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Introduction

Let h be a modulus of continuity and let Liph(D)
denote the space of functions f: D > R which have the
modulus of continuity h. As regards the HOlder classes
h(x,y) = Ilx-yl%, F.¥. Gehring and O. Martio [GM2] showed
that for certain domains D each function f: D> R 1in a
corresponding 1local space belongs to the space Liph(D).
These domailns are called Liph—extension domains. In this
paper we study general moduli of continuity and extend the
result of F.W. Gehring and O. Martio to this situation.

F.W. Gehring and O. Martio applied their theory +to
quasiconformal mappings of R". These extension properties
can also be applied to imbedding theorems in Sobolev spaces
w''P(D) or even in Orlicz-Sobolev spaces (see [A, Theorenm
VIII.8.361), because it can be proved by classical methods
that functions f in Wl’P(D) are Holder-continuous with
exponent l-n/p ( p>n ) in smooth parts (like cubes or
balls) of D (see [A, Section V1). It then follows from
[GM2]1 and from the results of this paper that the functions
are actually Holder-continuous in D for a very large class
of domains D. However, it may happen that £ does not
belong to the same HOlder class in D as in the smooth
parts of D.

After some preliminaries we study Liph,g—extension
domains in Section 3. These are domains where locally
Liph(D)—continuous functions are also Lipg(D)—continuous
functions. A Liph—extension domain is then simply a Liph,h_
extension domain. We give an integral condition for Liph,g—
extension domains (analogous to the one in L[GM21). Using
the integral condition we show, in Sections 4 and 5, sone



geometrical properties of Liph’g—extension domains. We give
a sufficient condition for the moduli of continuity h and
g such that a Lip,-extension domain is also a Lipg—exten—
sion domain. We also show that if for a given h there
exist Liph—extension domains, their class will be larger
than the class of uniform domains.

In Section 6 we examine the special case h(t) = t%
studied in [GM21]. Ve show that the class of LipB—extension
domains is larger than the class of Lipa—extension domains
if O < a < B < 1. Ve also define total extension domains.

In the last section we consider certain theorems
discussed in the papers [GM11, [J]1 and L[St1. We give an-
other equivalent condition for Liph’ -extension domains
based on the maximum derivative (see L[GM11).

Most of the notation used in this paper is presented in
Appendix A. In Appendix B and C there are some graphical
illustrations relating to the examples in Section 6.

1. Preliminaries

For the details of notation refer to Appendix A.

1.1. Notation. Ve shall write vy(x,y) C D for a rec-
tifiable curve joining x to y in a domain D C R™.

2(y) denotes the arc length of vy and
vy(s) 1its arc length representation with
y(0)

y(2(y))

X and

y

By analogy, J(x,y) denotes the line segment joining =x to
y. If g 1is a real valued function in D, we let ’
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2(y)
[ gz as = [ gv(s)) as
v (x,y) 0

be the line integral of g along vy (provided the integral
exists). Note that the measure ds depends on the
curve V.

1.2. Definition. A domain D c R® is said to be oc-

quasiconvex 1f every X,y € D can be joined by a rec-
tifiable curve vy in D with

L(y) = clx-yl

1.3. Definition. Let r >0 and y(x,y) C D. By
cig(y,r) ( r-cigar neighbourhood of vy ) we nean the
set

cig(y,r) := U By (t),r-nin(t, 2(y)-t)) U {x,y}.
O<t<2(y)

The euclidean distance from vy(t) to the Dboundary of
cig(y,r) satisfies the inequality

(1.4 d(y(t),dcigy,r)) = r-min(t, 2(y)-t)

1.5. Definition. ILet ¢ = 1. A domain U c R™ is
called c-uniform if each x,y € U can be joined by a rec-
tifiable curve Yy in U such that
(1.6) 1(y) = elx-yl ,

(1.7) cig(y,1l/¢c) C U
Using hyperbolic geodesics it can be proved that an

open ball in R® is w/2 -uniform (see the proof of Theorem
2.2 in L[GM2D).



Remark. Uniform domains were defined by O. Martio and

J. Sarvas in [MS]. Definition 1.5 for uniform domains and
the definition for cig(y,r) are from an unpublished paper
of J. Vaigala's. For other characterizations of wuniform

domaing see [GOJ and [MJ].

2. Modulus of continuity and Liph—classes

W¥e can extend all theorems in [GM2] to general moduli
of continuity. This is done in Sections 3 and 4. Here we
present the definitions and basic properties of the moduli
of continuity.

2.1. Definition. A continuous function h: [O,o[ » R
is said to be a modulus of continuity if it satisfies the
following conditions:

(2.2) h(0) = 0, h(t) >0, t>0 |,
(2.3) h is increasing and
(2.4) h' exists and is decreasing in 10,L.

We Dbegin with some results concerning the modulus of

continuity. The next theorem is obtained by elementary
calculus.
2.5. Theorem. Let h  be a modulus of continuity.

Then the following conditions are true:

(2.86) h'(t) t <h(t) , t>0 |,
(2.7) h(ct) < ¢-h(t) for every c¢c =21, t >0 |,
(2.8) h&%) is decreasing, t > 0 ,

(2.9) h(x,y) := h(lx-yl) defines a metric in R- . O
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Remark. For our purposes, the conditions (2.%7) - (2.9)
are enough for the modulus of continuity. However, for sim-
plicity we use Definition 2.1 (see [J1).

2.10. Definition. Let D c R®. A function #£: D - RP
belongs +to the Lipschitz class Liph(D) if there exists a
constant M < o such that the inequality

(2.11) [£(x)-£f(y)| =< Mh(x,y)

holds in D.

If h(t) = t%, we shall use the notation Lip (D) in-
stead of Liph(D). The condition (2.11) 1is called the
Lipschitz condition with the modulus of continuity h and
a constant M.

2.12. Definition. ILet h and ¢ be moduli of conti-
nuity and let D C R® be a domain. We say that ¢ domi-
nates h in D and write h < g if there is a constant
A < o such that for each x,y € D

hix,y) < A-g(x,y)
2.13. Lemma. If h < g 4in D C R®, then

Lip, (D) € Lip,(D) . o

2.14. Lemma. If the domain D C R® is bounded and if
0 <a=< 3 =<1, then

LipB(D) C Lipa(D) . O
We shall use the abbreviation

Bb(x) := B(x,b-d(x,3D)), b <1,
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for an open ball in D with the radius b-d(x,3D) and the
centre at x € D.

2.15. Definition. A function £: D » RP? belongs to
the 1local Lipschitz class loc Liph(D) if there exist con-
stants b >0 and m, < ® such that for each x € D and
v € Bb(x)

(2.186) [ £(x)-£(y)| =< m h(x,y)

Usually a Lipschitz (semi)norm of the function
f e Liph(D) is defined to be the smallest constant M  for
which (2.11) holds. In the class loc Liph(D) the constant
my depends on the constant b and no smallest m
However, the constant b is superfluous:

b exists.

2.17. Theorem. A function f: D > RP belongs to the
class loc Liph(D) if and only if there exists a coanstant
n < o such that (2.16) holds for each x € D and
y € B%(x).

Proof. The sufficiency is immediate. For the necessity

let f € loc Liph(D) with constants b <% and my . Fix
an open ball B%(x) CD and a point y € B%(x). Set
r = d(x,3D)/2 > |x-yl| and choose the open balls B(zi,br),
with i=0,...,k < 1/b < k+1 and z, =y + ib- (x-y).
Since d(zi,aD) >T, 2Z3 4 € Bb(zi), and f € loc Liph(D),
k
(2.18) [£(y)-£(x)| < > £z, )-£(2;_4)1 + If(zk)—f(x)l
i=1
k
< g;lmbh(lzi_zi—ll) + mph(lz —x|)
b+l :
< mb(k+1)-h(|x—yl) < m h(x,y) = nh(x,y). a
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2.19. Theorem. A function £: D » RP belongs to the
class loc Liph(D) if and only if there exists a constant
m < o such that for each x,y € B%(z) cCD

(2.20) [£(x)-£f(y)| = mh(x,y)

Proof. The sufficiency is immediate. For the necess-
ity 1let t € loe Liph(D) with constants m and b =%
Fix points x,y € B%(z). Set r = d(z,3D)/2. As in the
proof of Theorem 2.17, we can choose the open balls
B(zi,r/z), where z; = x + i-(y-x)/4, i =0,...,4. 8o by

repeating (2.18) we obtain

[£(x)-£f(y)| =< 4nh(x,y). i

We shall employ both Theorem 2.17 and Theorem 2.19 to
characterize the class loc Liph(D).

Now we can define the loc Liph(D) seminorm to be the
smallest constant m for which (2.20) holds.

Remark. Our definition for the class loc Liph(D) is
not the same as the following definition: For every z € D
there is a neighbourhood VZ and a constant m, such that

(2.21) [f(x)-f(y) | =< mzh(x,y) whenever x,y € V,

In general the definition is not the same even if we replace

the constant o, by a uniform constant m For instance,

D
functions h(t) =tP , 0 <o <p <1 and f£: 10,1 - R,
£(x) = x° give a counterexample of this: If we take
y =ax , a < 1, then the quotient

I£(x)-£(y) ] _ x>(1-a™)
h(x,y) xP(1-2)F

tends to infinity if x tends to 0. But (2.21) holds if y
is close to a fixed x > O.
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Ve gave the definition for locally Lipschitz-continuous
functions by means of the distance from the boundary of D.
The following theorem is trivially true.

2.22. Theorem. If there exists a constant m < o Such
that

(2.23) [£(x)-£f(y)] = m-h(x,y)

whenever x and y belong to a ball contained in D , then

f belongs to the class 1loc Liph(D) : ]

In Section 4 we shall show that f € loc Liph(D)
implies (2.23) in some cases and hence Theorem 2.22 has a
converse. Next, we shall comnstruct a counterexample of a

function belonging to the class loc Liph(D) for which
(2.23) does not hold. We start with the following defini-
tion.

2.24. Theorem. The modulus of continuity h  defines
in D the metric

h(d(z,3D))

(2.28) hy(x,y) d(z, D)

ds

inf |
vy(x,y)

and the semimetric

I

(2.26) bt (x,y) inf I h’(d(z,dD)) ds

v(x,¥y) v

Proof. It 1is obvious that hD is both positive and
synmetric, and that hD(x,y) =0 if and only if x =y.
The infimum over all vy(x,y) takes care of the triangle in-
equality. Because h'(t) can be zero even if t # O, hy
is not necessarily a metric. O

2.27. Theoren. hﬁ(x,y) < hD(x,y)

Proof. The inequality follows from (2.6). O
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2.28. Theorem. Let D c R® be a domain and x5 € D.
Then the following functions belong to the class
loc Liph(D) with a constant m < 2
uh(X) = hD(XO,X) s

uh,(x) 1= hb(xo,x)

Proof. Let X,y € B%(ZO) ; By the triangle
inequality
(2.29) luy (x)-u, (¥) 1 = Ihp(xy,%) - hp(xg,y)1 < hp(x,y)
Let r := |x-yl|l/2 . Now

d(z,3D) = r whenever 2z € J(x,y)

Then, using (2.8), we obtain

h(d(z,3D)) h(r)

(2.30) hD(x,y) < I iz D) ds =< I . ds
J(x,y) J
- 2r~h(£) < 2-h(x,y) ,

and hence by combining (2.29) and (2.30) we obtain

u, € loc Liph(D). The same is true for wu,, due to Theoren
2.27. O
2.31. Lemma. There exists a modulus of continuity h

such that for every a > 0O there is a point ta with

(2.82) h'(t) < a~h(§) If 0 <t st
Proof. Set
1 1
hiE) := ln ¢t ° g = e
o, t =0

Now
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n'(t) = lgt >0, lim h(t) = O ,
1n™t t-0
and h(t) >0 if +t > 0 . Hence h is a modulus of conti-

nuity 1if we define it in such a way that the conditions of
Definition 2.1 hold also when t = l/e.
On the other hand,

h'(t) 1 : -1/a

hCE) /% = " IR § - h(t) <a if t < e :
and hence (2.32) holds. a
2.33. Counterexample. Let h Dbe a modulus of conti-

nuity satisfying the conditions of Lemma 2.31. We show that
there is a function u, € loc Liph(B(xO,r)) which does not
belong to the class Liph(B(xo,r))
Set B := B(xo,r) and uh(x) t= hB(xo,x). Suppose
that wu, Dbelongs to the class Liph(B) with a constant M.
Choose t,, < o such that h'(t) < (1/2M) -h(t)/t when

M

t < tM , and let ¢ > 0O Dbe such that

2(h(tM)—h(s)) > h(tM—e)

Let x be a point in B with d(x,3B) = ¢ and y a point
in J(x,xo) with d(y,3B) = tM :
ments J(x,xo), J(xo,y) and J(x,y) are the best possible
curves to join the corresponding points, and so

Obviously the line seg-

luh(x) - uh(y)l = IhB(xo,X) - hB(xO,y)I
(a(z,?B)) tM()
h(d(z,dB h(t
= bhplx,y) = I d(;,aB) ds = I 5 4t
J(x,y) £
Ty
> oM j n'(t) dt = 2M-(h(t,) - h(e))
€
> M-h(ty - e) = M-b(x,y)
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Hence u, is not Liph—oontinuous in B with any con-

stant M.

2.34. Remark. The above counterexample leads to the
following observation: Let h Dbe as in Lemma 2.31 and let
D be an arbitrary domain in Rn, D = R, Then
f € loc Liph(D) does not imply the condition (2.23). Ve

can see that if we replace the ball B in the proof of
Counterexample 2.33 with the complement of a point G and
use the trivial inequality

(2.35) hy(x,y) = hu(x,y) whenever x,y € DC G

2.36. Theorem. Let U C R® be a c-uniform domain and

XO € U. The function

uh,(x) t= hU(xO,x)
is in the class Liph(U) with a constant 2c.
Proof. Let x,y € U and let ~(x,y) be a curve
satisfying (1.6) and (1.7). Since h' 1is decreasing, we

obtain, by using (1.4)-(1.7),

o, (%) - v, () =< hilx,y) = I h’(d(z,3U0)) ds

Y
< I h'(d(z,3cig(y,1/e))) ds
v
2(y) 2(y)/2
< | n'& ninCs,2(y)-8)) s - 2 [ n'(s/0) ds
0] 0

2c¢-(h(2(y)/2e) - h(0)) = 2c-h(lx-yl/2)

< 2c-h(x,y) . O
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3. Liph g—extension domains

3.1. Definition. Let h and g be moduli of conti-
nuity and D C R® a domain. Let h < g in D. D is said
to be a Liph’g—extension domain if there is a constant
E = E(D,h,g) < o satisfying the following condition:

If f: D> R belongs to the class loc Liph(D) with a
constant m (see 2.20), +then f belongs to the class
Lipg(D) with a constant M = Em.

The name ‘extension domain’ is motivated by the next
theorem.

3.2. Theorem. If D c R® is a Liph -extension
domain, then every f£f: D - RP in 1loc Liph(D) with a con-
stant m has an extension £': R® - RP such that

(3.3) £ € Lipg(Rn) with a constant M < Emvp

Proof. (See [GM2, Section 21 and [McS, Theorem 11.)
Let f: D> R , f € loc Liph(D) with a constant m . By
definition f € Lipg(D) with a constant M = Em . Set

£ (x) := inf { £(z) + Mg(x,2z) | z € D } .
Let ¢ > 0. Ve shall prove that
(3.4) £ (x) - £ (y)| = Mg(x,y) + ¢ in R%

and then by letting ¢ > 0O we obtain (3.3).
Let =x,y € R®. Take zy € D such that

f(zy) + Mg(y,zy) < £ (y) + ¢

Using the triangle inequality for the metric g, we obtain
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£ (x) < f(zy) + Mg(x,zy)

A

f(zy) + Mg(y,zy) + Mg(x,y)

A

£ (y) + ¢ + Mg(x,y)

Then by exchanging the roles of x and Y, we obtain
(3.4).

If f 1is vector valued, we can repeat the proof for
components, which increases the constant only by a factor
vp. 0

Remark. In L[S, Theorem VI.3]1 it is proved that there
is a linear extension operator from Lipg(D) to Lipg(Rn)
if D is bounded.

In this section we shall derive other characterizations
of the Liph’g—extension domains, and study some of their
properties.

There are domains which are not extension domains:

5.5. Example. Let D := B(0,1) \ R_ C R°. D is not a
Liph,g—extension domain. To show this define a function
f: D> R,

£f(r,p) := pr/2n (in polar coordinates),

which is locally Liph(D)—continuous. This follows from h

being concave and so (2.23) holds. Clearly f£ is mnot in

the class Lipg(D), since there is no continuous extension of
2

f to R™.

Remark. The quasiconvexity of the domain D also
breaks down.

Now by using the metric h, given in (2.25) we show an

integral inequality condition for Liph g—extension domains.
The idea is taken from [GM2, Theorem 2.21.



18

3.6. Theorem. A domain D c R% is a Lip, ,—extension
domain if and only if there is a constant 1 < K(D,h,g) < w
such that

(3.7) hy(x,y) < K-g(x,y)
holds in D.
First, we prove the following lemma.

3.8. Lemma. If hD(x,y) < K-g(x,y) in D, then
h <g in D (with a constant A < 4K ).

Proof. Let x,y € D. Ve may assume without loss of
generality that d(x,3D) < |x-yl. Choose a curve y(x,y)
such that

h(d(z,3D)) .
(3.9) | qCeapyt ds < 2K-g(x,y)
Y
Now
t(y) =z Ix-yl and

d(y(s),dD) < d(x,a3D) + 2(y) < 2:(y) ,

and so by using (2.8) and (3.9) we obtain

&-g(x,y) > 2 | Eig%gf%%%l ds = zg(y)~—£%§%$%l

v(x,y)

> h(2Ix-yl) = h(x,y) . 0

Proof of Theorem 3.6. To prove that a Liph g—extension

domain satisfies (3.7) take a point y € D. The function

uh(x) 1= hD(y,X)
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is locally Liph—oontinuous in D with a constant m =< 2
(see 2.28). So by the definition of Lip, g—extension do-
mains we obtain (3.7)

hD(X,y) = lhD(x,y) - hD(y,y)l = Iuh(x)—uh(y)l

< 2E-g(x,y)

To prove the sufficiency of (3.7), suppose that a
domain D satisfies (3.7) and let f € loc Liph(D) with a
constant n as in (2.20). Let x,y € D and let y(x,y)
satisfy (3.9). Set 2, := 0 and choose balls B(zi,ri)

0
as follows:

) ry i= d(zi,aD)/4 and

B
I

max { s € [0,2(y)1 | v(s) € B(z,,r,) }

Because D is a domain and vy C D 1is compact, there is a

finite number k such that £, = 2(y) and the process
stops. Set Zpiy 5V Set
A; = {sefp 4,871 v(s) € Blzy,7y) }
i=1, , k-1

Now the linear measure of Ai satisfies
(3.10) m(Ai) 2 r, = |z, -2
For s € Ai we have

(3.11) d(y(s),aD)

A

d(zi,aD) + d(zi,y(s)) < d(zi,aD) + oy

(4+1)~ri

Using (2.8), (3.11) and (3.10) we observe that
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k-1
(3.12) I h(d(z,3D)) 44 » S5 I h(d(y(s),3D))
i=

d(z,aD) - 1 a(y(s),aD) 98
y Ay
k-1 h(5r.) k-1 h(5r.)
> > J —. gy = > m(A, )i ———
-1 Bl =1 Y STy
A,
i
1 %il 1 k-1
> = h(sr.) = =- h(r.)
=1 l ® Tm1 0 1
Since f is locally Llph—oontinuous and Zi 1 € B%(Zi) ,
k-1
(3.13) [ £(x)-£(y) | = ggllf(zi)—f(zi+l)l + 1£(z)-£(y) |
k-1
< m z: h(zi,zi+1) + m-h(zk,y)
i=1
k-1
= m>_ h(ri) + m'h(lzk—yl)
i=1
Now if Izk—yl < Ix-yl, we can combine (3.9), (3.12),
(3.13) and Lemma 3.10 as
B h(d(z,3D)) . .
(3.14) 1£(x)-£(y)| = 5m | Se8pyt 48 + mh(lz-yl)
Y
< Bm-2K-g(x,y) + mA-g(x,y) = Enm-g(x,y) ,
where E := 10K+A < 14K ( A is from h < g ).
If Izk—yl > |x-yl, then x,y € B%(Zk) ) and (3.14)
holds since f € loc Liph(D) and h < g in D. This com-
pletes the proof. O

From the proof of Theorem 3.6 we obtain the following
theorem:
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3.15. Theorem. A Liph,g—extension domain D has the
following property:

If X is any metric space and f: D »> X belongs to
loc Liph(D) with a constant m, then f belongs to
Liph(D) with a constant E'm (where E' < 28E). O

The next +theorem shows why domains such as those in
Example 3.5 are not extension domains.

3.16. Theorem. Let the domain D C R® be a Lip, -

extension domain and a constant K as in (3.7). If
h: [0,w0l » [O0,ol is a homeomorphism, then the points
X,y € §(xo,r) no can be  joined by a curve

vy(x,y) C E(xo,b) N D with
(5.17) I h(d(z, aD))

alz,ep) 98 = Egxy)
v

where b = max(2r,h_1(16K'g(r))) and K' < 4K

Proof. (See [GM2, Theorem 2.15]1.) Let X € R™ and
r > O. Choose points x,y € B(xo,r) n D. First, assume
that  B(xy,2r) C D. Then we can choose v(x,y) = J(x,y)
and, as in the proof of Theorem 2.28, we can show that
(3.17) holds with a constant A < 4K .

If +there 4is a point zO in E(XO,Zr) n ab, we can
choose v (x,y) € D for which (3.17) holds. Suppose that
v is not contained in §(xo,b). Then

(3.18) e(y) = 2(b-r)

For every s € [0,2(y)1, =z = v(s), the following estimates

hold:
(3.19) d(z,d3D) =< d(z,zo) < d(z,xo) + d(XO,ZO)

< d(z,xo) + 2r ,
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and

(3.20) d(z,xo) < d(z,x) + d(x,xo) < s+

By combining the inequalities (3.19) and (3.20) we obtain
(3.21) d(y(s),3D) =< s + 3r =< 2(y) + 3r < 42(y).

Now by using (2.8), (3.18) and (3.21) we obtain

2(y)
h(d(z,3D)) _ h(d(y(s),3D))
I a(z,aD) 98 = J a(v(s),op) 98
Y 0
2(y)
S J' h(2(1)+31‘) dg B h(2(1)+8r),2( )
= 2 (y)+3T YICD) Y
0
_ h(2b+r) _ h(hTl(16KR‘g(x))) ;
> 4 > Z 4K'g(r)
> 2K’'g(2r) = 2K'g(x,y) ,
which contradicts (3.17). So Y is contained 14,
E(xo,b) n D. O

In Section 5 we shall show that, in a sense, Theoren
3.16 is the best possible.

4. Liph—extension domains

In this section we study the special case g = h.

4.1. Definition. A domain D c R® is a Liph—extension
domain if it is a Lipy, h—extension domain.
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4.2. Theorem. A domain D C R® is a Lip, -extension
domain if and only if there is a constant 1 < K(D,h) <
such that
(4.3) hD(x,y) < K-h(x,y)

holds in D. O

We start with another version of 3.16, where the con-
stant b depends linearly on the radius .

4.4. Theorem. Let the domain D C R" be a Lip, ~exten-

sion domain and a constant K as in (4.3). Then there is
a constant b < (3/2)e2K such that the  points
X,y € ﬁ(xo,r) noD can be  joined by a curve

y(x,y) C B(xy,br) N D with

(4.5) | EL%%EA%%%Q ds = 2K-h(x,y)
Y
Proof. The proof of Theorem 3.16 is valid up to the

inequality (3.21) (replace b by br ). Let us recall that
(3.21") d(y(s),3D) =< s + 3r

Now by using (2.8), (3.18) and (3.21') we obtain

2(y)

h(d(z,3D)) _ h(d(y(s),d3D))
I alz.aD) 98 = I aCy(s).ap) 98
Y 0

2(y) 2(y)
: [BED s 2w | G e

0 0

2(b-1)r

> nr) | i—ds - h(Br)-ln RRLLz

0
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> h(2r)-1n %9 = h(x,y) 2K,
which contradicts (4.5). So Y is contained in
§(xo,br) n D. 0

Now we can show a sufficient condition for the inclu-
sion of the classes of Liph—extension domains.

4.6. Theorem. Let D c RY be a Liph—extension domain
and ¢ a modulus of continuity such that the function

h/g is decreasing.

Then D is also a Lipg—extension domain.

Proof. Fix =x,y € D, and choose vy(x,y) C D as in
Theorenm 4.4 with x, := (x+y)/2 and 2r := |x-yl.

If B(xo,br) nab=g , (4.5) holds for every
modulus of continuity with a constant K < 2
( x,y € B(xo,r) c B%(XO) ; see the proof of Theorem 2.28 ).

If §(x0,br) N 3D # ¥, we have the estimate

d(z,dD) =< 2br , for every 2z € vy(x,y) C ﬁ(xo,br),

and hence

h(d(z,2D)) | h(2br)
g(d(z,3D)) = g(Rbr)

Now by using (4.5) we obtain

h(d(z,3D))

g5 hlaw) d(z,3D)

2K-h(x,y) = I ds

Y

- I g(d(=z,3D)) h(d(z,dD))

a(z,aD) g(d(z,aD)) 98

Y
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h(2br) g(d(z,3D)) h(2br)
= g(2br) J a(z.ep) 98 = glapry &p(x:¥)
Y
Therefore,
gD(x,y) < 2K-%%%%%j-g(2br) < 2Kb-g(2r) ,
which completes the proof. |

4.7. Corollary. A Liph—extension domain is quasiconvex.

Proof. A domain D c R™ is a Lipl—extension domain
if and only if D is quasiconvex (use Theorem 4.2). Let D
be a Lip,-extension domain. The function h(t)/t 1is de-
creasing by (2.8), and so D 1is a Lip,-extension domain by
Theorem 4.6. Therefore D 1is quasiconvex (with a constant

Cc < 362KK e ]

4.8. Corollary. Let D cRY be a Lip -extension do-

main. If h is a modulus of continuity satisfying the
inequality
(4.9) h'(t)t 2 oh(t) , t >0 ,

then D is a Liph—extension domain.

Proof. The function

hu(t) T oh(%)

is decreasing:

at® In(t) - t%h’(E)
h(t)2

ng (6

ta—l
= (ah(t)-th’'(t)) =< O,

h(t)2

and hence by 4.6 D 1is a Liph—extension domain. O
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4.10. Corollary. Let D C R® be a Lip -extension do-
main and O <o < 3 < 1. Then D is also a Lipﬁ—extension
domain.

Proof. The function

is decreasing. O

Liph—extension domains do not exist for every modulus
of continuity h

4.11. Lemma. Let h be a modulus of continuity sat-
isfying +the conditions of Lemma 2.31. Then there are no
Lip, -extension domains.

Proof. Let D C Rn and xo € D and choose
uh(x) 1= hD(xo,x)

In Theorem 2.28 we proved that w, 1is locally Liph(D)—
continuous. In 2.33 and 2.34 we observed that the
Lipschitz-condition does not hold in the balls Bl(z) C D.
So uh(x) is not Liph(D)—continuous and D cannot be a
Lip, -extension domain. a

On the other hand, if the order of growth as in (4.9)
holds in a weak sense, there is a large set of Liph—exten—
sion domains.

4.12. Theorem. Let h be a modulus of continuity.
Then the following conditions are equivalent:

(4.13) There are constants K < o and tK > 0 such that
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t
[ h(z) ds < K-h(t) holds if 0 <t s t
0
(4.14) All bounded uniform domains are Lip, -extension
domains.
(4.15) The unit ball in R® is a Lip, -extension domain.
(4.18) There exists at least one Liph—extension domain.

Proof. First, we shall show that (4.14) follows from
(4.13). Let D CR® be a c-uniform domain with the diam-
eter dj . Choose x,y € D and ~(x,y) as in Defini-
tion 1.5. From (1.4) and (2.8) we obtain

2Cy)

h(d(y(s),dcig(y,1/c)))
hD(X’y) = I d(y(s),dcig(y,1l/c)) 2

0

2(y)/2 2(v)/2

h(s/c) h(s)
< 2 I 23878) 45 s 20 I 28 4,

0] 0]

because ¢ = 1. If 2(y)/2 = tK , then (4.3) holds with a

.constant 202K. If 2(y)/2 > tK , then

e(y)/2 tx 2(y)/2
2c I higl ds = 2c I h(:) ds + 2c I Qﬁgl ds

0 0 tK

t(y)/e
< 2cK h(tK) + 2c h(e(y)) f 92
T

< 20 (K R(2(y)) + n(2(y)) 1n £00)
K

< 2¢ (K + 1n clx—yl| ) hiclx-yl)
ZtK



28

2 cdp
< 2¢"( K + 1n Y ) hix,y) ;
K

and therefore (4.3) holds for the domain D.

Next, we show that (4.16) implies (4.13). Let D be a
Liph—extension domain. Take a point Yo € D and choose a
point x, € 3D such that J(x5,yy) €D U {xo}. Let G be
the complement of X, O—yOI. Let 0 <t < tp
and 0 <e < t. Choose points x,y € J(xo,yo) such that
d(x,xo) = ¢ and d(y,xo) = t. Now by (2.35) and (4.3) we
obtain

and tK = Ix

t
I h(s)

S

ds = hG(x,y) < hD(x,y) < Kh(x,y) = Kh(t-¢).
€

So (4.13) holds by letting ¢ - O.
This completes the proof, since (4.15) follows triv-
ially from (4.14) and (4.16) follows from (4.15). O

Now, vrepeating the proof of Theorem 4.12, we have the
following theorem:

4.17. Theorem. Let h be a modulus of continuity.
Then the following conditions are equivalent:

(4.18) There is a constant K such that
t
[ 2 g5 < kn(t) hoids if t > O.
0
(4.19) All uniform domains are Lip, -extension domains.
(4.20) The complement of a point is a Lip,-extension
domain. O
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So 1f there exists one Liph—extension domain, then at
least all Dbounded uniform domains are extension domains.
In fact, the class of Liph—extension domains is larger than
the class of uniform domains.

4.21. Theoremn. Let D c R® be a union of Liph—exten—
sion domains Dj for which (4.3) holds with the same con-
stant K. Suppose that k < o and c =z 1 are fixed con-
stants. If for each x,y € D there exist domains Di s
i=1,...,k' and points z such that J

Zi 5 Zy4q € Dji » X =20, Y = Zpa,q k' <k,
and
Izi—zi+1| < clx-yl ,

then D is a Lip,-extension domain.

Proof. (See [GM2, Theorem 2.251.) For the given x

and y choose +the domains Dj and the points Z4
i

Choose the curves yi(zi,z ) C D, such that

i+l Ji

h(d(z,aDj.))

h(d(z,3D)) il
J d(z,oD) 98 = d(z, o0, )

Yy i

i
< 2Kh(zi,zi+l)
Now y(x,y) = Yq FeeF Yj CD and
[ BAC2.0DY) o L 5 ogn(lz,-z, D)
d(z,dD) S 17%141

Y
< 2Kk'-h(elx-yl) = 2Kkc-h(x,y) ;

hence hD(x,y) < 2Kke-h(x,y) in D. O
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4.22. Definition. Let D c R®™ and x,y € D. Ve say
that if

'Y(X,Y) = Z 'Yi s

iel
then

cige(y,r) := U cig(yi,r)
ieT

is an r-cigar chain neighbourhood of ~vy(x,y). If

k
’Y(X,Y) = Z 'Yi ’
i=1

we write

k
cige(y,r,k) = U cig(yi,r)
i=1

4.23. Theorem. Let h be a modulus of continuity for
which (4.18) holds. Let D c R® be a domain. If there
exists a constant ¢ = 1 such that every x,y € D can be

joined by a curve v(x,y) with
(4.24) cige(y,1l/ec) € D , and

(4.25) > h(2(yy)) = e-h(x,y) ,
iel

then D is a Liph—extension domain.

Proof. Let x,y € D and choose +v(x,y) for which
(4.24) and (4.25) hold. As in the proof of Theorem 4.12 we
have

Q(Yi)/z
ho(x,y) = > 2c I QL%) ds =< > 2eK-h(2 (v )/2)
ieI 0 ieT
< 2cK > h(e(yyd) = 202K~h(x,y). o

iel
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4.26. Remark. If (4.24) is in the form
cige(y,1l/c,k) C D, (4.25) can be replaced by
2(y) = clx-yl, since then

k k
> n(e(yy)) s 2 h(2(¥)) = ck-h(x,y)
i=1 i=1

4.27. Remark. If D 1is bounded, it is enough that
(4.13) holds instead of (4.18) in Theorem 4.23.

4.28. Lemma. There are Liph—extension domains which
are not uniform.

Proof. See [GM2, Examnple
2.26(c)1. Take +the unit disk in
R® and the interiors of equilateral

triangles Ai such that the length

of the sides of Ai is
s; i= 2™, the polar angle for the
centre and the closest vertex of
Ai is
LI G
TRl & B R

and the distance from the closest vertex of Ai to the

. [o0]
origin is r; := 1 - 4 /2. Nov let D := B(0,1) U U 4,
i=0
By Remark 4.27, D is a Liph—extension domain for every h
(1f there exist Liph—extension domains). However, the gaps
in D are too narrow for D to be uniform. O

We can now return to the question raised in Theorem
2.22.

4.29. Theorem. Let D c R® be a domain and h a
modulus of continuity such that (4.18) holds (or (4.13) if
D is bounded). Then £ € loc Liph(D) if and only if there
exists a constant m < o such that
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(4.30) [f(x)-f(y)| =< m-h(x,y) |,

whenever x and y belong to a ball contained in D.

Proof. Let £ € loc Liph(D). If B:=B(z,r) C D, then,
as in the proof of 4.12, hB(x,y) < (2n/2) - (n/2) ‘K-h(x,y)
in B. Because f € loc Liph(B), £ € Liph(B). Therefore
(4.30) holds with some constant m’, which depends only on
the constant K in (4.18) and the constant m in (2.20).
The converse is trivial. ]

4.31. Remark. The condition (4.30) can be replaced by

the condition
(4.30") l£(x)-£(y)] < m,-h(x,y)
in c-uniform subdomains U C D.

To finish this section, we prove +that the inclusion

given in Theorem 4.6 1is generally proper. Obviously if
h(t) is constant on [to,m[ " then there is no unbounded
Liph—extension domain. And, as mentioned in

[GM2, Example 2.261, the domain between two parallel planes
is quasiconvex; so it is a Lipl—extension domain but not a
Lipq—extension domain for any O < o < 1

We now show that the inclusion is proper also for
general bounded domains.

4.32. Counterexample. Let D C R® be as follows:

2 2

D:={ (x,yJCR* | 0<x<e“, |yl <x

Choose the moduli of continuity

h(t) := £& , 0 <a <1,

and
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Now h/g 1is a decreasing function and g(t) = t. First, we
prove that D is not a Liph—extension domain. If
x € ]O,e_zt , then

a((x,0),3D) < x°

Thus ( J = J((£/2,0),(t,0)) )

(2.33)  n ((+/2,0),(£,0) = | gi%%gf%%%l ds
g
% b
- [ at=0,0% ax = [ G ax
t/2 /2
%
> [ (% ax - tz(““l)-% = e .
/2

Here the factor (zt)a_l tends to infinity as t approaches
zero. Hence (4.3) does not hold for any constant K < .

Next, we shall prove that D 1is a Lipg—extension do-
4

main. By using elementary calculus for x € 10,e” L, we
see that
2
d((x,0),3D) = x°/2
Thus, for every z, = (xl,O) and Z, = (XZ,O) ,
0 <x) <x, < e™* ., the following estimate holds:
x
2 2
g(d(z,3D)) g(x~/2)
(4.34) gD(Zl’Zz) < aCz D) ds < 5 dx
x7/2
J(zl,zz) Xy
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x X
2 2 2

= I -ln(x®/2) dx = 2 I -ln x dx + (xz—x1)~ln 2
Xy X,

X

2
2 | (-x"1ln x + x) + (xz—x1)~ln 2

=g

= 2-(—x21n X, + Xy o+ xlln X, - xl) + (xz—xl)-ln 2

2-(g(xy)-g(x))) + 1n(26®) - (x,-x))

A

2g(x,-x) + ln(2e2)'(x2—x1)

A

. 2 - K-
g(xz—xl) (2+1n(2e®)) = K g(zl,zz)
For other points Z, ,» 25 € D, the condition (4.3) is
proved as follows: The modulus of continuity ¢ clearly
satisfies (4.13). 8o (4.3) holds in every c-uniform subdo-
main of D (for a ’‘suitable’ constant c¢ ). If now the

2z

points z, = (xl,yl) and Z, = (xz,yz) are 'far enough'’
from each other, we can use the curve

Y(Zl,zz) = J(z,,(x,,0)) + J((xl,O),(xz,O)) + J((x,,0),2,)

to prove that (4.3) holds. If the distance between the

points Z and 2z is ’‘small enough’, they belong to the

1 2
game c-uniform subdomain of D. So gD(x,y) < K g(x,y)
holds in D. ) 0

4.35. Remark. The trick used in 4.32 is that any t°,
0 < a <1, dincreases faster than the modulus of continuity
g (if t 4is small). It can be proved by the same tech-
niques as in (4.33) that a  Lip -extension  domain
(0 <a < 1) cannot contaln outward-directed cusps with the
angle zero. So it is not very easy to find a LipB—extension
domain which is not a Lipu—extension domain for some
0 <a < < 1. We shall study this question in Section 6.
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5. Some geometrical properties of Liph g—extension
domains

In Section 4 we found out that a Liph—extension domain
must be quasiconvex. This property does not necessarily
hold in Liph g—extension domains.

5.1. Theorem. Let h and g be moduli of coatinuity
such that h: [0,o[ - [0O,o[ is a homeomorphism and h sat-
isfies the condition (4.18). Suppose that D 1is a domain
in Rn and ¢ < o a constant such that every x,y € D can

be joined by a curve ~v(x,y) C D satisfying the properties

(5.2) d(y(t),3D) = min(t,2(y)-t)/c ,
and
(5.3) t(y) < h i (glelx-yI1))

Then D 1is a Liph g—extension domain.

Proof. (See the proof of Theorem 4.23.) By (5.2) and
(6.3) we obtain

I h(d(z,3D))

aCz ap) &8 = 2ck-h(2(y)) = 2Ke-glelx-yl)

Y
Q
< 2Ke%g(x,y) . ]

We can prove a similar result for outward-directed
cusps.

5.4. Theoremn. Let h and g be moduli of continuity
such that h': 10,0L » 10,0 is a homeomorphism and h
satisfies the condition (4.9). Suppose that D 1is a domain
in R®™ and ¢ < o a constant such that every x,y € D can
be joined by a curve y(x,y) C D satisfying the properties
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(5.5) d(y(t),3D) = (b)) (g (minCt, 2(y)-t)/e)) ,
and

(5.8) L(y) < ¢ lx-yl

Then D is a Lipy g—extension domain.

Proof. By (4.9), (5.8) and (5.6) we obtain

h(d(z,3D)) 1 '
| Ten o I [ n'cacz,ap)) as
Y Y
2(y)/2e
< 2. [ gitre) at = (2c/a)-g(2(y)/20)
0
< (2c/a)-g(x,y) . O
5.7. Example. By an ‘'order of cusp’ f£(%) we mnean

that in R° the boundary of the domain D C R® is (lo-

cally) the set
{ (5,2 It =20} U { (6,-FCE)) | t =20}
It is easy to see, 4in view of Theorems 5.1 and 5.4, that a

Lip(3 a—extenSion domain can contain ‘inward-directed cusps
of order’

t{3/0L

and 'outward-directed cusps of order’

[as]

o—

]

o)

t

if a <

Remark. The domain D in Example 4.32 is a Lipa 201"

extension domain ( % < o < 1 ).
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6. Lipa—extension and total extension domains

In +this section we shall study the special case of a
modulus of continuity h(t) = t% with 0 < a < 1 (studied
in [GM2D). First, we employ the previous results for this
special case.

6.1. Lemma. The condition (4.18) holds for t%
0 < a < 1

Proof. The result follows from

t t

I s lasg = 1| g®%as = Ll.g u|
(e A

0] 0]

Lemma 6.1, Corollary 4.20, Theorem 4.2 and Theorem 4.29
inmply the following results:

6.2. Theorem. Let D C R be a domain and O < o < 1.
A function £: D » RY belongs to the class loc Lip (D) if
and only 1if there exists a comstant m < o such that

[£(x)-£(y)] =< m-|x-y|®
whenever x and y belong to a ball contained in D. o

Theorem 6.2 is the original definition for +the 1local
Lipschitz class 1loc Liph(D) in [GM2]1. The next theorenm is
LGM2, Theorem 2.21].

6.3. Theorem. A domain D c R® is a Lip -extension
domain if and only if there is a constant K = K(D,a) < ®
such that for every X,y €D there exists a curve
y(x,y) C D with

(6.4) J d(z,aD)m—1 ds =< Klx-y|¢ . |
Y
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6.5. Definition. A domain D C R® is said to be
a total extension domain if it is a Lipd—extension domain

for every 0O < a <1

6.6. Theoren. Uniform domains and the domains men-
tioned in Remark 4.26 are total extension domains. O

By Corollary 4.10, every Lipa—extension domain is also
a LipB—extension domain if O < a < B < 1 . Are all Lipa—
extension domains total extension domains? The answer 1is
‘no’, which will be proved in the following example. To
construct such a domain we must destroy the inequality
(4.25).

6.7. Counterexample. Let B =1 and 0 <a<pf
There 1is a LipB—extension domain which is not a Lipa—
extension domain.

The construction. See the figures in Appendix B. Let
0 <a<p <1. First, we choose a set D' C R® as follows:
Let

-i/a _
Ty = 1/2 , Ty o= 2 /2 , 1 =1,2, i
T T
0 1 _gl-17a
Jg = { (z,y) € R® | vy =0, Ix| < 20/2 }

Let ( for Zq = (xo,yo) and T > 0 )

B,(zg,1) i= { (x,y) € R® | Ixg-xl + lyg-yl <7 }.

Now we carry out the following Cantor-type construction:

Let D' := JO , L = JO and JO,l t= JO
by induction. For i =20 the set L 1is a union of 1line
, 3 =1,2,...,2"

We proceed

segments J We choose the midpoint

i,

z4 j of every line segment Jy j and Jjoin the boxes
Bl(zi j,ri) to the set D’. Then we take the  sets
] xi,j - Ty xi,j + Ty [ away from the set L.
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The set D’ contains the boxes Bl(zi j,ri) and the

line segnent I (see Figure 1). The set which is con-
structed on the line segment Ji j is similar to the set
D' ( on the scale 1:271/% ). ’
sSet By = Q(Ji j)’ It follows from the construction
that Qi = 221+1 + 2ri , and we have
-i/a

£, = —S——1+

i 1_21—1/cx
The nunber of boxes joined to D' in step n is 2% and
the number of boxes which meet the line segment Jn j in
step i is 27 %, i s n. The (Cantor-) set L n’j of
the points of the line segment J that are not’ éovered

n,J

by any of the boxes has the linear measure

1—n'2—1/a

=]
8
B
I
E=]
B
[
I,_I
AME
L.
",
B
©
H
=
1
S)
B
I
|...|
HP48
b

Now there exists a constant K = K(a,B3) such that each
pair of points 2, » Zg € D’ can be joined by a curve Y
in D' with the property

(6.8) j a(z,o0' )P as < K1z -z,18
1 72
Y
First, we prove that (6.8) holds if Z, and Zg are
endpoints of the line segment Jn j Obviously the best
curve to join Zq to 25 is the line segment
J(zl,zz) = dy j - By combining +the results from  the

construction we obtain

I.
. X
6.9) [ a(z, a0 as - (' ™2 [ aca(s), )P as)
0

)

aME

n
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0 i I‘:i.
= B B e PO ¢ 2t f (72)6‘1 ds )
1l=1n 0

I
oo (1-p)/2 <2, 11 |t B
= 22772 %;n( 275 l s )

0 s
- 2.2—11.2(1—(3)/2'%' Z ( 21.(2 ) )
i=n

Since zl—ﬂ/a < 1, the last sum converges, and we conclude

23(1—6)/2' _n.zn(l—ﬁ/a)

j a(z,sn' )P las

3 _al-p/a
J 1-2
23(1‘{3)/2 -n/o\f3  _ ; B
= Ry (2 )T = K’z -z, :
p(1-2 )
where the last equation follows from
1 -n/a
lz,-z2,1 = ¢ = ——=—7——-(2 )
1 72 n (1_21 1/Q)B
Next, we show that (6.8) holds if lzl—zzl =1, for
some n and Z, » %5 € Jo : The minimizing curve is again

the line segment J(zl,z and so

o)

(6.10) | a(z,ap)F 1t as < | a(z,ap" )Pt as - K'lz,-2,1P.
d Jn,J'
If Z, » 2Zg E JO are arbitrary, there is a number n
_ sl
such that 2n+1 < Izl—z2| < zn s 2n =2 2n+1 Hence

(6.10) yields

[ atz, o0t as < | aCz, a0 )Pt as

J(zl,zz) Jn,j
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- ke P o kPl B ZB/QK’IZ 5, [P
n n+1l 1 72
Finally, if the points Z, » 25 € D’ are arbitrary, we
use the method described at the end of Example 4.32.
In conclusion, it follows that (6.8) holds. However,

(6.8) does not hold in the case f < «
sum in (6.9) diverges.

, Since then the last

To complete our example, we must '‘open’ the set D' so

that it Dbecomes a domain. We define a domain (see
Figure 2).
1
. 2 IxI—QO/Z
D' :={ (x,y) € R® | Iyl < 2 Izl o< 1g/2 }.
If we now set D :=D' UD" , then D 4is a domain (see
Figure 3) and (6.8) holds for the exponent B > o in  D.
But if we come close enough to the point zg = (£5/2,0) ,
then D is almost similar to D', and (6.8) does not hold

if B = «

6.11. Remark. For example, 1if D C R2 is the upper
half plane, it can be proved that curves minimizing the
integral (2.25) are restrictions of the curve

t 1
1 ; l-a
x(t) = ¢ T-a I (sin s) ds + Xq
0
(6.12) 1
. l-a
y(t) = ¢ (gin t) , 0O<t<muw |,
for some constants ¢ and Xq (0 <a<1).
If we let a >0, we obtain a quasi-hyperbolic

geodesic, which is a circular arc meeting the x-axis at the
angle mw/2. Also for o > O the curve (6.12) is perpen-
dicular to the x-axis (see the graphs in Appendix C).
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¢ Liph g—extension domains and the Hardy-Littlewood
property

In this section we shall study some extensions of the
results in [GM11, [JJ and [St1. Let |3f]| Dbe the maximum
derivative of a function £f: D - RP

(712 13£(z)| := 1lim sup 'f<z+f>7f(2>l
ly1-0 y

In [GM1l] F.W. Gehring and O. Martio studied domains in
which the condition

(7.2) |3£(z)| < m-d(z,aDp)* ¢

implies that the function f Dbelongs to the class Lipa(D).
We now show that these domains are exactly Lipa—extension
domains. E. Johnston has also proved the same kinds of
results in [J] using different methods.

7.3. Theorem. Let D C R® be a domain and h and g
moduli of continuity. Then the following two conditions are

equivalent:

(7.4) D is a Liph,g—extension domain.

(7.8) If a function £: D » RP satisfies

(7.6) |13f(z)| =< m-gg%%gf%%%l whenever 2z € D,

then f € Lipg(D) with a constant K'm, where K
depends only on the domain D (and the moduli of
continuity h and g).

Remark. We have two methods to prove that a Liph g~

extension domain satisfies (7.5). The first one 1is to
prove that a function satisfying (7.6) is in the class
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loc Liph(D) in the sense of Theorem 2.1%7. The second one
is to prove the theorem by using Theorem 3.6. We shall use

the second method (which is used in [GM1]), because we shall
have use for the proof later.

Proof. Let D C Rn be a Liph g—extension domain, and

let X,y € D. Suppose that a function f: D - RP sat-
isfies (7.6). By Theorem 3.6 we can choose a curve v(x,y)
such that

(7.7) I QL%%EL%%%Q ds =< 2K-g(x,y)

Y

We have an estimate for the maximum derivative of the func-
tion fey

|3(£oy)(s)] = lim sup LCEI(8+T)=(£y)(S) |
Iz |~0 Izl

[y(s+r)—v ()|

< lin pep [f(y(s+r))-£(y (s

(220 Y(s+)—y(s)[  1im sup

|z |~0 [r]

< [3f(y(s)) -1
Choose Zy € ¥ closest possible to dD. By (7.6)

.h(d(zo,aD))

. h(d(y(s),a3D))
[3C£ey)(s)] = m d(zy,03D)

d(y(s),dD)

<= mnm

and hence [a(fey)(s)| 1is uniformly bounded in [O,e(yD]
wvherefore fe-y 1is absolutely continuous in [O0,2(y)]1 and

(7.8) 1£Cx) - £(y)1 = 1C(Ey)C2(y)) = (£oy)(O)|
p(y) 1(y)
< [ reteeyd(ed)l as = m h(g%z%:%,gg%) ds
0 0
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m,J h(d(z,3D)) 43¢ <« maK-g(x,y)

d(z,3D)
Y

Thus f 1is Lipg(D)—continuous with a constant 2Km which
depends only on the domain D (and the moduli of continuity
h and ¢g).

Next, suppose that (7.5) holds. Let x. € D and set

0
uh(x) t= hD(xo,x)
Now
luh(x+y) - uh(x)l . hD(x+y,x)
4 Iyl
1 h(d(z,3D))
< Tyl | BaEany as
IJ(x,x+y)
h(d(x,3D)) ) R
where the last term tends to ~dalx. aD) if |yl 0. So
h(d(x,3D))
l3u, ()1 = =2g¢xaD)
and, by (7.8), u, € Lipg(D) with a constant K indepen-
dent of the point Xq Hence
hp(x,xy) = Iy, (x) - uw (xy)l = K-g(x,x5) ,
and, by Theorem 3.6, D is a Liph g—extension domain. O

7.9. Definition. A domain D C Rz is said to have the

Hardy-Littlewood property if for some constant L and for
all o € 10,11 every analytic function f with

(7.10) 1£'(z)| < m-d(z,asD)* *

in D is in the class Lipa(D) with a constant M < Lm/a
(see [GM1, Section 31).
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7.11. Corollary. The domains mentioned in Remark 4.26
have the Hardy-Littlewood property.

Proof. Let D be as in 4.26 and h(t) = t%
0 < a < 1. Then

p(y.)/2

L4 & a1 85 a

hD(x,y) < > 2c I s ds <= =35> 2(v.)
‘ a 4 i
i=1 d=1

0]
P
2Cck a
= = |x-y|

holds in D. By the proof of Theorem 7.3
f e Lipu(D) with a constant = m
whenever (7.10) holds for f. 8o we can choose L = 202k. O

By Corollary 7.11 the non-uniform domain in the proof
of Lemma 4.28 has the Hardy-Littlewood property.

7.12. Remark. Let K = be the constant for which (4.3)
holds for the modulus of continuity h(t) = t%. We can con-
struct a total extension domain D for which the quantity

K

_X
L

>R

tends to infinity if o = O . So it is not obvious whether
every total extension domain has the Hardy-Littlewood prop-
erty.

7.15. Remark. If D is a domain in RS and f is
harmonic in D ( or analytic in D ), then f belongs to
loc Liph(D) if and only if (7.6) (or (7.10)) holds.
(Modify the proof of [GM1, Theorem 1.11].)
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In [St]l H. Stegbuchner has studied domains where Notation
h(t)/t is replaced by h’'(t) in (7.8). Now we can give an L o .
A . i,j.k = indices in N
equivalent condition for these domains. . . n
n = dimension of R
P = dimension of the range space Rp, f: D> RP

?.14. Corollary. Let DCR® be a domain. Then the

following two conditions are equivalent: Pl L p01n?s L R? 5 Bea o5l 5 = () B Rz g
[x-yI = euclidean distance between points x and vy
D = domain in Rn , D#d , D # Rn
(7.18) There is a constant K(D,h,g) < o such that .
“ a,r,s,t = positive real numbers
‘f hi(x,y) < Kg(x,y) , whenever x,y € D. for v, v(x,y), v(s), 2(y), J, J(x,y) see Definition 1.1
§ cig(y,1l/¢) = 1l/c-cigar neighbourhood of v (1.3)
f? (7.16) If a function f£: D » RP satisfies oD = boundary of the domain D
}? d(x,3D) = inf { |x-z| | z € aD }
| (7. 1%) 13£(z)| < m-h’(d(z,3D)) whenever =z € D, o, 3 = exponents in 10,11
c = quasiconvexity (1.2) or uniformity (1.5)
then f € Lip (D) with a constant Km, where K constant ( ¢ = 1 )
depends only on the domain D (and the moduli of B(x,T) = open ball with centre at x and radius
continuity h and g). Bb(x) -{ye B | |x-y| < b-d(x,aD) }
b = constant, see above (see also Theorem 3.16)
Proof. Repeat the proof of Theorem 7.3 using the h,g = moduli of continuity (2.1)
integral h(x,y) = h(lx-yl), metric defined by h (2.9)
h<g in D = h(x,y) < A-g(x,y) whenever x,y € D (2.12)
I h'(d(z,3D)) ds . O A = constant < o , see above
| Y h(x, ) - inr_ | h(ggg ggg) ds , (2.24)
i y(x,y)CD q
7.18. Remark. Uniform domains always satisfy the prop- hb(x,y) =y(i?£)CD I B0z, 30)) & (2 za)
erty hb < Kh (see the proof of Theorem 2.36). The same is i v
u, (x) =h (x,,x) , x, €D (2.28)
true also for domains in Remark 4.26. So the class of h D ™0 0
domains satisfying (7.16) is larger than the class of uni- Lip, (D) = {£:D>RP | 1£(x)-£(y)|<Mh(x,y) in D} (2.10)
form domains (if h < g ), and for some h and g also ' M = constant for f € Lip, (D) (2.10)
larger than the class of Liph,g—extension domains (which may loc Lip, (D) = as above but in B, (z)cD (2.15, 2.17, 2.20)
be empty). But if the modulus of continuity h satisfies m, My = constants for loc Lip, (D)  (2.20, 2.15)
the order of growth as in (4.9), then the metrics hb and £ =f: D~ RP, Liph— or loc Liph— continuous

*

- extension of f +to R
constant to extend f € loc Liph(D) (3.1)
= hD(x,y) < K-h(x,y) (3.7)

hD are equivalent, and in this case the domains satisfying

(7.16) are Lip, g—extension domains.

RN H R
I
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Figure 2. The domain D in case o = 0.5

Figure 3. The domain D in case o = 0.3
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Appendix B

Figure 4.

Figure 5.

Remark.

The set D’

The set D’

The Figures 1-5

and the domain D' in case

and the domain D' in case

are not on the same scal

a = 0.9.

a = 0.2.

e.



Figure 6.

Graphs of curves minimizing the integral

a-1

ds

in the upper half plane.
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