then that PMΩu(z) = u(z) for every z ∈ Ω. This assumption and the definition
of the PMΩu imply that

?

B2(0,1)
u(z + λw) dm2(λ) 6 PMΩu(z) = u(z)

for every z ∈ Ω and w ∈ �n such that 0 < |w| < dist(z, ∂Ω). This is the required plurisuper
mean value principle 6.2 (iii) and hence u is plurisuperharmonic.

The property (iii) follows easily from the properties (i) and (ii) together with Lemma
6.5 (ii). �

6.8. Corollary. Suppose that u and v are plurisuperharmonic functions in Ω. If u(z) >
v(z) for almost every z ∈ Ω, then PMΩu(z) > PMΩv(z) for every z ∈ Ω.

Proof. It is known [AG01, Corollary 3.2.7] that if u and v are superharmonic (in partic-
ular, plurisuperharmonic) and if u(z) > v(z) for almost every z ∈ Ω, then u(z) > v(z) for
every z ∈ Ω. This yields by Theorem 6.7 (ii) that

PMΩu(z) = u(z) > v(z) = PMΩv(z)

for every z ∈ Ω. �

However, Corollary 6.8 is a consequence of a much more general result:

6.9. Lemma. Suppose that u : Ω→ (−∞,∞] is a Borel function which is locally bounded
below and that v : Ω → (−∞,∞] is a lower semicontinuous function. If u(z) > v(z) for
almost every z ∈ Ω, then PMΩu(z) > PMΩv(z) for every z ∈ Ω.

Proof. Since v is lower semicontinuous, there is an increasing sequence of continuous
functions v j such that v j → v in Ω. Then

lim
j→∞

PMΩv j(z) = PMΩv(z)

for every z ∈ Ω. For this note that PMΩv j(z) 6 PMΩv(z) for each j, and

lim
j→∞

?

B2(0,1)
v j(z + λw) dm2(λ) =

?

B2(0,1)
v(z + λw) dm2(λ)

for each z ∈ Ω and w ∈ �n such that 0 < |w| < dist(z, ∂Ω). Hence for all z ∈ Ω the
Lebesgue monotone convergence theorem gives the opposite inequality

PMΩv(z) 6 lim
j→∞

PMΩv j(z).
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To complete the proof, let z ∈ Ω and ε > 0. For each j = 1, 2, . . ., pick w j ∈ �n with
0 < |w j| < dist(z, ∂Ω) such that

PMΩv j(z) <
?

B2(0,1)
v j(z + λw j) dm2(λ) + ε.

Now u(z) > v j(z) almost everywhere in Ω, and using the measure on complex lines in �n

and the properties of the Haar measure, see [Fed69], we can choose for each j a complex
line T (w′j) = {z + λw′j : λ ∈ �} such that

m2(T (w′j) ∩ {z ∈ Ω : u(z) < v j(z)}) = 0

and that w′j is arbitrarily close to w j. Then the continuity of v j yields

PMΩu(z) >
?

B2(0,1)
u(z + λw′j) dm2(λ) >

?

B2(0,1)
v j(z + λw′j) dm2(λ)

>
?

B2(0,1)
v j(z + λw j) dm2(λ) − ε.

Thus
PMΩu(z) > PMΩv j(z) − 2ε,

and letting j→ ∞ and ε→ 0 we obtain the desired result. �

Suppose that a function u : Ω → (−∞,∞] is locally bounded below. We say that the
function ũSH is the least superharmonic almost everywhere majorant of u in Ω if

(i) ũSH is superharmonic in Ω,
(ii) ũSH(z) > u(z) for almost every z ∈ Ω, and

(iii) if v is another function satisfying (i) and (ii), then v(z) > ũSH(z) for almost every
z ∈ Ω.

In the same way, the function ũPSH is said to be the least plurisuperharmonic almost
everywhere majorant of u in Ω if

(i’) ũPSH is plurisuperharmonic in Ω,
(ii’) ũPSH(z) > u(z) for almost every z ∈ Ω, and

(iii’) if v is another function satisfying (i’) and (ii’), then v(z) > ũPSH(z) for almost
every z ∈ Ω.

6.10. Remark. The least (pluri)superharmonic almost everywhere majorant doesn’t al-
ways exist, since a locally bounded below function may have value +∞ in a set of pos-
itive Lebesgue measure. On the other hand, we know that every (pluri)superharmonic
function can have value +∞ only in a (pluri)polar set. Hence the conditions (ii) and (ii’)
are not always satisfied with any (pluri)superharmonic function. However, this problem
is disregarded here with a convention that we allow (pluri)superharmonic functions be
identically +∞ in Ω. To be more precise, if ũPSH (resp. ũSH) doesn’t exist, then we set
ũPSH ≡ +∞ (resp. ũSH ≡ +∞). Of course, this has to be understood in the components
of Ω separately. (Pluri)superharmonic functions that are allowed to be identically +∞ are
sometimes called (pluri)hyperharmonic.
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Secondly, the inequality in (iii’) actually holds everywhere in Ω, because if v satisfies
(i’) and (ii’), then the condition v(z) > ũPSH(z) for almost every z ∈ Ω implies that v(z) >
ũPSH(z) for every z ∈ Ω as v and ũPSH are plurisuperharmonic.

The same is true in the superharmonic case for the inequality in (iii), this is, v(z) >
ũSH(z) for every z ∈ Ω [KM00, Remark 2.4]. From this it follows that ũPSH(z) > ũSH(z) for
all z ∈ Ω, because the least plurisuperharmonic almost everywhere majorant ũPSH satisfies
the conditions (i) and (ii) of the least superharmonic almost everywhere majorant of u.

We show that the least plurisuperharmonic almost everywhere majorant can be con-
structed by iterating the signed pluricomplex maximal function; the similar construction
is known to be possible for the least superharmonic almost everywhere majorant by iter-
ating the signed Hardy–Littlewood maximal function [KM00, Theorem 2.5].

Let u : Ω→ (−∞,∞] be a lower semicontinuous function. We write

PM(k)
Ω

u(z) = PMΩ ◦ PMΩ ◦ · · · ◦ PMΩ︸                           ︷︷                           ︸
k times

u(z), k = 1, 2, . . . .

Since the maximal functions PM(k)
Ω

u, k = 1, 2, . . ., are lower semicontinuous, we see by
using Lemma 6.5 (ii) that

PM(k)
Ω

u(z) 6 PM(k+1)
Ω

u(z), k = 1, 2, . . . ,

for every z ∈ Ω. Hence (PM(k)
Ω

u(z))k is an increasing sequence of functions and it con-
verges for every z ∈ Ω (the limit may be∞). Moreover, we denote

PM(∞)
Ω

u(z) = lim
k→∞

PM(k)
Ω

u(z)

for every z ∈ Ω.
The following two theorems combine the concepts of the signed pluricomplex maximal

function, the least plurisuperharmonic almost everywhere majorant and the regularized
reduced function defined in Section 3.

6.11. Theorem. Suppose that u : Ω → (−∞,∞] is a lower semicontinuous function
which is not identically∞ on any component of Ω. Then

(6.12) PM(∞)
Ω

u(z) = ũPSH(z)

for every z ∈ Ω.

Proof. This proof follows the idea of the proof of [KM00, Theorem 2.5]. We show that

PM(∞)
Ω

u(z) = PMΩPM(∞)
Ω

u(z)

for every z ∈ Ω. Because {PM(k)
Ω

u}k is an increasing sequence of lower semicontinuous
functions, the limit is lower semicontinuous. Hence we have by Lemma 6.5 (ii) that

PM(∞)
Ω

u(z) 6 PMΩPM(∞)
Ω

u(z)

for every z ∈ Ω.
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Let z ∈ Ω be fixed. For all w ∈ �n such that 0 < |w| < dist(z, ∂Ω), we have by the
Lebesgue monotone convergence theorem and the definition of the plurimaximal funcion
that

?

B2(0,1)
PM(∞)

Ω
u(z + λw) dm2(λ) = lim

k→∞

?

B2(0,1)
PM(k)

Ω
u(z + λw) dm2(λ)

6 lim
k→∞

PM(k+1)
Ω

u(z) = PM(∞)
Ω

u(z),

because all lower semicontinuous functions are locally bounded below. Taking the supre-
mum over all w ∈ �n such that 0 < |w| < dist(z, ∂Ω) on the left hand side we obtain

PMΩPM(∞)
Ω

u(z) 6 PM(∞)
Ω

u(z)

for every z ∈ Ω. By Theorem 6.7 (ii), PM(∞)
Ω

u is plurisuperharmonic in Ω.
Suppose then that v is a plurisuperharmonic function in Ω such that u(z) 6 v(z) for

almost every z ∈ Ω. Then by Lemma 6.9 we have PMΩu(z) 6 PMΩv(z) for every z ∈ Ω.
By Lemma 6.5 (i) and Theorem 6.7 (ii), PMΩu is lower semicontinuous in Ω and PMΩv
is plurisuperharmonic in Ω, and thus by induction we see that PM (k)

Ω
u(z) 6 PM(k)

Ω
v(z) for

every k = 1, 2, . . . and z ∈ Ω. Hence

PM(∞)
Ω

u(z) = lim
k→∞

PM(k)
Ω

u(z) 6 lim
k→∞

PM(k)
Ω

v(z) = v(z)

for every z ∈ Ω, because by Theorem 6.7 (ii) we see that PM(k)
Ω

v(z) = v(z) for every
k = 1, 2, . . . and every z ∈ Ω. This completes the proof. �

6.13. Theorem. Suppose that u : Ω → (−∞,∞] is a lower semicontinuous function.
Then

(6.14) PM(∞)
Ω

u(z) = R̂u
PSH(z)

for every z ∈ Ω.

Proof. This proof follows the idea of the proof of [KM00, Proposition 2.7]. The regu-
larized reduced function R̂u

PSH is plurisuperharmonic in Ω and R̂u
PSH(z) > u(z) for almost

every z ∈ Ω by (3.7). Hence Theorem 6.11 and the definition of the least plurisuperhar-
monic almost everywhere majorant of u together with Remark 6.10 imply that

R̂u
PSH(z) > ũPSH(z) = PM(∞)

Ω
u(z)

for every z ∈ Ω.
Since u(z) 6 PMΩu(z) for every z ∈ Ω, we see by Theorem 6.7 (ii) that

u(z) 6 PM(k)
Ω

u(z), k = 1, 2, 3, . . . ,

for every z ∈ Ω and consequently PM(∞)
Ω

u(z) > u(z) for every z ∈ Ω. This implies that
PM(∞)

Ω
u ∈ Φu

PSH(Ω) where Φu
PSH(Ω) is defined by (3.3), and hence

R̂u
PSH(z) 6 PM(∞)

Ω
u(z)

for every z ∈ Ω. We have proved that

PM(∞)
Ω

u(z) = R̂u
PSH(z)



PLURIPOTENTIAL THEORY AND CAPACITY INEQUALITIES 21

for every z ∈ Ω. �

The least superharmonic almost everywhere majorant ũSH and the usual superharmonic
balayage R̂u

SH satisfy the corresponding properties

M(∞)
Ω

u(z) = ũSH(z) and M(∞)
Ω

u(z) = R̂u
SH(z)

for every z ∈ Ω, see [KM00, Theorem 2.5 and Proposition 2.7]. The function M (∞)
Ω

u is
defined iteratively like PM(∞)

Ω
u.

Part 2. Capacities in the plane

This part is devoted to the study of capacities in the complex plane, that is, in � =

�2. This approach based on classical methods is supposed to describe the relationship
between the Monge–Ampère capacity and some classical capacities in potential theory.
Of course, this relationship has been on the background when the concept of the Monge–
Ampère capacity was developed.

7. P  

We derive first a well-known fact that the complex Monge–Ampère operator is essen-
tially just the Laplace operator. This holds only in the plane, and in the higher dimensional
spaces the relation between these operators is much more complicated. If u ∈ C2(Ω), then
a straightforward calculation gives

ddcu = 2i∂∂u = 2i
∂2u
∂z∂z

dz ∧ dz̄ = 2i
1
4

(
∂2u
∂x2

+
∂2u
∂y2

)
(−2i dx ∧ dy)

=

(
∂2u
∂x2

+
∂2u
∂y2

)
dx ∧ dy = ∆u dV.

The generalized (or distributional) Laplacian ∆u of an arbitrary superharmonic func-
tion u in Ω is defined by the formula

(7.1)
∫

Ω

ϕ∆u =

∫

Ω

u∆ϕ dm,

where ϕ ∈ C∞0 (Ω) is a nonnegative test function. If u is not smooth enough (not a C2-
function), the right-hand side of (7.1) still makes sense, because all superharmonic func-
tions are locally integrable. If u is a superharmonic function in Ω, then −∆u is known to
be a Radon measure on Ω. In the plane the family of plurisuperharmonic functions equals
to the family of superharmonic functions. Therefore, if K is a compact subset of Ω in the
plane, then the Monge–Ampère capacity of the condenser (K,Ω) can be defined as

(7.2) cap(K,Ω) = sup
u∈SH(Ω)
06u61

∫

K
−∆u.

We set
W(K,Ω) = {u ∈ C∞0 (Ω) : u > 1 on K}
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and
W0(K,Ω) = {u ∈W1,p

0 (Ω) ∩ C(Ω) : u > 1 on K},
where W1,p

0 (Ω) denotes the closure of C∞0 (Ω) in the Sobolev space W1,p(Ω), 1 < p < ∞.
Recall that a function u belongs to W1,p(Ω) if u ∈ Lp(Ω) and the weak first order partial
derivatives of u belong also to Lp(Ω).

D. Let K be a compact subset of Ω. The (variational) p-capacity of the con-
denser (K,Ω) is defined by

(7.3) capp(K,Ω) = inf
u∈W(K,Ω)

∫

Ω

|∇u|p dm.

If U ⊂ Ω is open, then

(7.4) capp(U,Ω) = sup
K⊂U

is compact

capp(K,Ω),

and for an arbitrary set E ⊂ Ω

(7.5) capp(E,Ω) = inf
E⊂U⊂Ω

U is open

capp(U,Ω).

It is well-known that the set W(K,Ω) of admissible functions in (7.3) can be replaced
by W0(K,Ω). For more details of the p-capacity, see [HKM93].

A potential is some integral operator acting on a space of signed measures. Such an
operator is defined by a kernel K(z,w) which is usually dependent only on the distance
|z − w|. The importance of superharmonic functions is, roughly speaking, that every
superharmonic function can be represented as the sum of a potential and of a harmonic
function. We shall study Green potentials and Green kernels associated with domains
in the plane. Historically, Green potentials were preceded by logarithmic potentials in
the plane and Newton potentials in the higher dimensional spaces, that is, in �m where
m > 3. Recently, M. Carlehed [Car99] has studied pluricomplex potentials in �n with
general dimensions, not only in the plane.

Recall that if y ∈ �m, m > 2, then the function

(7.6) uy(x) =



− log |x − y|, x , y, m = 2,

|x − y|2−m, x , y, m > 3,

+∞, x = y,

is harmonic in �m \ {y} and superharmonic in �m, see [AG01, Corollary 3.2.10]. Let Ω

be an open subset of �m. The Green function for Ω with pole at y is a function gΩ :
Ω × Ω → [0,+∞] defined so that gΩ(·, y) = uy − hy where hy is the greatest harmonic
minorant of uy on Ω, see [AG01, Section 4.1]. By the extended maximum principle for
harmonic functions [AG01, Theorem 1.2.4], each set Ω has at most one Green function
with a given pole. If the Green function for an open set Ω exists, then Ω is said to be
Greenian.

Suppose now that Ω is an open set in the plane �. By the preceding definition, the
Green function for Ω with pole at w is the function gΩ(z,w) = uw(z)+hw(z) where uw(z) =
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− log |z − w| if z , w, and uw(z) = +∞ if z = w. A domain Ω in the plane is Greenian if
and only if ∂Ω is nonpolar [Ran95, Theorem 4.4.2]. Moreover, it is known that if ∂Ω is
polar, then Ω is necessarily unbounded. This is because the boundary of a bounded open
set contains always a continuum that cannot be polar. A non-Greenian open set in the
plane is therefore always unbounded. Conversely, every bounded open set in the plane is
necessarily Greenian.

D. Let Ω be a Greenian set, and let µ be a Radon measure on Ω. Then the Green
potential of µ in Ω is defined by

(7.7) Uµ

Ω
(z) =

1
2π

∫

Ω

gΩ(z,w) dµ(w) (z ∈ Ω),

and the Green energy of µ in Ω is given by

(7.8) IΩ(µ) =
1

2π

∫

Ω

∫

Ω

gΩ(z,w) dµ(w) dµ(z) =

∫

Ω

Uµ

Ω
(z) dµ(z).

If µ and ν are two Radon measures on Ω, then the mutual Green energy of µ and ν in Ω is

(7.9) IΩ(µ, ν) =
1

2π

∫

Ω

∫

Ω

gΩ(z,w) dµ(w) dν(z) =

∫

Ω

Uµ

Ω
(z) dν(z).

It is clear that IΩ(µ, µ) = IΩ(µ). Note that in the literature, the Green energy of a Radon
measure µ on Ω is denoted also by ‖µ‖2. If Ω is a Greenian domain and if µ is a Radon
measure in Ω, then Uµ

Ω
is nonnegative and either superharmonic or identically +∞ in Ω

[Hel69, Lemma 6.1].

7.10. Maria–Frostman domination principle. [Hel69, Theorem 8.43] Let Ω be a Gree-
nian set, and let µ be a Radon measure on Ω such that Uµ

Ω
is finite. If u is a positive

superharmonic function on Ω such that u > Uµ

Ω
quasieverywhere on spt µ, then u > Uµ

Ω

on Ω.

7.11. Reciprocity theorem. [Hel69, Theorem 6.14] Let Ω be a Greenian set. If µ and ν
are two Radon measures on Ω, then the mutual energy of µ and ν in Ω satisfies

(7.12) IΩ(µ, ν) =

∫

Ω

Uµ

Ω
dν =

∫

Ω

Uν
Ω dµ = IΩ(ν, µ).

D. Let Ω be a Greenian set. If K is a compact subset of Ω, then the unique
Radon measure µK on Ω for which R̂1,K

SH = UµK

Ω
is called the capacitary measure for K in

Ω. The Green capacity of K relative to Ω is defined by

(7.13) CΩ(K) = µK(K).

The balayage R̂1,K
SH is called the capacitary function for K in Ω.

Let u be an arbitrary superharmonic function in an open subset Ω of �n. Then −∆u is
a Radon measure on Ω, but it is not necessarily compactly supported in Ω and it can be
infinite for some noncompact subset of Ω. But if both Ω and u are bounded, then −∆u is a
finite Radon measure on Ω. In general, every Radon measure on Ω with compact support
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is finite in Ω. The converse is not true because a finite Radon measure is not necessarily
compactly supported in Ω.

Let Ω be a Greenian set in the plane. If µ is a finite Radon measure on Ω, then

(7.14) −∆Uµ

Ω
= µ on Ω,

this means that −∆Uµ

Ω
and µ give the same measure on Ω [AG01, Theorem 4.3.8]. More-

over, if µ is a Radon measure on Ω with compact support, then

(7.15) IΩ(µ) =

∫

Ω

|∇Uµ

Ω
(z)|2 dm(z)

provided that IΩ(µ) < ∞, see [Lan72].

8. C     

Let E be a subset of Ω. If Ω is Greenian, then we set

M+(E,Ω) = {µ : µ is a Radon measure on Ω such that spt µ ⊂ E and

that Uµ

Ω
6 1}

and
M+(E,Ω)∗ = {µ : µ is a Radon measure on Ω such that spt µ ⊂ E and

that Uµ

Ω
> 1 quasieverywhere on E}.

If Ω is not Greenian, then we set M+(E,Ω) = M+(E,Ω)∗ = ∅. In one sense, M+(E,Ω)∗ is
the complement of M+(E,Ω) in the space of Radon measures on Ω such that spt µ ⊂ E.
However, M+(E,Ω) ∩M+(E,Ω)∗ can be nonempty, and hence it is not exactly correct to
say that M+(E,Ω)∗ is the complement of M+(E,Ω).

8.1. Theorem. Let Ω be a Greenian set in the plane. If K is a compact set in Ω, then
cap(K,Ω) = CΩ(K).

Proof. Let K be a compact set in Ω. Denote

Ũµ

Ω
(z) =

∫

Ω

g(z,w) dµ(w), z ∈ Ω,

where µ is any Radon measure on Ω. Then R̂1,K
SH = 1

2πŨµK

Ω
, see [Hel69, pp. 137–138]. It

holds by [AG01, Theorem 4.3.8] that

(8.2) −∆UµK

Ω
=

1
2π

(
−∆ŨµK

Ω

)
= µK ,

Moreover, by [Hel69, Lemma 7.19]

CΩ(K) = sup{µ(K) : Uµ

Ω
6 1, µ is a Radon measure on Ω with spt µ ⊂ K}.

Let µ ∈ M+(K,Ω) be arbitrary. Since Uµ

Ω
is superharmonic in Ω and 0 6 Uµ

Ω
6 1, it

follows from the definition of the Monge–Ampére capacity that
(
−∆Uµ

Ω

)
(K) 6 cap(K,Ω).
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This is equivalent to
1

2π

(
−∆Ũµ

Ω

)
(K) 6 cap(K,Ω),

and (8.2) gives
µ(K) 6 cap(K,Ω).

Hence
CΩ(K) 6 cap(K,Ω).

It remains to show that cap(K,Ω) 6 CΩ(K). Suppose that u is superharmonic in Ω with
0 6 u 6 1. Riesz decomposition theorem, see [AG01, Theorem 4.4.1], yields

u(z) = Ũµ

Ω
(z) + h(z), z ∈ Ω,

where µ = − 1
2π∆u and h is harmonic in Ω (more precisely, h is the greatest harmonic

minorant of u in Ω). It follows that

−∆u = −∆Ũµ

Ω
= 2πµ,

and thus
(−∆u)(K) = 2πµ(K).

Suppose now that µ1 = 2πµ. Then

Ũµ1

Ω
(z) =

∫

Ω

gΩ(z,w) dµ1(w) = 2π
∫

Ω

gΩ(z,w) dµ(w) = 2πŨµ

Ω
(z).

Since 0 6 Ũµ

Ω
6 1, we have 0 6 Ũµ1

Ω
6 2π, and hence 0 6 1

2πŨµ1

Ω
6 1 which implies

0 6 Uµ1

Ω
6 1. Define now µ2 = µ1|K . Then µ2(K) = µ1(K), spt µ2 ⊂ K and 0 6 Uµ2

Ω
6 1,

because
0 6 Uµ2

Ω
6 Uµ1

Ω
6 1.

We have obtained

(−∆u)(K) =

∫

K
(−∆u) = 2πµ(K) = µ1(K) = µ2(K) 6 CΩ(K),

and hence
cap(K,Ω) 6 CΩ(K).

�

8.3. Lemma. Let Ω be an open set in the plane. If K is a compact subset of Ω, then

cap(K,Ω) = sup
µ∈M+(K,Ω)

µ(K) = inf
µ∈M+(K,Ω)∗

µ(K).

Proof. We can suppose that Ω is connected. If Ω is not Greenian, then M+(K,Ω) =

M+(K,Ω)∗ = ∅ (by the definition) and

sup
µ∈M+(K,Ω)

µ(K) = inf
µ∈M+(K,Ω)∗

µ(K) = 0
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trivially. On the other hand, all bounded superharmonic functions in Ω are now constant
(Extended maximum principle for superharmonic functions [Ran95, Theorem 3.6.9]),
which implies again that

cap(K,Ω) = sup
u∈SH(Ω)
06u61

∫

K
−∆u = 0.

Hence we can suppose that Ω is Greenian. Then the previous Theorem 8.1 together
with the details in its proof yields

cap(K,Ω) = sup
µ∈M+(K,Ω)

µ(K).

Let µ1 ∈ M+(K,Ω) and µ2 ∈ M+(K,Ω)∗. Suppose that U ⊂ Ω is an open set such that
K ⊂ U ⊂ U ⊂ Ω. Then R̂1,U

SH is the Green potential of a Radon measure ν0 on Ω such that

spt ν0 ⊂ U. Note that Uν0
Ω

= R̂1,U
SH ≡ 1 on K and that both µ1 and µ2 are supported on K.

Maria–Frostman domination principle 7.10 implies that Uµ2

Ω
> Uµ1

Ω
> 0 on the whole Ω.

This yields by Reciprocity theorem 7.11 that

µ1(K) =

∫

K
dµ1 =

∫

Ω

Uν0
Ω

dµ1 =

∫

Ω

Uµ1

Ω
dν0

6
∫

Ω

Uµ2

Ω
dν0 =

∫

Ω

Uν0
Ω

dµ2 =

∫

K
dµ2 = µ2(K).

Therefore
sup

µ∈M+(K,Ω)
µ(K) 6 inf

µ∈M+(K,Ω)∗
µ(K).

On the other hand, we have seen that there is a Radon measure ν on Ω such that U ν
Ω

=

R̂1,K
SH . Now ν ∈ M+(K,Ω) ∩M+(K,Ω)∗, see [Hel69, Theorem 7.39], and this implies that

inf
µ∈M+(K,Ω)∗

µ(K) 6 ν(K) 6 sup
µ∈M+(K,Ω)

µ(K).

We have obtained that

inf
µ∈M+(K,Ω)∗

µ(K) = ν(K) = sup
µ∈M+(K,Ω)

µ(K),

and the theorem is proved. �

8.4. Lemma. Let Ω be an open set in the plane. If K is a compact subset of Ω, then

cap(K,Ω) = sup
µ∈M+(K,Ω)

IΩ(µ) = inf
µ∈M+(K,Ω)∗

IΩ(µ).

Proof. We can suppose that Ω is Greenian. Suppose that U b Ω is an open set such that
K ⊂ U. Let Radon measures ν and ν0 be given so that Uν

Ω
= R̂1,K

SH , spt ν ⊂ K, Uν0
Ω

= R̂1,U
SH

and spt ν0 ⊂ U. In addition, let µ1 ∈ M+(K,Ω) and µ2 ∈ M+(K,Ω)∗ be given. Then

IΩ(µ1) =

∫

Ω

Uµ1

Ω
dµ1 6

∫

K
dµ1 = µ1(K).
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Write
F = {z ∈ spt µ2 : Uµ2

Ω
(z) < 1},

then F is polar. Now

IΩ(µ2) =

∫

Ω

Uµ2

Ω
dµ2 =

∫

K
Uµ2

Ω
dµ2 =

∫

K\F
Uµ2

Ω
dµ2 +

∫

K∩F
Uµ2

Ω
dµ2

>
∫

K\F
dµ2 + 0 = µ2(K \ F) = µ2(K),

since µ2(F) = 0 by [Hel69, Theorem 11.2] and∫

Ω

Uµ2

Ω
dµ2 =

∫

K
Uµ2

Ω
dµ2 < ∞,

because Uµ2

Ω
∈ L1

loc(Ω). Thus

sup
µ∈M+(K,Ω)

IΩ(µ) 6 sup
µ∈M+(K,Ω)

µ(K) = cap(K,Ω)

= inf
µ∈M+(K,Ω)∗

µ(K) 6 inf
µ∈M+(K,Ω)∗

IΩ(µ),

where the equalities follow from the previous Lemma 8.3. Furthermore, ν ∈ M+(K,Ω) ∩
M+(K,Ω)∗, and this implies that

(8.5) inf
µ∈M+(K,Ω)∗

IΩ(µ) 6 IΩ(ν) 6 sup
µ∈M+(K,Ω)

IΩ(µ).

Hence

(8.6) inf
µ∈M+(K,Ω)∗

IΩ(µ) = cap(K,Ω) = sup
µ∈M+(K,Ω)

IΩ(µ).

�

8.7. Remark. The formulas (8.5) and (8.6) imply that the Radon measure ν is the Green
equilibrium measure for K in Ω, that is,

(8.8) IΩ(ν) = sup
µ∈M+(K,Ω)

IΩ(µ).

8.9. Lemma. Let Ω be an open set in the plane. If K is a compact subset of Ω, then

cap(K,Ω) = sup
µ∈M+(K,Ω)

∫

Ω

|∇Uµ

Ω
(z)|2 dm(z) = inf

µ∈M+(K,Ω)∗

∫

Ω

|∇Uµ

Ω
(z)|2 dm(z).

Proof. Follows from Lemma 8.4 and equation (7.15). �

What is then the connection between the Monge–Ampère capacity cap(K,Ω) and the
2-capacity cap2(K,Ω) in the plane? One important observation here is that the Green
potentials of Radon measures on Ω with finite energy belong to W1,2

0 (Ω), see [Tre75,
Proposition 30.8]. Our answer to the question stated above is as follows:

8.10. Theorem. Let Ω be a bounded open set in the plane. If K is a compact subset of Ω,
then

(8.11) cap(K,Ω) = cap2(K,Ω).
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Proof. Note that Ω is Greenian since Ω is supposed to be bounded. Suppose that ν is
the Green equilibrium measure for K in Ω, that is, a Radon measure on Ω such that
R̂1,K

SH = Uν
Ω

. By [HKM93, Theorem 8.6], we have

cap2(K,Ω) =

∫

Ω

|∇R̂1,K
SH |2 dm,

and hence Lemma 8.4 and the equations (7.15) and (8.8) yield

cap(K,Ω) = IΩ(ν) =

∫

Ω

|∇Uν
Ω(z)|2 dm(z) =

∫

Ω

|∇R̂1,K
SH (z)|2 dm(z) = cap2(K,Ω).

�

8.12. Remark. We have shown that

cap(K,Ω) = CΩ(K) = cap2(K,Ω)

whenever K is a compact subset of an open set Ω in the plane. Strictly speaking, CΩ(K)
is defined only for the Greenian sets Ω. However, we could set

CΩ(K) = sup
µ∈M+(K,Ω)

µ(K)

as a definition of the Green capacity, and then the previous chain of equations holds in
the plane without any restrictions.

Secondly, the classical approach in this section holds also in the higher dimensional
spaces �m, m > 3. This is because we didn’t use any plane analytical methods here.
Therefore, the given arguments show that the Green capacity CΩ(K) is equal to the 2-
capacity cap2(K,Ω) whenever Ω is an open set in �m and K is a compact subset of Ω.
However, the same is not true for the Monge–Ampère capacity cap(K,Ω) whenever Ω is
a subset of �n, n > 2, because the distributional considerations applied here are no longer
valid with plurisuperharmonic functions.

Part 3. Holomorphic mappings

The first section of this part concerns discrete and open mappings, the second section
arbitrary holomorphic mappings and the third section concentrates on proper holomorphic
mappings. Integral transformation formulas for holomorphic mappings are considered in
the section before the last one. These formulas serve the main goal of this work, capacity
inequalities for holomorphic mappings which are presented in the last section.

Holomorphic mappings are the main objects in the study of several complex variables.
On the other hand, proper ones are quite general holomorphic mappings, but they have
some important advantages in relation to potential theory. We frequently use the well-
known fact that proper holomorphic mappings are discrete and open.
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9. D   

For the known results of discrete and open mappings we refer to the articles by O. Mar-
tio, S. Rickman and J. Väisälä [MRV69, MRV70, MRV71]. Here we only recall the basic
terminology connected to these mappings.

D. Let X and Y be topological spaces. A mapping f : X → Y is said to be

(a) discrete if f −1(y) consists of isolated points in X for every y ∈ Y ,
(b) open if f (A) is open for every open A ⊂ X, and
(c) closed if f (A) is closed for every closed A ⊂ X.

In this section the term ‘ f is open’ includes the assumption that f is also continuous.
Let Ω be an open subset of �m, m > 2, and let f : Ω → �m be a continuous mapping.

A point x ∈ Ω is called a branch point of f if f is not a homeomorphism in any neigh-
bourhood of x; the branch set, denoted by B f , is the collection of all branch points of f .
The real Jacobian of a C1-mapping f : Ω→ �m is defined by

J� f = det



∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂xm

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂xm

...
...

. . .
...

∂ fm
∂x1

∂ fm
∂x2

· · · ∂ fm
∂xm


.

The topological degree µ(y, f ,D) of f at y is defined whenever D b Ω is a domain and
y ∈ �m\ f (∂D). The degree µ(y, f ,D) is integer valued and it has the following properties:

(i) µ(y, f ,D) is constant in each component of �m \ f (∂D).
(ii) If y ∈ f (D) and the restriction of f to D is one-to-one, then |µ(y, f ,D)| = 1.

(iii) If y ∈ D and id is the identity mapping, then µ(y, id,D) = 1.
(iv) If µ(y, f ,Di) is defined for all i = 1, . . . , k and if D1, . . . ,Dk are mutually disjoint

domains such that f −1(y) ∩ D ⊂ ⋃k
i=1 Di ⊂ D, then

µ(y, f ,D) =

k∑

i=1

µ(y, f ,Di).

(v) If f ja g are connected with a homotopy ht, 0 6 t 6 1, such that µ(y, ht,D) is
defined for 0 6 t 6 1, then µ(y, f ,D) = µ(y, g,D).

The standard reference for the topological degree is the monograph by T. Radó and
P. V. Reichelderfer [RR55]. If Ω is a domain in �m and if for all domains D b Ω

and y ∈ f (D) \ f (∂D) we have µ(y, f ,D) > 0, then f is called sense-preserving. If
µ(y, f ,D) < 0 for all such y and D, then f is called sense-reversing. This characterization
of the orientation is an extension of the more familiar case when f is C1-differentiable.
Then the orientation is usually defined by means of the sign of the real Jacobian J� f .

A domain D b Ω is called a normal domain of f if f (∂D) = ∂ f (D). A normal
domain U is a normal neighbourhood of x ∈ U if {x} = U ∩ f −1 ( f (x)). If U is a normal
neighbourhood of x, then the topological degree µ ( f (x), f ,U) is defined and independent
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of U, and we write i(x, f ) = µ ( f (x), f ,U). We call this number the local topological
index of f at x. Moreover, U(x, f , r) denotes the x-component of f −1(B( f (x), r)).

Let f : Ω→ �m be a mapping, and let #A denote the number of points in a set A ⊂ �m.
If y ∈ �m and E ⊂ Ω, then

(a) N(y, f , E) = #{ f −1(y) ∩ E} is called the crude multiplicity of y in E,
(b) Nmax( f , E) = supy∈�m N(y, f , E) is called the crude maximal multiplicity of f in E,
(c) Nmin( f , E) = infy∈ f (E) N(y, f , E) is called the crude minimal multiplicity of f in E,
(d) M(y, f , E) =

∑
x∈ f −1(y)∩E i(x, f ) is called the multiplicity of y in E, and

(e) Mmin( f , E) = infy∈ f (E) M(y, f , E) is called the minimal multiplicity of f in E.

Each value of the crude multiplicity functions N(y, f , E), Nmax( f , E) and Nmin( f , E) is a
nonnegative integer or +∞. The same is true for the multiplicity functions M(y, f , E) and
Mmin( f , E) if the mapping f is open, discrete and sense-preserving. Note also that the
value of both crude multiplicity functions Nmin( f , E) and Nmax( f , E) may be +∞. This
occurs, for example, if f is a constant mapping with value c ∈ �m and E is a domain in
Ω; then N(c, f , E) = +∞ and f (E) = c.

If a continuous mapping f : Ω → �m satisfy the (Lusin’s) condition (N), this is,
the image of every set Lebesgue measure zero is a set of Lebesgue measure zero, then
the crude multiplicity function y 7→ N(y, f , E) is Lebesgue measurable in �m for every
Lebesgue measurable set E ⊂ Ω, see [RR55, IV.1.4. Corollary 1] and [FG95, Theorem
5.5]. If E ⊂ Ω is a Borel set, then y 7→ N(y, f , E) is Lebesgue measurable in �n for every
continuous mapping f : Ω→ �m [RR55, IV.1.2. Theorem], but it is not necessarily Borel
measurable due to this result. However, we need a multiplicity function which behaves
well under all holomorphic mappings with Borel measures and Borel sets. Moreover,
it is required that the modified multiplicity function has values sufficiently close (equal
almost everywhere) to the crude multiplicity function. A multiplicity function fulfilling
these conditions is introduced as follows.

Let f : Ω → �m be a continuous mapping, and let E ⊂ Ω be a Borel set. Since
y 7→ N(y, f , E) is Lebesgue measurable in �m and every Lebesgue measurable set A is
contained in a Borel set of equal measure, see [Zie89, Remark 1.2.3], there is an integer-
valued function y 7→ N∗(y, f , E) with the following properties:

(i) y 7→ N∗(y, f , E) is Borel measurable in �m,
(ii) N∗(y, f , E) > N(y, f , E) for every y ∈ �m,

(iii) N∗(y, f , E) = N(y, f , E) for almost every y ∈ �m, and
(iv) supy∈�m N∗(y, f , E) = supy∈�m N(y, f , E).

If f is a (local) homeomorphism, then it is obvious that N(y, f , E) is Borel measurable in
�m, and hence N∗(y, f , E) = N(y, f , E) for every y ∈ �m.

All holomorphic mappings satisfy the condition (N) as they are infinitely smooth, see
Section 10 and [Res89, Chapter II, Corollary of Theorem 2.2]. If a continuous mapping f
satisfies condition (N), then the image of a Lebesgue measurable set is always Lebesgue
measurable, see [Res89, Chapter II, Theorem 2.1]. Therefore, the image of a Borel set un-
der any holomorphic mapping is always Lebesgue measurable. However, it is sometimes
essential to know that the image is also Borel; this is not true for all continuous mappings,
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in general. Next topological theorem ensures that all discrete, open and sense-preserving
mappings f : Ω→ �n satisfy this property.

9.1. Theorem. Let f : Ω → �m be discrete, open and sense-preserving. If E is a Borel
set in Ω, then f (E) is a Borel set in �m.

Proof. The proof is based on the fact that Ω can be decomposed into sets on which f
is injective and the image of every Borel set is known to be Borel. We can write E =

(E∩ (Ω \B f ))∪ (E∩B f ), and it is thus enough to show that f (E∩ (Ω \B f )) and f (E∩B f )
are Borel sets.

Since B f is closed in Ω, Ω \ B f is open. Hence we can express Ω \ B f as a countable
union of closed balls B(x j, r j), j = 1, 2, . . .,

Ω \ B f =

∞⋃

j=1

B(x j, r j)

such that f |B(x j,r j) is a homeomorphism. Consequently, f maps Borel sets of Ω \ B f into
Borel sets, and hence f (E ∩ (Ω \ B f )) is Borel because E ∩ (Ω \ B f ) is included in Ω \ B f .

It remains to show that f (E ∩ B f ) is Borel. Denote for each k = 1, 2, . . . the set

Ak = {x ∈ Ω : i(x, f ) 6 k}.
We show that Ak is open for all k. If k = 1, then Ak = Ω \ B f , which is clearly open.
Suppose then that k > 2. Fix an arbitrary x0 ∈ Ak. Then i(x0, f ) 6 k. By [MRV69,
Lemma 2.9 and Lemma 2.12] there is a normal neighbourhood U of x0 such that

∑

x∈ f −1(y)

i(x, f ) = Nmax( f ,U) = i(x0, f )

for all y ∈ f (U). This implies that i(x, f ) 6 i(x0, f ) 6 k for all x ∈ U, and thus U ⊂ Ak.
Therefore Ak is open for each k.

Suppose that x ∈ B f and that i(x, f ) = k. Then there is an open set U ⊂ Ω such that
x ∈ U and U ⊂ Ak, since x ∈ Ak and Ak is open. Pick a normal neighbourhood Ux of x
such that its closure satisfies U x ⊂ Vx ⊂ U where Vx is another normal neighbourhood of
x. Note that i(y, f ) 6 k for every y ∈ U x. Denote

Bk(x) = {y ∈ U x : i(y, f ) = k}.
Since Bk(x) = U x \Ak−1, Bk(x) is compact in U x. Moreover, f |Bk(x) : Bk(x)→ f (Bk(x)) is a
homeomorphism. To see that f |Bk(x) is one-to-one, let y1 ∈ Bk(x). Suppose that y2 ∈ Bk(x)
is another preimage of f (y1). Pick now normal neighbourhoods Vy1 and Vy2 of y1 and y2,
respectively, such that Vyi ⊂ Vx, i = 1, 2, and Vy1 ∩ Vy2 = ∅. Now f (y1) ∈ f (Vx), and by
[MRV69, Lemma 2.12] and the property (iv) of the topological degree

k = i(x, f ) = Nmax( f ,Vx) = µ( f (y1), f ,Vx) > µ( f (y1), f ,Vy1) + µ( f (y1), f ,Vy2)

= Nmax( f ,Vy1) + Nmax( f ,Vy2) = i(y1, f ) + i(y2, f ) = 2k,

which is impossible because k > 2. Hence the restriction f |Bk(x) is one-to-one, and f |Bk(x)

is a homeomorphism.
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Finally, for every k = 2, 3, . . ., choose a countable set {x j : j = 1, 2, . . .} of points in B f

such that i(x j, f ) = k and that

{y ∈ B f : i(y, f ) = k} =

∞⋃

j=1

Bk(x j).

Then

B f =

∞⋃

k=2

{y ∈ B f : i(y, f ) = k} =

∞⋃

k=2

∞⋃

j=1

Bk(x j).

This means that B f can be covered with countably many compact sets Bk(x j) on which the
restriction of f is a homeomorphism. Hence f (E∩B f ) is Borel, and the claim follows. �

Prof. J. Väisälä informed me about a result in his notes from the early 1960’s: If X and
Y are Hausdorff spaces and if X is locally compact with a countably base, then every open
and discrete mapping preserves Borel sets. He has proved the result without any degree
theory.

We constructed the multiplicity function y 7→ N∗(y, f , E) so that it is Borel measurable
for every continuous mapping f : Ω→ �m whenever E ⊂ Ω is a Borel set. The following
result guarantees that the crude multiplicity function y 7→ N(y, f , E) behaves well under
discrete, open and sense-preserving mappings.

9.2. Lemma. Let f : Ω → �m be discrete, open and sense-preserving. If E ⊂ Ω is a
Borel set, then y 7→ N(y, f , E) is Borel measurable in �m.

Proof. This result can be proved following the proof of [FG95, Theorem 5.5], but a slight
modification is required. First of all, we can suppose that E is bounded (just like in the
original proof). The main difference is that we have to choose a pairwise nonintersecting
partition of E such that the partition sets Ei are Borel sets (Lebesgue measurable in the
original proof). It is required that diam(Ei) 6 1

k for every i = 1, . . . , n(k) where k is a
positive constant. This kind of partition mentioned above is always possible to find. For
example, we construct first a net of closed and open nonoverlapping m-cubes C i with
diam(Ci) = 1

k side by side covering the whole set E. Then we set Ei = Ci ∩ E, and all
of the sets Ei are now Borel. Moreover, E = ∪iEi and Ei ∩ E j = ∅, i , j, as required.
The images f (Ei) are now Borel sets by Theorem 9.1. We use this fact instead of [FG95,
Lemma 5.4] in our modified proof. �

10. H   

D. Let Ω be an open subset of �n.
(i) A function f : Ω→ � is said to be holomorphic in Ω if f ∈ C1(Ω) and f satisfies

the Cauchy–Riemann equations

∂ j f =
∂ f
∂z j

= 0 for each j = 1, . . . , n.

(ii) A mapping f = ( f1, . . . , fm) : Ω→ �m is holomorphic in Ω if fk is a holomorphic
function for all k = 1, . . . ,m.
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(iii) A mapping f : Ω → �n is said to be biholomorphic if it is a holomorphic home-
omorphism with holomorphic inverse f −1 : f (Ω)→ Ω.

It is remarkable that holomorphic mappings are possible to define as �-differentiable
mappings without any smoothness assumptions; f is separately�-differentiable is equiva-
lent to f is separately holomorphic, thus by Hartogs theorem Cauchy–Riemann equations
imply the condition f ∈ C1(Ω) and even more: f ∈ C∞(Ω). Our definition is therefore as
general as the definition by means of �-differentiability.

Let f : Ω→ �n be a holomorphic mapping. The complex Jacobian of f is defined by

J� f = det



∂ f1
∂z1
· · · ∂ f1

∂zn
...

. . .
...

∂ fn
∂z1
· · · ∂ fn

∂zn


.

Easy matrice calculations show that J� f (z) = |J� f (z)|2 for all z ∈ Ω. Thus the real
Jacobian of a holomorphic mapping is always nonnegative.

10.1. Inverse mapping theorem. Let f : Ω → �n be a holomorphic mapping, and
suppose that z ∈ Ω. Then f is biholomorphic from a neighbourhood of z onto a neigh-
bourhood of f (z) if and only if J� f (z) , 0.

The following lemma presents three useful properties of arbitrary holomorphic map-
pings. Recall that a pluripolar set E ⊂ Ω is called complete in Ω if there is u ∈ PSH(Ω)
such that E = {z ∈ Ω : u(z) = ∞}.
10.2. Lemma. Let f : Ω→ �n be a holomorphic mapping. Then the following properties
hold:

(i) If z ∈ Ω is such that J� f (z) , 0, then there exists a neighbourhood U of z such
that µ(w, f ,U) = 1 for all w ∈ f (U).

(ii) i(z, f ) = 1 for every z ∈ Ω \ B f .
(iii) If J� f . 0 in each component of Ω, then B f is completely pluripolar in Ω.

Proof. Inverse mapping theorem implies the property (i), which yields the property (ii).
Note that i(z, f ) is defined for every z ∈ Ω \ B f since f is a local homeomorphism in
Ω \ B f .

Property (iii): Since f is holomorphic in Ω, the complex Jacobian J� f is a holomorhic
function from Ω to �. Thus − log |J� f | ∈ PSH(Ω) as J� f . 0, and from Inverse mapping
theorem 10.1 it follows that

B f = {z ∈ Ω : J� f (z) = 0} = {z ∈ Ω : − log |J� f (z)| = ∞}
is pluripolar in Ω. �

By the first item of the next lemma, nontrivial holomorphic substitutions preserve
plurisuperharmonicity. In other words, plurisuperharmonic functions can be pulled back
with holomorphic mappings. The second item states that the complex Monge–Ampère
operator (ddc)n acting on C2-functions has the invariance property under holomorphic
mappings. Both of these results are well-known, see [Kli91].
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10.3. Lemma. Let f : Ω → �n be a holomorphic mapping. If G is a neighbourhood of
f (Ω), then the following properties hold:

(i) If u is plurisuperharmonic in G, then u ◦ f is plurisuperharmonic or identically
+∞ in every component of Ω.

(ii) If u ∈ C2(G), then

(ddc(u ◦ f ))n(z) = |J� f (z)|2(ddcu)n( f (z))

for every z ∈ Ω.

11. P  

D. Let X and Y be topological spaces. A continuous mapping f : X → Y is said
to be proper if f −1(K) is compact in X for every compact set K in Y .

A homeomorphism f from X onto Y is always proper. Thus all biholomorphic map-
pings f : Ω → f (Ω) are proper. However, there are proper holomorphic mappings
between domains Ω and Ω′ in �n which are not biholomorphic. A mapping f : Ω → Ω′

is proper if and only if f maps ∂Ω to ∂Ω′ in the following sense: If (z j) ⊂ Ω is a sequence
with lim j→∞ dist(z j, ∂Ω) = 0, then lim j→∞ dist( f (z j), ∂Ω′) = 0. From this it follows that if
f extends continuously to the boundary ∂Ω, then f (∂Ω) ⊂ ∂Ω′.

We recall some properties of proper holomorphic mappings, see the articles by R. Rem-
mert and K. Stein [RS60] and E. Bedford [Bed84], and a book by W. Rudin [Rud80,
Chapter 15].

11.1. Lemma. Let f : Ω → Ω′ be a proper holomorphic mapping. Then the following
properties hold:

(i) f is discrete, open and closed.
(ii) f is sense-preserving.

(iii) f −1(w) is finite for all w ∈ Ω′.
(iv) f (Ω) = Ω′.
(v) N(w, f ,Ω) = Nmax( f ,Ω) for every w ∈ Ω′ \ f (B f ).

(vi) N(w, f ,Ω) < Nmax( f ,Ω) for every w ∈ f (B f ).
(vii) f (B f ) is completely pluripolar in Ω′.

(viii) f −1( f (B f )) is completely pluripolar in Ω.

Proof. Properties (i), (iii), (iv), (v) and (vi), see [Rud80, Chapter 15]. Property (ii) fol-
lows from Lemma 10.2 (i) and the fact that discrete and open mappings are either sense-
preserving or sense-reversing [Che64, Che65, Väi66].

Properties (vii) and (viii): By [Rud80, Theorem 15.1.9], f (B f ) is a zero-variety in Ω′,
that is,

f (B f ) = {z ∈ Ω′ : h(z) = 0}
for some holomorphic function h in Ω′ such that h . 0. It follows that− log |h| ∈ PSH(Ω′),
and

f (B f ) = {z ∈ Ω′ : h(z) = 0} = {z ∈ Ω′ : − log |h(z)| = ∞}
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is pluripolar in Ω′. Further, h ◦ f is holomorphic and nonzero in Ω because f (Ω) = Ω′.
Hence − log |h ◦ f | ∈ PSH(Ω), and thus

f −1( f (B f )) = {z ∈ Ω : (h ◦ f )(z) = 0} = {z ∈ Ω : − log |(h ◦ f )(z)| = ∞}
is pluripolar in Ω. �

11.2. Remark. Suppose that f : Ω → �n is a nonconstant holomorphic mapping. Let
D b Ω be a normal domain of f . Then the restriction f |D : D → f (D) is clearly
holomorphic. Since D is a normal domain of f , we have f (∂D) = ∂ f (D). Thus f −1(K)
is compact in D for every compact K ⊂ f (D). Hence f |D : D → f (D) is proper and
holomorphic.

11.3. Lemma. Let f : Ω → Ω′ be a proper holomorphic mapping. Suppose that w ∈ Ω′

and that ε > 0. Then we can find r > 0 and mutually disjoint normal neighbourhoods
U1, . . . ,Uk of the points z1, . . . , zk in the set {z ∈ Ω : f (z) = w} such that

f −1(B(w, r)) = U1 ∪ · · · ∪ Uk

and diam Ui < ε for every i = 1, . . . , k. In particular, if w ∈ Ω′ \ f (B f ), then there is a
neighbourhood W0 of w such that for every neighbourhood W of w such that W ⊂ W0, the
following conditions are satisfied:

(i) W ∩ f (B f ) = ∅.
(ii) The components of f −1(W) form a collection U1, . . . ,Uk where each Ui is a neigh-

bourhood of zi ∈ {z ∈ Ω : f (z) = w}, i = 1, . . . , k = Nmax( f ,Ω).
(iii) f defines biholomorphic mappings fi = f |Ui : Ui → W.

Proof. The first part of the theorem follows immediately from [MRV69, Lemma 2.5 and
Lemma 2.9]. If w ∈ Ω′ \ f (B f ), then by Inverse mapping theorem, the restriction

f | f −1(Ω′\ f (B f )) : f −1(Ω′ \ f (B f )) −→ Ω′ \ f (B f )

is locally biholomorphic, and the first part of the theorem yields the result. �

Suppose that f : Ω→ Ω′ is a proper holomorphic mapping. M. Klimek [Kli82, Lemma
4.1] has proved that plurisubharmonic functions u in Ω can be pushed forward to Ω′ with
a function

v(w) = max
z∈ f −1(w)

u(z).

In case of plurisuperharmonic functions u in Ω, this function is modified to the form

v(w) = min
z∈ f −1(w)

u(z).

Next theorem presents a new way how to push forward plurisuperharmonic functions
under proper holomorphic mappings. The following push forward function (11.5) is by
O. Martio [Mar70, Lemma 5.4], originally used with nonconstant quasiregular mappings
f : Ω→ �m and u ∈ C∞0 (Ω); then it is known that v ∈ C0( f (Ω)) and spt v ⊂ f (spt u).
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11.4. Theorem. Let f : Ω → Ω′ be a proper holomorphic mapping. If u is a plurisuper-
harmonic function in Ω, then the formula

(11.5) v(w) =
1

Nmax( f ,Ω)

∑

z∈ f −1(w)

i(z, f ) u(z) (w ∈ Ω′)

defines a plurisuperharmonic function in Ω′. Moreover, if 0 6 u 6 1 in Ω, then 0 6 v 6 1
in Ω′.

Recall that a set E ⊂ Ω is removable with respect to a property in Ω \ E if the property
can be removed to hold in the whole of Ω. To prove the previous theorem, we need the
following lemma which is a removability result for plurisuperharmonic functions. In fact,
all relatively closed pluripolar sets are removable (see, e.g., [Lel68]), but the next lemma
gives also an explicit function for this purpose.

11.6. Lemma. [Kli91, Theorem 2.9.22] Let a relatively closed subset E of Ω be �2n-
polar. If a function u ∈ PSH(Ω \ E) satisfies lim infw→z u(w) > −∞ for all z ∈ E, then

ũ(z) =


u(z) if z ∈ Ω \ E,

lim infw→z
w<E

u(w) if z ∈ E

defines a plurisuperharmonic function in Ω.

Proof of Theorem 11.4. Since 1
Nmax( f ,Ω) is a positive constant, it is enough to show that the

function
∑

i(z, f ) u(z) is plurisuperharmonic in Ω′. We will denote also this modified
function by v. Suppose that G b Ω′ is open. Then f −1(G) b Ω and it is open because f is
proper and continuous. By Theorem 3.2, there is an increasing sequence of functions u j ∈
C∞( f −1(G)) ∩ PSH

(
f −1(G)

)
such that lim j→∞ u j = u pointwise in f −1(G). In particular,

every u j is continuous, and that is a sufficient assumption for the functions u j. Write

v j(w) =
∑

z∈ f −1(w)

i(z, f ) u j(z)

for w ∈ G. Then v j ↗ v on G since i(z, f ) > 1. Therefore, if every v j ∈ PSH(G), then
v ∈ PSH(G) or v ≡ ∞ on G. As u . ∞ on every component of f −1(G), also v . ∞ on
every component of G. Thus v ∈ PSH(G) and further v ∈ PSH(Ω′). As a consequence, it
is enough to show that the theorem is true for continuous plurisuperharmonic functions.

So let u ∈ C(Ω)∩ PSH(Ω). We show that v is continuous in Ω′. Let ε > 0 and w0 ∈ Ω′.
We can write f −1(w0) = {z1, . . . , zk} and we know that k 6 Nmax( f ,Ω). By Lemma 11.3,
we can choose a small enough r > 0 such that

f −1 (B(w0, r)) = U1 ∪ · · · ∪ Uk

and

|u(zi) − u(z)| < ε

Nmax( f ,Ω)k
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for all z ∈ Ui, where Ui ∩U j = ∅, i , j, and Ui is a normal neighbourhood of zi for every
i = 1, . . . , k. Suppose that w ∈ B(w0, r). Then by [MRV69, Lemma 2.12],

∑

z∈ f −1(w)∩Ui

i(z, f ) = µ(w, f ,Ui) = Nmax( f ,Ui) = i(zi, f ).

Hence

v(w) =
∑

z∈ f −1(w)

i(z, f ) u(z) =

k∑

i=1

∑

z∈ f −1(w)∩Ui

i(z, f ) u(z)

<

k∑

i=1

(
u(zi) +

ε

Nmax( f ,Ω)k

)
i(zi, f ) 6 v(w0) + ε,

since the additivity property holds for the topological degree. Similarly, we obtain

v(w) > v(w0) − ε,
and hence v ∈ C(Ω′).

Let now w0 ∈ Ω′\ f (B f ) and write f −1(w0) = {z1, . . . , zk} as before. Now k = Nmax( f ,Ω).
By Lemma 11.3, there exists a neighbourhood W ⊂ Ω′\ f (B f ) of w0, and mutually disjoint
neighbourhoods U1, . . . ,Uk of z1, . . . , zk such that

fi = f |Ui : Ui −→ W

is biholomorphic for each i = 1, . . . , k and

f −1(W) = U1 ∪ · · · ∪ Uk.

Now

vi(w) =
∑

z∈ f −1(w)∩Ui

i(z, f ) u(z) = i( f −1
i (w), f ) u( f −1

i (w)) =
(
u ◦ f −1

i

)
(w)

is plurisuperharmonic in W, since plurisuperharmonicity is preserved under biholomor-
phic substitutions and i(z, f ) = 1 in Ω \ B f . Furthermore,

(11.7) v(w) =

k∑

i=1

vi(w) =

k∑

i=1

(
u ◦ f −1

i

)
(w)

is plurisuperharmonic in W, and thus v ∈ PSH
(
Ω′ \ f (B f )

)
.

Finally, let V b Ω′ be open. Since f (B f ) is completely pluripolar in Ω′, its subset
E = V ∩ f (B f ) is completely pluripolar in V . In addition, v ∈ PSH(V \ E), v is bounded
in V and

lim inf
ξ→w

ξ< f (B f )

v(ξ) = v(w)

for all w ∈ f (B f ), because v is continuous. Thus v ∈ PSH(V) by Lemma 11.6, and from
this it follows that v ∈ PSH(Ω′) because plurisuperharmonicity is a local property.
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To prove the last part of the theorem, suppose that 0 6 u 6 1 in Ω. Then it is clear that
v > 0 in Ω since 1

Nmax( f ,Ω) > 0 and i(z, f ) > 1 for all z ∈ Ω. Let w ∈ Ω′. Then by [MS75,
Lemma 3.3],

v(w) =
1

Nmax( f ,Ω)

∑

z∈ f −1(w)

i(z, f ) u(z) 6
1

Nmax( f ,Ω)

∑

z∈ f −1(w)

i(z, f ) =
Nmax( f ,Ω)
Nmax( f ,Ω)

= 1,

as u(z) 6 1 for all z ∈ Ω. �

12. I  

An integral transformation formula

(12.1)
∫

E
(u ◦ f )(z) J� f (z) dm(z) =

∫

�m
N(w, f , E) u(w) dm(w)

is known to be valid for Lebesgue measurable sets E in Ω, bounded and measurable
functions u in �m and Sobolev mappings f ∈ W1,m(Ω) such that J� f > 0 a.e. in Ω (with
respect to the Lebesgue measure) where Ω is supposed to be an open and bounded set in
�m, see [FG95, Theorem 5.34]. If u is supposed to be either nonnegative or nonpositive,
then the formula (12.1) holds without any boundedness assumptions. From (12.1) we
obtain the following result.

12.2. Theorem. Let f : Ω→ �n be a holomorphic mapping. If E is a Lebesgue measur-
able subset of Ω, then

(12.3)
∫

E
(u ◦ f )(z)|J� f (z)|2 dm(z) =

∫

f (E)
N(w, f , E) u(w) dm(w)

holds for every Lebesgue measurable function u in f (E) with nonnegative or nonpositive
values.

Proof. We may assume that Ω is a domain. Note that |J� f |2 = J� f and that f (E) is
Lebesgue measurable since f satisfies the condition (N). If J� f ≡ 0, then both sides of
(12.3) are equal to zero because f maps E to a set of measure zero [FG95, Lemma 1.4
(Sard’s Lemma)]. If J� f . 0, then by Lemma 10.2 (iii), B f = {z ∈ Ω : J� f (z) = 0} is
pluripolar in Ω and hence of Lebesgue measure zero. Thus J� f (z) > 0 a.e. in Ω as J� f
is known to be nonnegative for holomorphic mappings, and the result follows from the
formula (12.1). �

For proper holomorphic mappings f : Ω → Ω′ we have N(w, f ,Ω) = Nmax( f ,Ω) for
almost every w ∈ Ω′. Hence Theorem 12.2 gives the following result.

12.4. Corollary. Let f : Ω→ Ω′ be a proper holomorphic mapping. Then

(12.5)
∫

Ω

(u ◦ f )(z) |J� f (z)|2 dm(z) = Nmax( f ,Ω)
∫

Ω′
u(w) dm(w)

for each nonnegative or nonpositive Lebesgue measurable function u in Ω′.
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We are interested in integral transformation formulas for the generalized complex
Monge–Ampère operator acting on locally bounded plurisuperharmonic functions. The
following results are stated so that a minus sign is attached to the operator; then −(ddc)n

gives a (positive) measure and the known results for Radon measures as well as the ap-
plications in the rest of this study are relevant without any changes. The multiplicity
function y 7→ N∗(y, f , E) defined in Section 9 is used in our first integral transformation
formula. However, this formula presents only an inequality for integral tranformations.
Fortunately the equation is needed only for biholomorphic mappings when we later prove
capacity inequalities for holomorphic mappings.

12.6. Theorem. Let f : Ω→ �n be a holomorphic mapping. Suppose that K is a compact
subset of Ω. If G is a neighbourhood of f (K), then

(12.7)
∫

K
−(ddc(u ◦ f ))n >

∫

f (K)
−N∗(w, f , E) (ddcu)n

for each u ∈ L∞loc(G) ∩ PSH(G).

Proof. Let u ∈ L∞loc(G)∩PSH(G) and let G be a neighbourhood of f (K). Note that since K
is compact and f is continuous, f (K) is compact and hence f (K) b G because G is open.
Pick a neighbourhood U of f (K) such that f (K) ⊂ U b G, then K ⊂ f −1(U). By Local
approximation theorem 3.2, it is possible to choose an increasing sequence of functions
u j ∈ C∞(U) ∩ PSH(U) such that lim j→∞ u j = u pointwise in U. Now by Lemma 10.3 (i),
u ◦ f ∈ L∞loc( f −1(U)) ∩ PSH( f −1(U)) as well as u j ◦ f ∈ C∞( f −1(U)) ∩ PSH( f −1(U)) for
each j because f ∈ C∞(Ω). Moreover, it is clear that lim j→∞(u j ◦ f ) = u ◦ f pointwise in
f −1(U).

Since −(ddcu j)n is now nonnegative and continuous (thus Lebesgue measurable) in U
and w 7→ N(w, f , A) is Lebesgue measurable and w 7→ N∗(w, f , A) is Borel measurable
whenever A is Borel, the invariance property (Lemma 10.3 (ii)) and Theorem 12.2 yield
that for all Borel sets A ⊂ f −1(U) such that f (A) is a Borel set, we have∫

A
−(ddc(u j ◦ f ))n =

∫

A
−|J� f (z)|2(ddcu j)

n( f (z))

=

∫

A
−|J� f (z)|2 4nn! det

[
∂2u j

∂zi∂z̄k
( f (z))

]
dV(z)

=

∫

f (A)
−N(w, f , A) 4nn! det

[
∂2u j

∂zi∂z̄k
(w)

]
dV(w)

=

∫

f (A)
−N∗(w, f , A) 4nn! det

[
∂2u j

∂zi∂z̄k
(w)

]
dV(w)

=

∫

f (A)
−N∗(w, f , A) (ddcu j)

n

for each j, since N∗(w, f , A) = N(w, f , A) for almost every w ∈ f (A).
Make a partition of f (K) such that

f (K)∗k = {w ∈ f (K) : N∗(w, f ,K) = k}, 1 6 k 6 ∞.
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Then

f (K) =

∞⋃

k=1

f (K)∗k ∪ f (K)∗∞

and the sets f (K)∗k are Borel because the multiplicity function w 7→ N∗(w, f ,K) is Borel
measurable.

Suppose first that

(12.8)
∫

f (K)∗∞
−(ddcu)n = 0.

Let ε > 0 and let l ∈ �. There are compact sets Qk ⊂ f (K)∗k such that
∫

Qk

−(ddcu)n >

∫

f (K)∗k

−(ddcu)n − 2ε
l(l + 1)

for every k = 1, 2, . . . , l. Strong convergence theorem 4.2 yields now
∫

K
− (ddc(u ◦ f ))n = lim

j→∞

∫

K
−(ddc(u j ◦ f ))n = lim

j→∞

∫

f (K)
−N∗(w, f ,K) (ddcu j)

n

> lim
j→∞

l∑

k=1

∫

f (K)∗k

−N∗(w, f ,K) (ddcu j)
n > lim

j→∞

l∑

k=1

∫

Qk

−N∗(w, f ,K) (ddcu j)
n

=

l∑

k=1

k lim
j→∞

∫

Qk

−(ddcu j)
n >

l∑

k=1

k
∫

Qk

−(ddcu)n

>

l∑

k=1

k


∫

f (K)∗k

−(ddcu)n − 2ε
l(l + 1)

 =

l∑

k=1

∫

f (K)∗k

−N∗(w, f ,K) (ddcu)n − ε.

Since this holds for arbitrarily chosen l and ε which are independent, it follows that
∫

K
−(ddc(u ◦ f ))n >

∞∑

k=1

∫

f (K)∗k

−N∗(w, f ,K) (ddcu)n − ε

=

∫

f (K)\ f (K)∗∞
−N∗(w, f ,K) (ddcu)n − ε

=

∫

f (K)
−N∗(w, f ,K) (ddcu)n − ε,

because we supposed that (12.8) holds. This yields
∫

K
−(ddc(u ◦ f ))n >

∫

f (K)
−N∗(w, f ,K) (ddcu)n.

Suppose then that

(12.9)
∫

f (K)∗∞
−(ddcu)n > 0.
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Since f (K)∗∞ is a Borel set, we may choose a compact set Q∞ ⊂ f (K)∗∞ such that

(12.10)
∫

Q∞
−(ddcu)n > 0.

Since then also K ∩ f −1(Q∞) is compact, we see as in the previous part of this proof that∫

K
−(ddc(u ◦ f ))n >

∫

K∩ f −1(Q∞)
−(ddc(u ◦ f ))n >

∫

Q∞
−N∗(w, f ,K) (ddcu)n = ∞

because N∗(w, f ,K) = ∞ in Q∞ and (12.10) holds. It is clear now that (12.7) is satisfied
also in the case (12.9), and the theorem is proved. �

12.11. Corollary. Let f : Ω → �n be a holomorphic mapping. Suppose that K is a
compact subset of Ω. If G is a neighbourhood of f (K) , then

(12.12)
∫

K
−(ddc(u ◦ f ))n > Nmin( f ,K)

∫

f (K)
−(ddcu)n

for each u ∈ L∞loc(G) ∩ PSH(G).

Proof. This result follows from the previous theorem, since Nmin( f ,K) 6 N(w, f ,K) 6
N∗(w, f ,K) for all w ∈ f (K), and the operator −(ddc)n acting on locally bounded plurisu-
perharmonic functions is nonnegative. �

12.13. Corollary. Let f : Ω → �n be a biholomorphic mapping, and let E b Ω be a
Borel set. If G is a neighbourhood of f (E) such that f (E) b G, then

(12.14)
∫

E
−(ddc(u ◦ f ))n =

∫

f (E)
−(ddcu)n

for each u ∈ L∞loc(G) ∩ PSH(G).

Proof. Note that f (E) is a Borel set and N(w, f , E) = 1 for each w ∈ f (E), u ◦ f ∈
L∞loc( f −1(G)) ∩ PSH( f −1(G)) and E b f −1(G).

Suppose first that E is compact. It follows from Corollary 12.11 that∫

E
−(ddc(u ◦ f ))n >

∫

f (E)
−(ddcu)n =

∫

f (E)
−(ddc(u ◦ ( f ◦ f −1)))n

=

∫

f (E)
−(ddc((u ◦ f ) ◦ f −1)))n >

∫

f −1( f (E))
−(ddc(u ◦ f ))n

=

∫

E
−(ddc(u ◦ f ))n.

Therefore the equation (12.14) is satisfied for compact sets.
Suppose then that E is Borel. Let ε > 0. There is a compact set K ⊂ E such that∫

E\K
−(ddc(u ◦ f ))n < ε.

Since f (K) is compact and contained in f (E), the previous part of this proof yields∫

f (E)
−(ddcu)n >

∫

f (K)
−(ddcu)n =

∫

K
−(ddc(u ◦ f ))n >

∫

E
−(ddc(u ◦ f ))n − ε.
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As ε was chosen arbitrarily, we have

(12.15)
∫

f (E)
−(ddcu)n >

∫

E
−(ddc(u ◦ f ))n.

Correspondingly, we can choose a compact set Q ⊂ f (E) such that
∫

f (E)\Q
−(ddcu)n < ε.

Since f −1(Q) is compact and contained in E, the first part of this proof gives
∫

E
−(ddc(u ◦ f ))n >

∫

f −1(Q)
−(ddc(u ◦ f ))n =

∫

f ( f −1(Q))
−(ddcu)n

=

∫

Q
−(ddcu)n >

∫

f (E)
−(ddcu)n − ε,

and again

(12.16)
∫

E
−(ddc(u ◦ f ))n >

∫

f (E)
−(ddcu)n.

The inequalities (12.15) and (12.16) yield the equation (12.14). �

12.17. Theorem. Let f : Ω → Ω′ be a proper holomorphic mapping. Suppose that
E b Ω is a Borel set. If G is a neighbourhood of f (E) such that f (E) b G, then

(12.18)
∫

E
−(ddc(u ◦ f ))n =

∫

f (E)
−N(w, f , E) (ddcu)n > Mmin( f , E)

∫

f (E)
−(ddcu)n

for each u ∈ L∞loc(G) ∩ PSH(G).

Proof. Note first that by Theorem 9.1, the image set f (E) is Borel. The multiplicity
functions M(w, f , E) and Mmin( f , E) are now defined since f is discrete and open. More-
over, we may choose N∗(w, f , E) = N(w, f , E) for every w ∈ �n as the crude multiplicity
function w 7→ N(w, f , E) is Borel measurable in �n by Lemma 9.2.

We prove first the equation in (12.18). Make a partition of f (E) like in the proof of
Theorem 12.6 such that

f (E)k = {w ∈ f (E) : N(w, f , E) = k}, 1 6 k 6 Nmax( f , E).

Then the sets f (E)k are disjoint and Borel, and

Nmax( f ,E)⋃

k=1

f (E)k = f (E).

The set f (E) \ f (B f ) is Borel since f (B f ) is closed in Ω′, and hence the sets f (E)k \
f (B f ) are Borel. Each point wk ∈ f (E)k \ f (B f ) has k distinct inverse images in E,
k = 1, . . .Nmax( f , E). By Lemma 11.3, we can choose a countable number of points
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wk, j ∈ f (E)k \ f (B f ) and disjoint Borel sets f (E)k, j ⊂ f (E)k \ f (B f ), j = 1, 2, . . ., such that
wk, j ∈ f (E)k, j, each f (E)k, j is contained in a domain Dk, j ⊂ Ω′ \ f (B f ),

f (E)k \ f (B f ) =

∞⋃

j=1

f (E)k, j

and f defines biholomorphic mappings

fk, j,i = f |Uk, j,i : Uk, j,i −→ Dk, j,

where each Uk, j,i ⊂ Ω \ B f is a neighbourhood of zk, j,i = f −1
k, j,i(wk, j) for every k =

1, . . .Nmax( f , E), j = 1, 2, . . . and i = 1, . . . ,Nmax( f ,Ω). Note that the sets Ek, j,i =

E ∩ f −1
k, j,i( f (E)k, j) are Borel, mutually disjoint and contained in E \ f −1( f (B f )). More-

over,

E \ f −1( f (B f )) =

Nmax( f ,E)⋃

k=1

∞⋃

j=1

Nmax( f ,Ω)⋃

i=1

Ek, j,i =

Nmax( f ,E)⋃

k=1

∞⋃

j=1

Ek, j,

where we denote

Ek, j =

Nmax( f ,Ω)⋃

i=1

Ek, j,i.

Corollary 12.13 yields now
∫

Ek, j

−(ddc(u ◦ f ))n =

Nmax( f ,Ω)∑

i=1

∫

Ek, j,i

−(ddc(u ◦ f ))n =

Nmax( f ,Ω)∑

i=1

∫

f (Ek, j,i)
−(ddcu)n

=

∫

f (E)k, j

−
( Nmax( f ,Ω)∑

i=1

χ f (Ek, j,i)

)
(ddcu)n = k

∫

f (E)k, j

−(ddcu)n

for every k = 1, . . . ,Nmax( f , E) and j = 1, 2, . . ., because each point w ∈ f (E)k, j belongs
to k of the sets f (Ek, j,i). Here χA denotes the charasteristic function of a set A. Since f (B f )
and f −1( f (B f )) are pluripolar by Lemma 11.1 (vii,viii), we obtain by [Kli91, Proposition
4.6.4] that

∫

f (E)
− N(w, f , E) (ddcu)n =

∫

f (E)\ f (B f )
−N(w, f , E) (ddcu)n

=

Nmax( f ,E)∑

k=1

∞∑

j=1

∫

f (E)k, j

−N(w, f , E) (ddcu)n =

Nmax( f ,E)∑

k=1

∞∑

j=1

k
∫

f (E)k, j

−(ddcu)n

=

Nmax( f ,E)∑

k=1

∞∑

j=1

∫

Ek, j

−(ddc(u ◦ f ))n =

∫

E\ f −1( f (B f ))
−(ddc(u ◦ f ))n

=

∫

E
−(ddc(u ◦ f ))n.

Finally we prove the inequality in (12.18). If w ∈ f (E) is such that w < f (B f ), then
f −1(w) does not meet E ∩ B f and, moreover, since i(z, f ) = 1 for every z ∈ E \ B f by
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Lemma 10.2 (ii), we have

N(w, f , E) = N(w, f , E \ B f ) = M(w, f , E \ B f ) = M(w, f , E) > Mmin( f , E).

This yields
∫

f (E)
− N(w, f , E) (ddcu)n =

∫

f (E)\ f (B f )
−N(w, f , E) (ddcu)n

> Mmin( f , E)
∫

f (E)\ f (B f )
−(ddcu)n = Mmin( f , E)

∫

f (E)
−(ddcu)n.

�

13. C 

In this section we state capacity inequalities for holomorphic mappings. The first in-
equality holds for all holomorphic mappings f : Ω → �n even if the ‘correct’ class of
holomorphic mappings within this context seems to be the proper ones.

13.1. Theorem. Let f : Ω → �n be a holomorphic mapping. If (K,G) is a compact
condenser in Ω, then

(13.2) cap(K,G) > Nmin( f ,K) cap( f (K),G′)

for each open set G′ ⊂ �n such that f (G) ⊂ G′.

Proof. It is assumed that (K,G) is a compact condenser in Ω, but it may happen that
f (G) is not open, and hence ( f (K), f (G)) is not necessarily a condenser in �n. However,
it is required that f (G) is a subset of an open set G′ and hence ( f (K),G′) is a compact
condenser. By Lemma 10.3 (i), u ◦ f ∈ PSH(G) for all u ∈ PSH(G′) with values between
zero and one, and Corollary 12.11 yields

cap( f (K),G′) = sup
u∈PSH(G′)

06u61

∫

f (K)
−(ddcu)n

6 sup
u∈PSH(G′)

06u61

1
Nmin( f ,K)

∫

K
−(ddc(u ◦ f ))n

6
1

Nmin( f ,K)
sup

v∈PSH(G)
06v61

∫

K
−(ddcv)n

=
1

Nmin( f ,K)
cap(K,G).

�

13.3. Theorem. Let f : Ω → Ω′ be a proper holomorphic mapping. If (E,G) is a Borel
condenser in Ω, then

(13.4) cap(E,G) > Mmin( f , E) cap( f (E), f (G)).
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Proof. Note first that f (E) is Borel by Theorem 9.1 and f (G) is open since the mapping
f is open by Lemma 11.1 (i). Hence ( f (E), f (G)) is a Borel condenser in Ω′ . The proof
of (13.4) goes now along the same lines as the proof of (13.2) but Theorem 12.17 is used
instead of Corollary 12.11. �

It is an immediate consequence for the previous result that if G′ is an open subset of
Ω′ such that f (G) ⊂ G′, then

cap(E,G) > Mmin( f , E) cap( f (E),G′),

because by a basic property of the Monge–Ampère capacity (see Section 5)

cap( f (E), f (G)) > cap( f (E),G′).

Note also that the estimate in (13.4) is slightly better than in (13.2). If f is proper holo-
morphic and thus M(w, f , E) and Mmin( f , E) are defined, then M(w, f , E) > N(w, f , E) >
1 and thus Mmin( f , E) > Nmin(w, f , E) for every w ∈ f (E).

The following corollary presents a sufficient setting to confirm that the Monge–Ampère
capacity is decreasing under a proper holomorphic mapping. However, the estimate here
is much weaker than the estimate in the previous theorem.

13.5. Corollary. Let f : Ω → Ω′ be a proper holomorphic mapping. If (E,G) is a
capacitable condenser in Ω, then

(13.6) cap(E,G) > cap( f (E), f (G)).

Proof. Suppose that (E,G) is a capacitable condenser in Ω, i.e., cap∗(E,G) = cap(E,G)
is satisfied. Let ε > 0. We can choose an open set U b G such that E ⊂ U and

cap(U,G) − cap(E,G) < ε.

Now (U,G) is an open condenser in Ω, and 13.3 yields

cap(E,G) > cap(U,G) − ε > cap( f (U), f (G)) − ε > cap( f (E), f (G)) − ε,
because f (E) ⊂ f (U). Hence

cap(E,G) > cap( f (E), f (G)),

as ε was chosen arbitrarily. �

Next corollary states the strongest possible connection between the capacities of a con-
denser and its image condenser.

13.7. Corollary. Let f : Ω→ �n be a biholomorphic mapping. If (E,G) is a capacitable
condenser in Ω, then

(13.8) cap(E,G) = cap( f (E), f (G)).

Proof. Since both G = f −1( f (G)) and f (G) are open, the previous corollary yields

cap(E,G) > cap( f (E), f (G)) > cap( f −1( f (E)), f −1( f (G)) = cap(E,G).

�

Our next result is a converse capacity inequality for proper holomorphic mappings.
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13.9. Theorem. Let f : Ω → Ω′ be a proper holomorphic mapping. If (E,Ω) is a
condenser, then

(13.10) cap(E,Ω) 6 Nmax( f ,Ω)n cap( f (E),Ω′).

Proof. The first part of this proof follows the idea of the second part of the proof of
Theorem 12.17, but the present proof is organized in a slightly different way. Suppose
first that (E,Ω) is a Borel condenser. The set f (E) \ f (B f ) is Borel, since f (E) is Borel by
Theorem 9.1 and f (B f ) is closed in Ω′. Now each w ∈ f (E) \ f (B f ) has k = Nmax( f ,Ω)
distinct inverse images in Ω.

By Lemma 11.3, we can choose a countable number of points w j ∈ f (E) \ f (B f ) and
disjoint Borel sets A j ⊂ f (E) \ f (B f ), j = 1, 2, . . ., such that w j ∈ A j, each A j is contained
in a domain D j ⊂ Ω′ \ f (B f ),

(13.11) f (E) \ f (B f ) =

∞⋃

j=1

A j

and f defines biholomorphic mappings

f j,i = f |U j,i : U j,i −→ D j,

where each U j,i ⊂ Ω \ B f is a neighbourhood of z j,i = f −1
j,i (w j) for every j = 1, 2, . . . and

i = 1, . . . , k. Note that the sets f −1
j,i (A j) are mutually disjoint,

(13.12)
∞⋃

j=1

k⋃

i=1

f −1
j,i (A j) = f −1( f (E)) \ f −1( f (B f )) ⊃ E \ f −1( f (B f )),

and f −1( f (B f )) is pluripolar by Lemma 11.1 (viii).
It follows from the formula (11.7) that the push forward function v defined by the

formula (11.5) satisfies

v(w) =
1

Nmax( f ,Ω)

∑

z∈ f −1(w)

i(z, f ) u(z) =
1

Nmax( f ,Ω)

k∑

i=1

(
u ◦ f −1

j,i

)
(w)

for all w ∈ D j, j = 1, 2, . . ., and thus

ddcv =
1

Nmax( f ,Ω)

k∑

i=1

ddc(u ◦ f −1
j,i

)
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in every D j. Corollary 12.13 and the superadditivity property (4.3) of the generalized
complex Monge–Ampère operator yield

∫

A j

−(ddcv)n =

∫

A j

−
( 1
Nmax( f ,Ω)

k∑

i=1

ddc(u ◦ f −1
j,i

))n

>
∫

A j

1
Nmax( f ,Ω)n

k∑

i=1

−(ddc(u ◦ f −1
j,i

))n

=
1

Nmax( f ,Ω)n

k∑

i=1

∫

f −1
j,i (A j)

−(ddcu)n

(13.13)

for each A j and u ∈ L∞loc(Ω) ∩ PSH(Ω).
Theorem 11.4 shows that for each u ∈ PSH(Ω) such that 0 6 u 6 1, the function v

satisfies the properties v ∈ PSH(Ω′) and 0 6 v 6 1. By Lemma 11.1 (vii,viii) and [Kli91,
Proposition 4.6.4], we obtain from (13.11), (13.12) and (13.13)

cap( f (E),Ω′) = sup
u′∈PSH(Ω′)

06u′61

∫

f (E)
−(ddcu′)n >

∫

f (E)
−(ddcv)n

=

∞∑

j=1

∫

A j

−(ddcv)n >
1

Nmax( f ,Ω)n

∞∑

j=1

k∑

i=1

∫

f −1
j,i (A j)

−(ddcu)n

=
1

Nmax( f ,Ω)n

∫

f −1( f (E))
−(ddcu)n >

1
Nmax( f ,Ω)n

∫

E
−(ddcu)n,

because the Radon measures −(ddcv)n and −(ddcu)n are countably additive. Since the
previous inequality holds for all u ∈ PSH(Ω) with 0 6 u 6 1, we have

cap( f (E),Ω′) >
1

Nmax( f ,Ω)n
sup

u∈PSH(Ω)
06u61

∫

E
−(ddcu)n =

1
Nmax( f ,Ω)n

cap(E,Ω).

Suppose then that (E,Ω) is an arbitrary condenser. If K ⊂ E is a compact set, then
f (K) ⊂ f (E) is a compact set as f is continuous. By the first part of this proof, this yields
our final result

cap(E,Ω) = sup
K⊂E

is compact

cap(K,Ω) 6 sup
K⊂E

is compact

Nmax( f ,Ω)n cap( f (K),Ω′)

6 Nmax( f ,Ω)n sup
K′⊂ f (E)

is compact

cap(K′,Ω′) = Nmax( f ,Ω)n cap( f (E),Ω′).

�
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338.
[Lel68] L, P.: Fonctions Plurisousharmoniques et Formes Différentielles Positives. - Gordon and
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