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1. INTRODUCTION AND RESULTS

The class of uniform domains was introduced by O. Martio and J. Sarvas in [MaSa].
In the original definition a domain G C R" was said to be uniform if there exists
a constant ¢ > 1 such that all z;, 29 € G can be joined by a curve o C G for which

(1.1) la) <clz1 — 2,
(1.2) _ilrél(ozj) < ¢ dist(z, 0G)

J

for each z € «, where ay, s are the components of « \ {z}. Ever since their
introduction uniform domains have shown to have very useful properties, and
in fact to be the “right kind” of domains to consider in many applications. For
instance, it is shown in [Ge] that many classical results of function theory, originally
proved for functions defined on the unit disk, hold for functions defined on uniform
domains. It is well-known that a simply connected proper subdomain of the plane
is a quasidisk if and only if it is a uniform domain.

In this work we shall consider another definition of uniform domains, originally
stated by F. Gehring and B. Osgood in [GeOs|. This alternative definition uses
comparison between the quasihyperbolic and the distance ratio metrics defined in
(2.2) and (2.3), and involves also a constant A > 1 which in general is not the
same as the constant ¢ in the definition by Martio and Sarvas. As this alternative
definition is better suited to the studies here, we will adhere to the uniformity
concept of Definition 2.4 in this work.

The class of uniform domains is very wide, for instance it includes images of
the unit ball B" under a quasiconformal mapping of R" into itself. It is perhaps
surprising that there are very few examples of domains for which the uniformity
constant A is known, and in this work we study some of the simplest cases. In
most cases this task involves finding the geodesic segments of the domain studied
— in general a difficult problem — which is also previously unsolved in some of
the cases studied here. Often such fine-tuned analysis requires domain-specific
methods, however, some of the techniques used might be of interest also in more
general studies of the metrics involved.

In section 3 we prove some general lemmas concerning the quasihyperbolic
metric and the distance ratio metrics. In section 4 the main subject is to derive
the geodesic segments. Here the main results are the ones obtained for the planar
angular domains

Se={(r0) eR® : 0<0<p},
and for the punctured ball B*\{0}. In the following k¢ denotes the quasihyperbolic
metric in the domain G.

We next formulate some of our main results.

Theorem 1.3. Let ¢ € (0,7], and x,y € S,. Then the quasihyperbolic geodesic
segment Jksg, [x,y] is a curve consisting of line segments and circular arcs orthog-
onal to the boundary, as explained in Theorem 4.6.



6 HENRI LINDEN

Theorem 1.4. Let ¢ € (m,27), and x,y € S,. Then the quasihyperbolic geodesic
segment Jksw [,y] is a curve consisting of line segments, logarithmic spirals and
circular arcs orthogonal to the boundary, as explained in Theorem 4.10.

Theorem 1.5. Let z,y € B? = B™\ {0}. Then the quasihyperbolic geodesic
segment Ji, [, y] is a curve consisting of logarithmic spirals and geodesic segments
of the quasthyperbolic metric in B™, as explained in Theorem 4.13.

In section 5 we derive uniformity constant estimates for different domains.
We study the space R \ {0}, the angular domains S, and the punctured ball
B™ \ {0}. Finally, we include a few implications on some polygonal domains.
However, for polygonal domains the geodesics are not known, which results in
a lack of sharpness compared to the earlier mentioned domains, for which the
estimates are best possible.

Theorem 1.6. For the domain Rl = R" \ {0} the uniformity constant is

~ 2.8596.

Ry = log 3

Theorem 1.7. For the plane domain S, the uniformity constant is given by

1
Aspzsin§+1

when ¢ € (0, 7].
Using the case of small angles we get bounds also for the case of large angles

¢ € (m,2m). These, however, are not sharp.

Theorem 1.8. Let x,y € S, where m < ¢ < 2m. Then we have that

2logtan ¥ + ¢ — 7 2/ 1
max{?, ch W }SAS §4< L4 )( +1).
log(1 —2cos %) ? 2m — ¢/ \sin ¥

For the punctured ball B? = B" \ {0} we get, the following result for the
uniformity constant.

Theorem 1.9. For the domain B? we have that

™

The geometric methods in the geodesics proofs use results from [Ma] and
[MaOs]. In the results regarding uniformity constant estimates, the methods are
in general very elementary. The case of large angles ¢ € (m,27) employs a result
from [GeHa).
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2. PRELIMINARIES AND DEFINITIONS

A path in R" is a continuous mapping «: A — R", where A is an interval in R.
The locus of a path is the point set «A C R™, which will also be referred to as
the curve a. We often talk about curves a instead of paths, because mostly the
choice of path is unimportant. If A = [a,b], and a(a) = z, a(b) = y, we say
that « is a curve connecting x and y. A subpath of « is the restriction of a to
a subinterval A’ C A. Then it is clear that by a subcurve we mean just aA’. If
A" =[e,d], ¢,d € R, we write ac, d] for the restriction of « to [c, d].

Let a: [a,b] — R" be a path, and let a = t; < t; < --- < ¢, = b be a
subdivision of [a,b]. Such a subdivision is called a length sequence. Let (G, d) be
a metric space. The d-pathlength of « is then defined as

(2.1) la(la) = supZd(a(ti),a(ti,l)),

where the supremum is over all length sequences. The length of the curve « is
defined as the length of a corresponding path «. A more detailed reference to
these matters, as well as integration of paths, is [Vil], chapters 1.1-1.5. When
d = | - | is the Euclidean metric, we usually denote l4(c) = I(c).

For a given domain G C R" we define the quasihyperbolic distance between x
and y in G by

(2.2) ko(z,y) = inf /%,

aclzy

where d(z) denotes the distance to the boundary, dist(z, 0G), and I, stands for
the family of all rectifiable curves joining z and y in G (see [GePal). It is clear that
ke is a metric on G, and it is also well known that it is invariant under similarity
mappings, i.e. translations, stretchings and orthogonal mappings. The rectifiable
curve « for which the infimum in (2.2) is attained is called the quasihyperbolic
geodesic connecting the points x and y, and is known to exist for all pairs of points
(|GeOs, Theorem 2.8]).

A metric space like this, where a geodesic segment always exists, is called a
geodesic metric space. Any subcurve of a geodesic is also a geodesic. A geodesic
curve between points  and y in the metric d is denoted by Jy[x, y], or Jlz,y] if it
is clear what metric we are using.

We also define

_ B |z —y|
(2.3) ji(z,y) = log (1 + min{d(x),d(y)}>

for every z,y € (. This is also a metric, often referred to as the distance ratio
metric or the j-metric. It is known to have invariance and monotonicity properties
similar to the quasihyperbolic metric (see the beginning of Section 3). For instance,
it is also invariant under translations, stretchings and orthogonal mappings. On

the other hand, unlike the case of kg, the metric j; mostly fails to have geodesics
(see [H&IbLI]).
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Definition 2.4. A domain G' C R" is said to be uniform, if there exists a number
A > 1 such that

(2.5) ka(z,y) < A je(z,v)
for all z,y € G. Furthermore, the number

Ag =inf{A > 1 | A satisfies (2.5)}
is called the uniformity constant of G.

Remarks 2.6. i) Using Theorems 1 and 2 in [GeOs| and [Vul, 2.50], we see that if
the constant c in the conditions (1.1) and (1.2) is known, then Definition 2.4 holds
true with constant
. 2(c+ c+clog3c+ 1).
log &
Vice versa, if A is known, the original conditions hold with
¢ = 6442 47

ii) The uniformity constant is known previously only in the cases of the disk
B" and the halfspace H", and its value is then 2, which is shown in [Vu2, Lemma
2.41] for H" and in [AnVaVu, Lemma 7.56] for B™.

iit) The inequality jg(z,y) < kg(z,y) holds for every G and z,y € G [GePa,
Lemma 2.1], and thus uniformity is equivalent to the existence of a two-sided linear
estimate of the quasihyperbolic metric in terms of the jg-metric.

iv) The quasihyperbolic geodesics are — according to the definition used here
— length minimizing curves, and thus also local length minimizers. However, lo-
cal length minimizers, for which the term “geodesic” is also widely used in the
literature, are usually not geodesics in the sense that we speak of here.

We sometimes need to compare the quasihyperbolic metric with the hyperbolic
metric, which is classically defined in either the disk B” or in the half-space H”. In
the case of the half-space it is known that kg« (x,y) = pun(z,y) for all z,y € H".
This is convenient, since there is an explicit formula for the hyperbolic distance
[Bel, p. 40]

|z —y|?
2d(z)d(y)’

In some special cases the formula is even simpler; let e,, denote the n:th unit vector
in the standard basis. Then, for r,s > 0 we have that

(2.7) cosh pgn (z,y) =1+ z,y € H".

(2.8) par (ren, se,) = ‘ logg‘,

and if ¢ € (0, %) and we denote u, = (cos ¢)e; + (sin p)e,, we get

(2.9) pun (€n, Uy) = logcot Z.
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In the ball B" we only know that kg~ (z,y)/ps-(z,y) € [%, 1]. Here we have
the formula [Bel, p. 35]

|z —y|?
(1= z)(1 = |y?)

(2.10) sinh? (Lpme (7,4)) =

For 0 <t < 1 we have

1+1¢
(2.11) pBn (0, te,) = log : i .= 2artanht.

It is also possible to define the hyperbolic metric for a subdomain G of the
plane for which there exists a conformal mapping f: G — fG = B2 Then the
metric density is defined by

pa(z) = pp2(f(2)1f'(2),

and from the Schwarz lemma it follows that ps is independent of the choice of
f. Then, as for the quasihyperbolic metric, we define the hyperbolic metric by
integrating the density over all curves, that is

haloy) = inf [ pal) e

Clearly the metric space (G, hg) is also geodesic. Note that while in the classical
cases we use the traditional notation pg» and pg» for the hyperbolic metric, in
general domains we use hg.

For future use we also mention some useful inequalities for the inverse hyper-
bolic functions, namely the relations

(2.12) log(1+2) < arsinhz <2log(l+ ),
(213)  2log (1+4/3(z—1)) < arcoshz <2log(1++/2(z — 1)),

which hold in the intervals x > 0 and x > 1, respectively. We will also make use
of Bernoulli’s inequalities

(2.14) log(1 + as)
(2.15) alog(l+ s)

alog(l+s); a>1,5s>0,
log(1+4as); a<1,s>0.

<
<

We close this section with some geometric notation and definitions. Note that
some of the concepts are meaningful only for n = 2.

Circles are usually denoted by uppercase letters, such as C = S'(x,7). The
radius of the circle C' is denoted by rad(C). Lines and points are denoted with
lowercase letters, such as [ or p. Given two points x and y, the segment between
them is denoted by

(2.16) [z, y] ={(1=t)z+ty |0 <t <1}.

Given a vector u and a point x € R”, the line passing through x with direction
vector u is denoted by L(z,u). The open ray emanating from z in the direction
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of u is denoted by ray(z,u). The hyperplane orthogonal to u and passing through
x is denoted by P(x,u). Hence

L(z,u) = {z+tu]|teR},
ray(z,u) = {zx+tu|t>0} and
P(z,u) = {z€R" | (z—x)-u=0}.

As the standard basis of R” is denoted by (eq,es,...,e,), for instance ray(0, e;)
denotes the positive z-axis. If the lines /; and [, are parallel, i.e. if their direction
vectors v1 and vy satisfy v; = vy or vy = —uvs, this is denoted by Iy || lo, and if
the lines are orthogonal we denote [y L 5. Orthogonality of two circles is denoted
by the same symbol L. Given three points z,y and z € R", the notation 7, 2,y
means the angle in the range [0, 7] between the segments [z, z] and [y, z]. Given
two differentiable curves, typically a circle C and a line [, which are tangent at a
point z, we denote this by C O, 1. If the point z is unimportant, we just denote
C QO . Finally, by comp(A, z) we mean the component of the set A containing
the point x.

3. PROPERTIES OF THE QUASIHYPERBOLIC METRIC

Even though the quasihyperbolic metric has been utilised as a tool in many differ-
ent contexts, very little is known regarding many natural questions. We proceed
by formulating some general inequalities for the quasihyperbolic and distance ratio
metrics. First, we recall that kg has the following monotonicity property: if G
and G’ are domains with G’ C G and z,y € G', then kg (z,y) > kg(z,y). This
follows directly from the definition, and the same of course can be proved also for
the j-metric. Some upper and lower bounds for the ks and js metrics in certain
special cases can be found e.g. in [V&2] and [Vu2, Chapter 3.

Lemma 3.1. ([Vu2, 3.7.]) i) Ifx € G, y € B, = B"(x,d(x)), then
|z — Yl )
ka(z,y) <lo <1+— :
e
i) If s € (0,1) and |x — y| < s d(z), then
1

— S

kG(xay) < 1 jG(CU,y)-

0

Lemma 3.2. ([Vu2, 3.17.]) Let f: R* — R" be an L-bilipschitz mapping, that is

lz —yl/L <|[f(z) = f(y)| < Llz -y
forallx,y € R*, and let G C R™ be uniform with constant A. Then fG is uniform
and satisfies
ka(u, U)
Jra(u,v)
for all u,v € fG. O

< AL*
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For general domains we also have the following universal lower bound.

Lemma 3.3. Let G C R? be a domain and let B C G be a disk such that #(Bn
0G) > 2. If x,y € G lie in different components of G\ B, the j-distance, and thus
the k-distance, are bounded from below by the constant log(1 + \/5)

PROOF: Assume that z and y are such that comp(G \ B, z) # comp(G \ B, y),
and that #([z,y] N 0B) = 2. Let ¢ be the center of B. Then there exists a
point z € BN JG such that z is also in the set B \ comp(B \ [z, y], ¢), namely,
otherwise we would have comp(G'\ B, z) = comp(G\ B, %). Denoting R = R?\ {2}
we can also assume that dist(xz,0R) < dist(y,0R). Let y' € [y, z] be such that
|y' — z| = |x — z|. Then, letting ¢ be the angle y’/,_\:v,z, we see that ¢ < 7, as the
maximal case occurs when = and y are antipodal on dB. Thus
_lr=yl2 _e=yl2 _ ey

dist(z,0R) = |z — 2| TN, 7

Then

. . T —
ja(z,y) > Jre\e(z,y) = log (1 + :x — ‘ZD

oyl

> log (1 + M) = log(1 + v2).
Pla—y

2

If #([z,yJNdB) =1 or [z,y] N OB = @, we denote E = [z,y] N dG. Now, let
R =R"\ FE and assume that dist(z, E') < dist(y, E). Also, let z € F be the point
for which dist(z, F) = |z — z|. Now

dist(z, ) = |z — 2| < 3|z —y],

where equality may occur when E is a one-point set. Hence

. . T — T —
je(z,y) > jree(z,y) =log (1 + | y') > log (1 + 1| vl ) > log 3.
|z — 2| sz —y|

This proves the statement. O

To clarify the connection between the quasihyperbolic and the distance ratio
metric further, we introduce the concept of the inner metric. Let G C R" be a
domain, and (G,d) be a metric space. Then the inner metric of the metric d,
denoted by d is defined by

(3.4) d(z,y) = igf La(7),

where the infimum is over all curves joining x and y, and d-length is defined as in
(2.1).

By the triangle inequality it is immediately clear that for any metric d we
have d < d. If also the opposite inequality holds, a metric is called intrinsic. All
geodesic metrics, such as the quasihyperbolic metric, are trivially intrinsic. The
distance ratio metric j, however, is not intrinsic. On the other hand we have the
following well-known result.
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Lemma 3.5. For any proper subdomain G of R we have that jo = ke.

PROOF: The part jg(z,y) < kg(z,y) follows easily from applying the inequal-
ity j(z,y) < k(x,y) on a length sequence along the quasihyperbolic geodesic. The
part jq(z,y) > kq(z,y) follows from the inequality in part ii) of Lemma 3.1, which
is valid for a € G, 0 < t < 1 and z,y € B(a, tdist(a, 0Q)). O

Remark 3.6. A subdomain G of a metric space (X, d) is said to be K-quasiconvex
if there exists a constant K > 1 such that for each pair of points =,y € G one can
find a connecting curve 7y € I';, such that

la(v) < K d(z,y).

Then, by the previous lemma we see that a uniform domain G is K-quasiconvex
with respect to the jg-metric, and that actually

Ag = inf{K | G is K—quasiconvex}.

The question whether and how much the quasihyperbolic distance grows or
shrinks when points are moved, or the boundary is deformed in certain ways,
depends very much on the geometry of the situation. The following quite obvious
lemma is mentioned because of its convenience for the applications in the sequel.
Namely, in many situations it is easy to verify the conditions of the lemma by
using elementary geometry.

Lemma 3.7. Let G,G' C R" be domains, and let x,y € G, o',y € G'. Also let
a €Ty and B € Lyy be rectifiable curves with corresponding paths v: [a,b] = G
and v': [a,b] — G'. If for every length sequence {t;}i=,. r there is another length
sequence {s;}i=o,..k such that

(38) () —alt )| < |8(s) = Blsi 1) forall i=1,....k and

(3.9) dla(t)) > d(B(s;) forall i=0,...,k,

then ljg (o) < I, (B). If we have strict inequality in (3.8) or (3.9), then l;, () <
li,(B). Furthermore, if B = Ji_,[2',y], then kg(z,y) < ke (2", ).

PROOF: Let {t;}i=o,.x be an arbitrary length sequence. By (3.8) and (3.9),
we have that

oy < at:) — alti )
;ac(am),a(ti_a) = ;bg (1+mm{ Tl d(a(ti_l))})
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Since this is true for every length sequence, [, (a) < I;_ (8). The case of strict
inequalities is proved in the same way. By Lemma 3.5 jg = kg, that is kg(z,y) =
inf, [, (). Thus, if 8 = J;_,[2',7'], we have

kG(xa y) < lj(;(a) < le/ (ﬂ) = kG’ (xl, yl)‘

4. GEODESIC SEGMENTS

Even though it is known that the quasihyperbolic metric has geodesic segments in
every domain G, there are very few cases in which the geodesics are known. In the
half-plane H" the quasihyperbolic metric coincides with the hyperbolic metric, and
so the geodesics are circular arcs orthogonal to the boundary hyperplane. In the
cases of the ball B" and the punctured space R\ {0} the geodesics were computed
by Martin and Osgood in [MaOs, p.38-41]. The goal in this section is to obtain
the geodesic segments in the planar angular domain S, and in the punctured ball
B™ \ {0}. In doing this we will employ a smoothness result of geodesic segments
proved in [Mal].

We start by studying the angular domain S, C R? in the case where ¢ € (0, 7.
For the bisector of the domain S, we use the notation

¢, = ray(0,e%?).
Then we state the following useful geometric observation.

Lemma 4.1. Assume that x = (r,0) € S, is a point in the lower component of
Sy \ Ly, i.e 0 < @/2. Then there exist unique circles c(z) and C(z) such that

z € c(x)NC(x), c(x) L L(0,e1), C(z) L L(0,e;) and furthermore c(z) O £, and
C(x) O L,. The centers of these circles have x-coordinates

cosf — \/cos2 0 — cos? £

T, = T and
¢ cos? £
cos ) + y/cos? § — cos? £
o =T 29
cos? &

and their radii are
Te =TsinE, 1o =zCsing.

The circles are called the small and the large tangent circle of x, respectively. The
corresponding symmetric theorem holds for points in the upper component. ]
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C(x)

XC XC

Figure 1. The small and the large tangent circles of a point x.

We first note that for some special cases the question of the geodesics is easily
solved. Clearly, for two points z,y € £, we have Ji[z,y| = [z, y], since by Lemma
3.7 we have ;([z,y]) < [;(7y) for every v € Iy, and thus [z, y] gives the infimum.
Also, if the hyperbolic geodesic J,[z,y] is contained entirely in a component of
Sy \ £y, it is clear that Jy[z,y| = J,[z,y]. We will now describe the idea behind
the use of Lemma 4.1. Namely, assume that x and y are in the same component
of S, \ £,, and for instance |y| < |z|. Also let the points z; and 2z, be such that

(4.2) C(y) O, £, and c(z)Q,, £,.

Then it is clear that the above reduction occurs exactly when the intersection
points satisfy the relation |z1| > |23|. In the case of equality we have C(y) = c(z).
We will need to put somewhat more effort on the case where |2;| < |z9].

Lemma 4.3. Assume that z,y € S, are in the lower component of S, \ £y, |y| <
|z|, and that z1, zo are points such that

Cly) O, 4, and c(z) O, £,

and that |z1| < |zs|. Then the quasihyperbolic geodesic connecting x and y is the
curve

Jk[xa y] = Jp[xa ZQ] U [22; Zl] U Jp[zlay]'
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Figure 2. Different types of geodesic segments in S,,.

PROOF: Let [ = L(z1,ez) and ly = L(29, €9). Clearly, both Ji[z,y|Nl; = {w;}
and Jg[z,y] N le = {we} must consist of exactly one point. Let v be a curve
connecting x and y which is not the curve suggested in the statement of the
lemma. Then, if wy = 2z; and wy = 25, one of the subcurves [z, 23], 7[22, 21] or
7v[z1, ] has to differ from J,[x, 23], [22, 21] or J,[z1, y], respectively, and so vy cannot
be the geodesic. Then we may assume that either w; # 2z; or wy # 25. Hence,
if the subcurve [y, wq] is not the circular arc J,[y, w:], replacing it with J,[y, w]
gives a shorter curve, which shows that ~ is not a geodesic. The same argument
applies for £ and wy at the other end of ~.

Finally, assume that y[y,w;| = J,[y, w1] and [z, ws] = J,[z, ws]. Then con-
sider the subcurve vy[wy,ws]. First assume, that ~y[w;, ws] is above [wy, ws), i.e.
ylwy, we] C Cy, where C; = comp(S, \ L(wy, ws — w),22). But then 7 is not
differentiable at either w; or ws, and is thus not a geodesic by [Ma, Corollary 4.8].
Then assume that y[wy, ws] is partly below the line segment [w;,ws], say, that
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Ywi, wy], wy € [wy, wy), is contained in the lower component of S, \ L(wy, we—wy).
But then the curve J,[y, w1]U[wy, w,| Uy[w,, wo] U J,[we, x] is a shorter curve than
v by Lemma 3.7, and 7 is not a geodesic. Then we have proved that any curve
which is not the curve

Jolx, 20] U 21, 22) U J,[21, Y]

fails to be the quasihyperbolic geodesic connecting z and y. Now the existence of
the quasihyperbolic geodesic proves the statement. O

The proof for the case where x and y are on opposite sides of £, follows the
same idea as in the case |z1| < |z2|. For the case |z1| > |2z2| we need to prove some
lemmas first. In this case we only prove the existence of the construction, since
the formulas for the circular arcs involved get very complicated.

Lemma 4.4. Assume that z,y € S, C R? are such that y is in the upper compo-
nent of Sy, \ £y, x is in the lower component, and |y| < |z|. Let z; and zy be such

that C(y) Q,, €, and c(x) O,, £, and assume that |z;| > |z|. Then there erists
a unique point z € [z1, 2] C €, such that the arc

Jp. [, 21U Jp, [2, 9]
is differentiable at z, where py and p, stand for the hyperbolic metrics in the
halfplanes defined by the lines L(0,e1) and L(0, e*®), respectively.
PROOF: Let C, be the family of circles C' such that

C:={C : z€C, C LL0,e)},
and

C, = {C cyeC, C L L(O,e“’i)}.
For each C' € C, there is a unique circle C € C, and a point p(C, 6’) such that
C Qp(c,é) C'. Now, clearly for the circle ¢(x) € C, defined in Lemma 4.1, we must

have arg p(c(z), c(z)) < ¢/2. On the other hand we can choose C € C, such that
for the corresponding C € C, we have C = C(y). In this case arg p(C, C(y)) > ¢/2.

Now each C' € C, corresponds to a unique radius r = rad(C), and letting
a =rad(c(z)), b =rad(c), where c is such that ¢ = C(y), we can define a function
F: la, b] = [0, ¢] by

r — argp(C, C).

This function is continuous and strictly increasing, and thus, by the Intermediate
Value Theorem and monotonicity F(R) = ¢/2 for a unique R € [a,b]. Then the

point z is the point p(C, C) corresponding to the circle C' € C, with radius R. O

Corollary 4.5. With assumptions as in Lemma 4.4, the arc
Jpw [.’L‘, Z] U pr [Zﬂ y]
is the quasihyperbolic geodesic Jyg [z, y].
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ProOF: The quasihyperbolic geodesic Ji[z,y| always exists, and, in this case,
clearly intersects the bisector ¢, at exactly one point. By Lemma 4.4 there exists
a unique point 2’ € £, such that the curve J,,[z,2'] U J, [#,y] is differentiable.
Now, let w € £, be the point where a candidate v € I', for the geodesic Ji[z,y]
intersects the bisector £,. We see then that we must have

7‘&;/2 = Jk[x:w] = me [x,w] and ’Y|Sq,\§ = Jk[yaw] = pr[y,w]

©/2
in order for v to be the geodesic, otherwise we can easily construct a k-shorter
curve replacing this part by the quasihyperbolic geodesic. But then, by Lemma
4.4, if w # 2, the curve J, [z, 2] U J,, [2,y] is not differentiable at w, and thus not
a geodesic by [Ma, Corollary 4.8]. However, since a geodesic exists, we are left
with the only possibility

Jk[ll?,y] = me[xaz] U pr[zay]'
U

Then the discussion preceding Lemma 4.3 together with Lemmas 4.3, 4.4 and
Corollary 4.5 prove the statement of Theorem 1.3. More precisely, we get the
following.

Theorem 4.6. Let ¢ € (0,7, and z,y € S, be such that |y| < |z|. Let ¢, be
the bisector, and E = S,/5, F = S, \ §w/2 be the lower and upper components of
So \ £y, respectively. Let zy and zy be as in (4.2). Denote k = ks, pg for the
hyperbolic metric in H? and pr for the hyperbolic metric in H = {(r,0) € R

¢ —7m <0< }. Then the geodesics Ji|x,y| are the following curves.

Case 1: z,y € {,. Then Jiy|z,y| = [z,y].

Case 2: |z| = |y|. Then Ji[z,y] is a circular arc on the circle S'(0, |x]).

Case 3: z,y € E and |z1| > |z3|. Then Jy[z,y] = J,, [z, y].

Cased: z € E, y € EUF and |z| < |z|. Then Ji[z,y] = J,,[z, 22] U [22, 21] U
Jp, [y, 21], where py = pg if y € E and py == pp ify € F.

Case 5: z € E, y € F and |z1| > |22|. Then Ji[z,y| = J,,[x, 2] U J,.[2,y], where
z 18 the point given by Lemma 4.4.

Remark 4.7. Note that in the cases where the geodesic intersects the bisector at
only one point, i.e. the cases represented in Lemma 4.4, the two circular arcs
building up the geodesic have a certain geometry which is drawn in Figure 2.
Either, as in the upper right picture, the centers c¢; and c, are located on the
boundary rays, r; and 79, and the circles are tangential to each other at the point
where the line through c¢; and c; intersects f,. The other possibility, as in the
upper left picture, is that one center is on a boundary ray, and the other on the
extension of the other boundary ray. Again, the circles are tangential at the point
where the line through ¢; and c, intersects £,. Here the circle with center on the
extension becomes a line when [c1,¢o] || 2. In the case |z| = |y| in the lower left
picture the two circles are reduced to the one and the same origin-centered circle.

In the case where the angle is large, i.e. ¢ € (7, 27), the situation is somewhat
different. However, the method of finding the geodesic curves is essentially the
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same which we used in the case of small angles. We note that the “helplines”
r1 = ray(0, e2) and ro = ray(0,e(*~3)) define a partition of the domain S, such
that in the parts where points have small or large arguments, dg, (2) is the distance
to one of the boundary rays, but in the middle part ds,(z) = [z|. Then, using
the same methods as in the case of small angles and properties of the logarithmic
spiral (see Lemma 4.11), one can show that there exists a unique differentiable
curve 7 connecting two points z,y € S, which is a circular arc orthogonal to the
boundary lines on the sides, and a logarithmic spiral in the middle part.

Lemma 4.8. Let 7 < ¢ < 2w, and denote By = S;) and Ey = S, \ Sy_r/2.
Furthermore, let 1 = ray (0, e5) and o = ray(0,e%~2)) and assume that v € E;
and y € Fy. Then there exist points z; € r1 and zy € ro such that the curve

JPl [',Ea Zl] U Jk[zla 22] U JPZ[ZQ: y]a

is differentiable at z; and zo. Here p; = puz, ps = pm, where H = {(r,0) € R?
p—7m <0<} andk = kge.

PROOF: Define circle families
C.={C |z eCand C L L0,ep)}

and
C,={C|yeCand C L L(0,e")}.

Assume that |z| < |y| (The case |z| = |y| is obvious). Denote by C, and C, the
members of the above circle families, which also satisfy C, L r; and Cy L 79,
respectively, and further denote w; = C, Nri, we = Cy N rye. Then clearly
lwy| < |ws|, and thus Cp N Cy = (. For any circle C € C,, let C denote the larger
angle of intersection C' N Ty, and smnlarly for C' € Cy let C denote the smaller
angle at C' N ry. Obviously C’ = C’ . Now, for any w > 7 there exists circles
C) € C; and (5 € Cy such that 01 = 02 = w. Denote the points of intersection
CiNry and Cy N1y by wy and ws, and the logarithmic spirals through w, and s
with radial angle w by Y,,1 and 7y,,2. Then the curve CiU~g1UC, = C1Uvy2UC,
where 01 = Cy = f3, and S is the angle such that 7,1 N7y, # 0, is the uniquely
determlned curve of the above form. The angle 5 can be shown to exist using

continuity and the Intermediate Value Theorem in the same way as in Lemma
4.4. (Il

Lemma 4.9. Let 1 < ¢ < 2w, and let Ey, E, be as in Lemma 4.8. Let E. =
Sy \ (E1 U Ey), and assume that x € Ey and y € E.. Then there exists a point
z € r1 such that the curve

Jpl [37, Z] U Jk[z, y]

1s differentiable at z.
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PrOOF: Let C, be a family of curves as in Lemma 4.8. For each C' € C, there
is a unique logarithmic spiral ¢ in E, such that C' U~ is differentiable. Also, it
is easy to see that

Ut I Ccec) ok

and that each point of E, lies on exactly one curve ¢ in this family. O

In fact the curves given by Lemmas 4.8 and 4.9 are quasihyperbolic geodesics
in S,. This is proved by following the methods used in Lemma 4.3 and Corollary
4.5, and the proofs will be omitted here. Summarizing the results on geodesics for
large angles we get Theorem 1.4. More precisely, we have the following.

Theorem 4.10. Let m1 < ¢ < 27, and let By = Szjp, E» = S, \ Se—n/2 and
E. = S,\ (ELUE,). Also, let 1, = ray(0,eq) and ro = ray(0,e® 3)). Then,
denoting p, = puz, p2 = pu, where H ={(r,0) e R* : o —w <0 < ¢}, k=kg,
and k. = kg2, the quasihyperbolic geodesics of S, are the following curves;
Case 1: z,y € ry or x,y € ro. Then Ji[z,y] = [z,y].
Case 2: z,y € Ey. Then Jylz,y] = J,, [z, y].
Case 3: x,y € E.. Then Ji[x,y] = Ji, [z, y].
Case 4: © € Ey and y € E.. Then Jy[z,y| = J, [z, 2] U Ji,[2,y], where z is as in
Lemma 4.9.
Case 5: z € Ey andy € Ey. Then Ji[z,y] = J,, [z, 21]UJk, [21, 22] U I, [22, y], where
z1 and z9 are as in Lemma 4.8.

We conclude this section with a discussion on the proof of Theorem 1.5. Again,
the actual proofs for that the proposed curves are geodesic segments follow from
the known cases B™ and R” \ {0}, which were studied by Martin and Osgood
in [MaOs]. The idea is then the same as previously, that is, we use S*(3) as a
“helpline”, and apply the methods used for the angular domain S,.

For z,y € R" \ {0}, it clearly suffices to consider the 2-dimensional plane %
determined by the points 0, z,y, because of the domain symmetry. In this case
there is even a formula for the quasihyperbolic distance. In the sequel we denote

Ry = R"\ {0}.

Lemma 4.11. ([MaOs, Ch.2]) Let z,y € R?, and ¢ = x/,\(),y > 0, and denote by ¥
the 2-dimensional plane determined by the triple 0, x,y. Then the quasihyperbolic
geodesic in R? is the logarithmic spiral in X with polar equation

@) =] exp (L1052),
o |zl

and the quasihyperbolic distance is given by the formula

Y|

kro(2,y) = ([ 0? + log” =

x|
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The geodesics of B™ can also be determined by reducing to the planar case.
We have the following result.

Lemma 4.12. ([MaOs, Ch.2]) Let 7 be the quasihyperbolic geodesic in B™ perpen-
dicular to the eo-axis, which intersects the es-axis at the point aes, a > 0. Then
the equation of the geodesic in polar form is

T o_ ' t* 2,2) /2
e—g_k/a <(1_t)2—tk> dt,
where k = a/(1 — a). O

Then we get the following refinement of the statement in Theorem 1.5.

Theorem 4.13. Let x,y € B? be such that x = te; and |y| = s. Then, denoting

k = kg the geodesics Ji|x,y| are the following curves;

Case 1: s <1/2 and t <1/2. Then Ji[z,y] is the logarithmic spiral Jgn|x,y].

Case 2: s < 1/2 and t > 1/2. Then Ji[z,y] is the curve v = Jraly, 2] U Jan[2, Y],
where z € S"1(1/2) is the unique point giving a differentiable curve .

Case 3: s >1/2, t >1/2 and

f < arccos(lzt) —i—arccos(l;S) —V2t—1—-+/25—1,

where 0 1s the angle m Then Ji|x,y] coincides with the quasihyperbolic
geodesic in B", see Lemma 4.12.
Case 4: s >1/2, t >1/2 and

1-1¢

)—i—arccos(l;S)—\/Qt—l—\/Qs—l.

6 > arccos (

Then Ji[z,y] is a curve Jygp [z, 21] U C(21, 22) U Jyn [22,y], where 21 and 2z
are tangent points with the circle S""'(1/2) as given by Lemma 5.33, and
C(z1,22) C S™ Y(1/2) is the circular arc connecting z, and z.

g

5. UNIFORMITY CONSTANT ESTIMATES

It seems natural to expect that the less complicated the boundary of the domain
is, the easier the uniformity constant is to establish. In the one-point case G =
R? = R" \ {0} things are made even simpler by the fact that we have the explicit
formula in Lemma 4.11 for the quasihyperbolic distance.

Some upper bounds for the uniformity constant Ar. have been proved pre-
viously. The estimate Agn < \/1+ (7/log2)? ~ 4.6414 was suggested by M.
Vuorinen in [Vu2, 3.13], who has later shown to the author that it is possible to
reach the refined estimate Ag» < /1 + (7/log3)? &~ 3.0294 by using an argument
based on I'Héspital’s monotone rule (cf. [AnVaVu, Theorem 1.25]). We now want
to establish the improvement stated in Theorem 1.6.
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As seen previously, it is essentially enough to solve the problem for R? \ {0}.
Moreover, since for any point z € R
Jre(z,—2) =log3 and kgn(z,—z) =,

it is immediate that the constant 7/log3 is attained, so what we in fact need to
do is to prove the inequality (2.5) of the uniformity definition with this constant.
To do this we will in fact solve the problem of the maximal ratio between k£ and
J, by proving that the pair of points z and —x represents the extremal case.

Lemma 5.1. The inequalities

(5.2) (1+2z)logl+z)—2z > 0, x>0,

(5.3) (x—1)2 = zlog’z > 0, >0,

(5.4) r—1-log’z > 0, > 1,

hold for the intervals indicated. Il
PRrROOF: In [AnVaVu, 1.58(3)] it is shown that for z > 1 we have

(5.5) T <1ng<a:—1

Then (5.2) follows directly from the left inequality in (5.5), and (5.4) follows from
the right inequality, since for z > 1 we have (r — 1)/y/z < /z — 1. Finally, (5.3)
follows for x > 1 from the right inequality in (5.5) by squaring. If x < 1, the
opposite inequality holds, i.e. we have that logz > (z — 1)/y/z. Here, however,
both sides are negative, so (5.3) follows again by squaring. O

PROOF OF THEOREM 1.6: Assume that z,y € R? \ {0}, are such that 0§ =
m € (0,7/4]. Using similarity invariance of jg2 and kg2, and symmetricity of
metrics, without loss of generality we may assume that z = e; and that y = te®,
where ¢t > 1. From the definition of the metric jrz, we obtain

VI]zE =2z -y + W)
||

jiee (2,y) = log (1 +

Also, |z|2 + |y|? — 2|z||y| cos ¢ = |z — y|?, and thus

z]? + y|* — |z — y|2)_
2|z|[y]

@ = arc cos (

Using Lemma 4.11, we see that if A is as in the definition (2.5) of a uniform
domain, then A must in fact satisfy the inequality

2 2 2
(5.6) arccos2(|$| Rl il ] ) +10g2m
2|xlly| |y
2_9¢. 2
< £ log (1+ Vlz| |;c‘ y + 1yl )

Then, considering the right half-plane
H={(rw) eR : -T<w< T}
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we see directly by monotonicity that kgz(z,y) < kg (z,y). Also, denoting d(z) =
dist(z, L(0, e2)) we get by Bernoulli’s inequality (2.15)

| 2 —y| [z — |
Jrz(2,y) > og( + ly] ) og( + d(y)/cosﬁ)

cosf |z — vyl |z — yl
og( + ) )_cos@ og( + ) )
1

> EJH({E’:U);

in case d(y) < d(x). On the other hand, if d(y) > d(z), then obviously jg:(z,y) >
ju(z,y). We now estimate

k
.Rg(ﬂf,y) < Qk.H(J?,y) SQ\/§< 7T .
Jr2(7,Y) ju(z,y) log 3

After this we consider points for which 7/4 < 6 < 37/8. Then we can apply the
same trick as above, only using the halfplane

H={(rf)eR : -2 << ir
instead. Namely, for all such points d(y) > d(z), and as above we have that

Finally, we are left with the case + = e; and y = te?, where ¢ > 1 and
37/8 < 6 < m. The goal is now to find the maximum of the expression

2\&HW%%W> 2 |z
arc cos —_— 10 —
( 2l]ly] +log™

10g2 (1 n \/|w|2*2x-y+|y\2>

(5.7)
El
By the choice of the points z and y we see that
2 —y|* =1+t — 2tcosh.
Then the expression (5.7) can be written as a function of ¢ and 6;
62 + log®t
log?(1 + v/1+ 2 — 2t cosf)’

and we have reduced the problem to maximizing the function F' for ¢ > 1 and
3n/8 <6 <.

(5.8) FO,1) =

Denoting w(f) = /1 + 2 — 2tcosf, and differentiating with respect to 6, we
obtain

or _ 2|0log(1+w(®) [1 +w(0)] w(®) - (log*t + 6)tsin0)
9 log®(1 + w(6)) [1 + w(8)] w(h)

To determine the sign of this derivative, it now suffices to examine the sign of the
numerator. However, because 2 cosz + xsinz is decreasing in [37/8, 7|, we have
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by (5.2) and (5.3) that

0log(1 +w(0)) [1 +w(h)] w(8) — (log*t + 6?)tsin b
0 w(0)® —tlog®t — 6%tsinf

= 0+0t>—20tcosf —tlog’t — #*tsinf

= 0+0t> —t0(2cosf + Osinh) — tlog’t

1+t2—t(\/2—\/§+ %\/24‘\/5)

3
> g(l—i—tZ—Zt) ~tlog?t > (1 — 1) — tlog?t > 0.

Y4

0 — tlog’t

Then the function F' is increasing with respect to #. The maximum is consequently
obtained when € = 7. Inserting this in (5.8) yields a function of ¢,

7%+ log?t
ft) = ———=+
log”(t + 2)
Next we show that this function has a maximum at ¢ = 1. First, let
24+ (t—1
w’ <t<6
log“(t + 2)
@) = , :
5
%, 6 <t<oo
log” 8

which by construction is continuous. Also, it is clear that f(1) = f*(1).

By differentiation one shows that f* is strictly decreasing for 1 < ¢ < 6. By
definition f* is constant for ¢ > 6. Since by (5.4) log®t < t — 1, it is obvious that
f(t) < f*(t) for all 1 < ¢ < 6. It remains to show that f(¢) < f*(¢) also for ¢ > 6.
This follows, since

7 +log’t 2 N log®t
log?(t + 2) log?(t+2)  log’(t+2)
2 2
< T i 1~328<3d4n 10

log?8 "
Then f(t) < f*(t) for all ¢ > 1. Furthermore, equality holds only at the point

t = 1, where f* attains its maximum value. This means that also f attains its
maximum value in the point ¢ = 1, and that this value is

<107;3>2'

This number is then the maximum of the function F(6,t), and attained at (m,1).
U

log? 8

The next domain we consider is the angular domain S, in the case where
¢ € (0,7]. Some of the results are true also in higher dimensions, where we will
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use the notation
C, = {z€eR" | z-e, =|z|cosp}

for the n-dimensional ¢-cone. In this case of course £, = £, := {te, | t > 0}. This
definition is perhaps the most convenient in the case n > 3; note however, that as
sets S, # CZ, but rotating S, counterclockwise by an angle "5 gives the set C7.
We start by proving some inequalities for the metrics involved in certain special
cases. The following lemma gives a lower bound for the uniformity constant, using
only points at the bisector. Namely, since in the case z,y € £,, the k-geodesic
Ji|z,y] is trivially the line segment [z,y], we get the following.

Lemma 5.9. For the domain C, ¢ € (0,7],n > 2 and for all points z,y € £,

1 .
kC’g (:I:a y) S sin %]Cg (‘,L'a y)
Furthermore, if z; = te,, t > 1, then
kcg (en, 2t) 1

lim =
. . (p -
=00 Jon (en,2) sin¥

In the case ¢ € (m,2m), we have that kcn (z,y) = jen (z,y) for all z,y € L,.

PrROOF: We prove the case n = 2, since by symmetry the proof is essentially
2-dimensional. By similarity invariance, we may replace CZ by S,, and assume
that |y| > |z| = 1. Then we see that

|dt| |dt|
(5.10) ks, (z,y) = / lat] _ _ldt]
§ ) AE)  Jpy [t sin &

Y] dt 1
= = 1 .
/1 t sin ¥ sin £ og |y|
Since d(z) < 1, we get
. lyl -1 ly| -1
js, (z,y) = log (1+ i) ) 210g(1+ ] ) = log |y|,

and the first statement follows. Actually,

js, (2, 2z) = log (1—|— = 1),

sin £
and thus
i ks, (2, 2) B 1 I logt 1
tggoj (2,2)  sin% 15300 t—1) sing’
Se \%y <t 2 log (1 + Sin—g) 2
2

In the case ¢ € (m,27), let H be the halfplane with respect to the boundary line
L(0,e"77%), we see that

yl—1 .
‘ ‘1 ) :]S¢(x’y)'

ks,(x,y) = pu(z,y) = log|y| = log (1 +
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As ¢ — m~ we see that the expression 1/ sin £ approaches 1. However, the case
¢ = 7 represents the halfplane, for which the best constant is known to be 2. In
fact the number 2 is attained for every angle. Namely, let B be an arbitrary ball
such that B O £, and B L L(0,e,). For points within B N S,,, the situation is
then reduced to the half-plane hyperbolic metric. Now, choosing the two points
at the boundary dB NS, on opposite sides of B, and letting them approach the
boundary line L(0, e, ), gives the extremal case of H?. Since the same construction
is obviously possible in C';, from this and Lemma 5.9 we obtain a lower bound

1
(5.11) Agy > max {2, @}
for the domain C7, ¢ € (0,7], n > 2.

For points having the same distance to the origin, or points having the same
argument, we derive the next lemma.

Lemma 5.12. Let z,y € S,,.
i) Let arg(z) = arg(y) = 0, ¢ € (0,27), and denote § = min{f, ¢ — 0, 7}
Then
ks, (:9) < = js, (2,1).
sin 0
i) If |z| = |y|, and ¢ € (0, 7], then

kS(p(l‘7y) <2 j5¢($ay)'
PrROOF: i) Without loss of generality we may, by symmetry, assume that
6 < ¢/2. Now
Ssp={(r,w) eR’ : 0<w<20} C{(rw)eR’ : 0<w<p}=_5,.

Then by the monotonicity property of k& we have that ks, (z,y) < kg, (z,y), but
clearly js,(7,y) = js, (®,y). Since x and y are contained in the bisector of the
domain Syy, we see that

|dt|

ks (@) < k@) < [

[z.y]
and then the same calculations as in the proof of Lemma 5.9 show that

ks, (@) _ ks, (z,y) _ 1
Js, (z,y) ~ Js,(x,y) ~ sind

The case 0 = % only occurs for angles ¢ > 7, and the proof is then clear, following
Lemma 5.9. In fact kg, (2,y) < js,(2,y) holds with equality.

ii) The case where z and y are on the same side of ¢, follows by the result for
the halfplane. Thus we assume that arg(z) < ¢/2 < arg(y), that |z| = |y| = 1
and that arg(z) < ¢ — arg(y). Letting B, = B(z,d(z)) and B, = B(y,d(z)),
and defining z to be the intersection point £, N {(wy,w2) € S, | w1 = 21}, it is
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easy to see that the ball B = B(z,d(z)) C S, contains both B, and By, and that
B QO B,. Thus j B(2,y) = js,(z,y), and furthermore by monotonicity

ks, (z,y) < kg(z,y)  kp(z,y)

. S - = - <2
]S¢(xay) ]S¢("L'ay) ]B(xay)

g

For points with equal radial distance to the origin, the case ¢ € (m,27) is
somewhat different, and will be discussed further later in this section.

We continue by deriving a universal lower bound for the k- and j-distances in
a special case where the points  and y are separated by an “inscribed ball” in the
angle domain, that is, we improve Lemma 3.3 for the case S,.

Lemma 5.13. Let B C S, C R? be a ball tangent to dS, and centered at some
point of L,. If x,y € S, are in different components of S, \ B, the j-distance and
the k-distance are bounded from below by the constant log 3.

ProOF: By Remark 2.6(3) it suffices to prove the statement for the j-metric.
By stretching we can assume that B = B(z,1), where z = (cot §,1). We may also
assume that |y| > |z|. Furthermore, we may assume that the points are on the
same side of the bisector, namely if not, denote the reflection point of z in £, by z*.
Then d(z) = d(z*) and |z —y| > |z* —y|, and consequently js, (z,y) > js, (z*, y)-

Now, assume z and y are below the bisector, and denote I, = L(z,e;), [, =
L(y,e1). Let z; be the intersection point 0B NI, closest to x. Similarly, let y; be
the intersection point 0B N[, closest to y, however, if either 0B N1, C S, \ @
or BN, =0, let y; be the point of B N ¢, farther away from the origin. Then
|z —y| > |z1 — 1], but min{d(z),d(y)} = min{d(z1),d(y:)}. Thus js, (2,y) >
Js,(1,91), and we have reduced the situation to the case where both points are
on 0B.

Next, denote 6, = arg(z), 0, = arg(y), and assume 0, > 6,. If d(z) > d(y),
and we denote the intersection point of 0B and the e;-axis by w, we can reflect
the points z and y in the line segment [z, w]. Then we get points z*, y* for which
d(z*) < d(y*) and js,(2,y) = js,(2*,y*). Thus we may as well assume that
d(z) < d(y). In this case, clearly |z — y| > 2d(x), and since d(z) < d(y), we have
that

. T —
js,(z,y) = log (1 + |d(x)y|) > log 3.

Finally we have the case where 6, < 6,. Then it is immediate that d(z) < d(y),
and that |z —y| > 2d(z). As above we see that jg, (z,y) > log3. This covers all
the different cases. 4

In the following we summarize some useful results on how the quasihyperbolic
metric in S, changes when points are moved in certain ways. This also demon-
strates the typical use of Lemma 3.7 in estimations.
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Lemma 5.14. As before, let S, C R? be the angular domain, let £, denote the

bisector, and let S1 = Sy/2 and Sy = S, \ Sy)2 be the upper and lower components.
Then the following hold:

i) If x,y € S,, and 2',y' are the orthogonal projections on £, respectively,
then ks, (z,y) > ks, (z',y').

ii) Let x,y € S, be such that |y| < |z|, and let z € £,. Also, let B =
B(z,|z—y|) and assume that Ji[y, 2] B = {y}. Let z' and y' be the points
on £, obtained by rotating x and y about z towards £,. Then ks, (z,y) >
ksw (.’l?l,yl).

iii) Let z,y € Sy (or z,y € S3) be such that |y| < |z| and dist(y,0S,) <
dist(z,0S,). Also, let y' be the point of ¢, obtained by rotating about x.
Then ks, (z,y) > ks, (z,y").

iv) Let z,y € Si (or z,y € S3) be such that |y| < |z| and dist(y, 0S,)
dist(z,0S,). Lety' be the point of £, such that |y| = |y'|. Then ks, (z,y)
kS(p (xvyl)'

PROOF: i) Let v : [0,1] — S, be the geodesic segment Ji[z,y], and let « :
[0,1] = S, be the geodesic segment Ji[z',y'| = [2',y']. Let {t;} be an arbitrary
length sequence. Form another length sequence {s;} by setting s; = a~!(p;), where
p; is the orthogonal projection of the point y(¢;) onto £,. Then it is clear that the
conditions of Lemma 3.7 hold, and the claim follows.

ii) As in case i), only choose the points p; by rotating in z-centered circles.

iii) As in case i), choose the points p; by rotating in z-centered circles.

iv) As in case i), choose the points p; by rotating in circles centered at the origin.
U

<
>

The results of Corollary 5.14 are easily seen to hold for the j-metric also. For
the j-metric, however, we can also derive the following.

Lemma 5.15. Let z,y € S,, and assume that r = |y| < |z| = 1. Let y' be such
that arg(y') = arg(y) and |y'| = 1. Then

Jso (') < A(r,0) js, (z,y) <2 js, (z,),

A \/ 2 —2cosf
1+72—2rcosf’
and 0 = p—arg(z)—arg(y) is the angle m In particular, if arg(z) = p—arg(y),
then js,(z,y') < js,(z,y).

PROOF: First assume that d(z) < d(y). Then |z — 4| = /2 —2cosf and
|z —y| = +v/1+ 72— 2rcosf and d(z) is the minimum distance to the boundary in
both cases. By Bernoulli’s inequality (2.14), we get j(z,y') < A j(z,y).

Then assume that d(z) > d(y) and d(z) < d(y'). In this case |z —y| and |z —y|
are as above, but min{d(x),d(y")} = d(z) and min{d(x),d(y)} = d(y). But then
we get

where
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S j(@,y)-
and d(z) > d(y'), we have that min{d(z),d(y")} = d(y)
). Now, by similar triangles, d(y)/d(y’) = r, so that

|z =y d(y )
and the first inequality follows. It is easy to show that A < 2 using elementary

calculus. Also, one can show that rA < 1, which proves the last claim, since if
arg(z) = ¢ — arg(y), we have that d(z) = d(y') > d(y). O

and again we get j(z, ')
Finally, if d(z) > d(y)
and min{d(z),d(y)} = d(y

In the previous lemmas we have considered several special cases of the uni-
formity inequality (2.5), where z and y are chosen in some specific way. In the
general case the uniformity of the domain S, actually follows from the well known
fact that S, is a quasidisk (For the sharp result see [GeHa, 4.1]), and also quite
easily from the original uniformity definition by Martio and Sarvas. Here however,
we are mostly interested in versions of the uniformity inequality (2.5), as in the
following lemma. The constant obtained here is not optimal, but on the other
hand it is valid also for the higher dimensional cone Cg.

Lemma 5.16. Let ¢ € (0,7|. Then, for all z,y € Cy andn > 2,

2 )je. (2. 1),

2

1
ko, (@,y) < <4 * sin

PROOF: Let z,y € C7 be arbitrary, and choose points z',y" at the middle axis

L, = {tz, | t > 0} such that [z,2'] L ¢, L [y,v']. By the triangle inequality we
have that

ko, (z,y) < ke, (x,2") + ke, (2',9') + ke, (v, y)-
Let y* be the point such that x — 2’ = ¢ - (y* — /') for some ¢ > 0, and |y’ — y*| =
|y — y|. In other words, z,y*, z’ and /' lie in the same 2-dimensional plane ¥. By
symmetry ke, (y,y') = kcp (y*,vy'). Hence

ke, (z,y) < ko, (,2') + ke, (&, y') + ke, (v, y7).
By Lemma 5.9, for the middle term we get an estimate
2] o
'~
We now show that jc, (2,9') < jc,(7,y). This is true exactly when

ke, (a',y') < log —

1 . ! !
S ngja,,(fv,y)-

le—yl o |-y
min{d(z), d(y)} ~ min{d(z),d(y")}"
Obviously min{d(z), d(y)} < min{d(z'), d(y")}, and it is also clear that |z’ — 3| <
|z — y|. Thus

1

sin

(517) kc¢(‘rlayl) < ijC¢ (5E y)

2
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After this we concentrate on the remaining terms, i.e. we want to show that
there are constants c;, ¢, > 1 such that
ke, (2,2") < ¢ jo,(z,y") and ke, (y,y) < ¢y o, (T, ¥7)-

For this we may, without loss of generality, assume that d(z) < d(y) = d(y*), and
also that both

y* & B(z, |z — ') N C,,

z ¢ By, Iy —y)NCy
hold. Namely, if this would not hold, the geodesic J¢, [x,y*] would be a hyperbolic
H2-geodesic which lies within component of (X N C,) \ £,, and we would have
ke, (7,y) < 2js, (z,y).

Now, by the choice of the points 2’ and 3 it is obvious that there exists a
hyperbolic geodesic connecting = and 2’ within a component of (XN C,) \ £,, and
similarly for y* and y'. Thus we see that

(5.18) ks, (z,2") < 2jg,(x,2") and ks, (y,y") < 255, (y,9)-

Finally, it is easy to show that
(519) quJ (.T,.T,) S jSL,; (ﬂ'),y*) and j5¢ (yvy,) S j5¢ (xay*)

Then, using (5.17),(5.18),(5.19) and the obvious inequality k¢, (z,y*) < k¢, (2, %),
we get an upper bound for the uniformity constant;

1 .
ka(‘T’y) < (4+ Sin%) .70¢($ay)‘

g

Next we will improve Lemma 5.16 in the case n = 2 by determining the points
r,y € S, which give the maximal value of the ratio kg, /js,

Definition 5.20. Let G C R". A curve |y| C G with a representing path
v:[0,1] — G is said to be convez, if for all t,s € [0,1], ¢ < s we have that

7, 8) N (v(2),7(s))

is either (y(t),v(s)) or empty. Here (a,b) denotes the open segment [a, b] \ {a, b}.
A curve which is not convex is called nonconvez.

Lemma 5.21. Let ¢ € (0, 7] and let z,y € S, be such that x and y are in different
components of S, \ £y, d(x) = d(y) and the quasihyperbolic geodesic Ji[z,y] is a
convex curve which intersects £, at exactly one point. Then

kSW (.’L‘, y)

LA AN )
Js. (@, y)
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PROOF: Assume that y € S,» and z = 7y in S, \ S,/2 are such that d(y) =
d(zg) =t. Let y* € S, \ S,/2 be the point such that d(y) = d(y*) and |y| = |y*],
and let yo be such that d(y) = d(yo) and J[y, yo] L 0S,. In the picture below the
requirement that Ji[xg,y] is convex means that x4 € [y*, yo]- Now we see that the
situation can be studied as a function of the angle 6 = . +/el,\yc, z9, where zy is
the intersection point of the domain bisector ¢, and Ji[y, zg]. Clearly 8 € (¢/2, ¢),
and as g — Yo, the angle 6 increases. We now want to show that 6 — k(xg,y) is
increasing.

Figure 3. The case of convex geodesics.

Now we see that

k(zo,y) = k(wg,29) + k(29,9) =

9 dw =0 du
— - —+ - ,
0 Sin W 0o Sin w

where also #; and 5 can be regarded as functions of the angle . More specifically,

since p p
) =ginf; and 7(/20)
‘y_yc| |z0_yc|

= sin 0y,
we have that
6,(0) = arcsin(g(f)sinf) and 6y = arcsin(g(#) sin(p — 0))

where g(f) = d(y)/d(zp) is an increasing function of §. Now we may assume d(y)
to be constant, and since we are restricting to the convex case we see that g is
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bounded, i.e. there exists a number a € (0,1) such that
a<g(t) <1
Then

0 —0
dw ® dw
arcsin(a sin 6) S W arcsin(a sin(¢p—49)) S w

We now show that this expression obtains its maximum for 6 = ¢, for every
constant a. We see that

d /9 dw /M dw
= — =)
do arcsin(a sin §) SH1 W arcsin(a sin(p—g)) S W

1 1 cot cot(p —0)
sinf  sin(p—0) /T _asin?0 +/1—asin’(p—0)
This is > 0 if
1 cot 6 1 cot(p — 6)
sinf /1 gsin20  sin(p—0) /1—asi’(p—6)

But this is true, since § > ¢ — @, and the function

1 cotx
T — —

sinz (/1 — gsin’z
can be shown to be increasing for all @ € (0,1). Also, in the convex case it is clear
that j(z9,y) > j(z,,y), and thus the case § = ¢ gives the maximal situation.
Finally, we want to show that in the maximal situation where x4 is such that
[zg, 2z9] L OS, we have that

o

(z,9)

(z,9)
In this special case the ratio can be calculated explicitly, so actually we want to
show that

<2

<

k(z,y) 108 (%(singotan%cot(% arcsint))) oy
J <

,y) log (14 4/ —1+1—cot¥)

~—~

Using the equality cot(% arcsinz) = , we see that it suffices to prove the

inequality
(5.22) 2sin? £(1+v1—2) < (1+V1 =2 +t(1 - cot £))

for values t € (0, sin ¢].
Let

Flot) = (1+ VI =8 + (1 — cot £))” — 2sin® £(1 + V1 — £2).

In the case § < ¢ < 7, we see from the inequality

at +bv1 — 2 > min{a,b}, te€(0,1), a,be€ (0,00)
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([AnVaVu, 1.58(18)]), that

fle,t)
= (1+V1-8)(1—-2sin>2)+ (1+V1—2)(V1— 2 +2t(1 — cot £))
+ t*(1 — cot £)?

> (1+v1—12)(1—2sin® £+ min{1,2(1 — cot £)}) + t*(1 — cot £)> > 0.
In the case 0 < ¢ < 7 it is easy to show the inequality

(5.23) 14+ V11— +¢(1—cot£) > sin’

NS

to hold for all ¢ € (0,sin ¢] by studying partial derivatives. Then

of t 1—1¢2

L —9
ot V1—1t2

((1+ﬂ+t(1—cot§))(—1+ (1—cot§))+sin2§),

and using (5.23), one finds that % < 0. Thus f is decreasing with respect to ¢,
and keeping ¢ constant, the smallest value of ¢ is found at the boundary ¢ = sin ¢.
But then we see that for every ¢ € (0, 7] we have

flo,t) > f(p,sing) = —4+1200s2§ —8cos4% > 0.

g

Lemma 5.24. Let ¢ € (0, 7] and let z,y € S, be such that z and y are in different
components of S, \ £y, d(x) = d(y) and the quasihyperbolic geodesic Ji[x,y| is a
nonconvez curve which intersects £, at exactly one point. Then

kSW (.T, y)

: < 9.
Js,(x,y)

PRrROOF: The idea is to reduce to the convex case and use the previous theorem.
Assume that y € S/, and that z in S,,\'S,,/» are such that d(y) = d(z) = ¢, and the
geodesic Jy[z, y] is nonconvex. Let z be the intersection point of £, and Ji[z, y], as
in the picture below, and let [ be the line such that [ Q, Ji[z,y]. We now denote
the point 1 N 1(0,e¥") by z;.
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Figure 4. Reducing the nonconvex case to the convex case.

Now let 25 € 1(0, e1) be the point such that 2,71, 7 is the same size as the angle
between [ and (0, %), and denote Iy = (21,72 — x1). Denote by J* the mirror
image of Jz, z] in the line /. Letting [, be the bisector of the angle z, xﬁ—i— e1,
we see that actually [ and [, are exterior angles of the triangle A(0,z1,x2) at x;
and x5, whereas £, is the interior angle of A(0, z1, z2) at 0. Therefore the bisectors
meet in a common point, which means that z € [,. Also, since y is below the line
[, we see that z* € B(y, |x — y|), and thus |z — y| > |z* — y|. Then, letting S be
the domain between ray(xs, e;) and ray(zs, 1 — x2), we have that

ks, (@,y) ks, (2,2) * ks, (2,y) _ ks(z",2) + ks(z,y) _ ks(z",y)

Js,(@,y) js, (,) a js, (z,y) = Js, (z%,y)’
where kg(z*,y) is obtained along the convex geodesic J* U J|z, y] with respect to
the domain S. But as we proved in Lemma 5.21, fsi(g z;})) <2. O

Lemma 5.25. Let ¢ € (0,7] and let ©,y € S,. Then, either there exists points
z',y' €S, such that d(z') = d(y'), v’ € £, and

kS(p(xvy) < ksw(xlayl)
jS¢(xay) - jS(p("El’yI)’

or otherwise
k&p ('7;’ y)

i <9
Js, (@, y)



34

HENRI LINDEN

ProOF: Without loss of generality, assume that z,y € S, are such that |y| <
lz| = 1. Also, let Cy and C5 be the components of the domain S, \ ¢, that is
Cy = Syj2 and Cy = S, \ Sy,/2. Now we may split up the problem into different

cases:

Case 1.

Case 2.

Case 3.

Case 4.

Case 5.

z,y € Cy and d(z) < d(y). Let [ be the line such that I || L(0,e#"), 1 O
B(y,d(z)) and y € comp(S, \ [,z) =: E. By monotonicity

kS<p (.T, y) S kE(‘ra y)
Using a translation mapping we find points 2’ and ¥y’ such that kg(x,y) =
ks,(z',y'). Also, it is clear that js, (v,y) = js,(2',9), so the situation
reduces to Case 5.
z,y € C, and d(z) > d(y). Let [ be the line such that [ || L(0, %), 1 O

B(y,d(y)) and y € comp(S, \!,z). Again, by using a translation we obtain
points T and g such that

k&p ('7;7 y) < kS(p ('%7 g)

ngp (‘/I’I’ y) N ]S(p (‘/i’ g)
Denote by Cy the circle S'(7,t), let v be the geodesic Jg, [7, Z], and 7' be
the geodesic Jg,[7,2'], where 2’ is the point such that d(z') = d(7) and
|y — Z| = |g — «'|. Tt is clear that the small tangent circles ¢(z) and c(z’')
(as given by Lemma 4.1) are such that rad(c(Z)) > rad(c(z')), and for the
intersection points {Z} = ¢, N¢(z) and {z'} = £, N ¢(z’) we have that
|2'| < |Z|. Clearly, every circle C; intersects both v and 7' at exactly one
point for ¢ € [0, |x — y|]. By geometry we see that for ¢ > s we have

dist(c(s) Ny, e(t) Ny) < dist(c(s) N9, e(t) N,

and that

d(c(s) Ny) = d(c(s) NY)
for all s. Then the conditions of Lemma 3.7 are fulfilled for every length
sequence, and since y and 7' were geodesics, we see that kg (7,7) <
ks,(«',7). On the other hand it is again clear that js, (7,7) = js, (2, 7).
v €Cy, y€ Cy, dx) # d(y) and ¢ < 37/4. First assume d(z) < d(y).
Use a line [ parallel to L(0, e¥) such that | O B(y,d(z)), and repeat the
procedure in Case 1. This reduces the case to Case 5. The case d(z) > d(y)
is handled symmetrically by using a line parallel to L(0, e;) instead.
v € Cy, y€ Oy d(z) # d(y) and ¢ > 3w/4. If possible, use the same
procedure as in Case 3, when the situation is reduced to Case 5. However,
if no line [ exists, use a line /; parallel to L(0, e#?) such that { O B(z, d(x))
instead. Then the situation is reduced to the situation in Case 2.
v € Cy, y € Oy, and that d(z) = d(y). First we consider the case where
the geodesic 7 = Jig, [x,y] intersects £, in more than one point, like in the
picture in the lower right corner of Figure 2. Let C(y) be the big tangent
circle of y, and denote by 3y’ the reflection of y in the line £,. Then C(y’)
is the reflection of C(y) in ¢,, and clearly k(z,y) = k(z,y'). Also, for
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every angle ¢ € (0,7) it is easy to see that |z — y| > |z’ — y|, and thus
j(x,y) > j(2',y). Then this situation is reduced to Case 2 above.

Finally, if the geodesic 7 = Jig [z, y] intersects £, in only one point, by
Lemmas 5.21 and 5.24 we immediately obtain

k.:S(p (.’L‘, y) S 9.
Js. (@, y)

Finally, since all cases reduce to either Case 2, which corresponds to the first
statement of the lemma, or Case 5, which corresponds to the second statement of
the lemma, we are done. Il

Now we are ready for proving the main result for angular domains.

Figure 5. The geodesic of the extremal case.

PRrROOF OF THEOREM 1.7: By Lemma 5.25 it suffices to consider pairs of points
z,y such that d(z) = d(y) and y € £,, such as in Figure 5. Assume, without loss
of generality, that rad(c(z)) = 1. Denote the point ¢, N ¢(z) by 2. Letting w
be the center of ¢(z), denote the angle z, w,w+ ey by 0. Letting zy € c(x) and
ys € £, be the points such that d(zg) = d(yp) = sinf, we want to study the ratio
k(xg,ys)/j(xg,ys) as a function of §. Then, by elementary geometry, Lemma 5.9
and the formula (2.9), we obtain

1 cos £

k&, (‘r)y) . Sing ]'Og sin @ + log COt (%) + IOgCOtg

j&; (',Ea y)

ol iy 2T
lOg (1 + sin 8 )

For convenience, denote z = xy, y = ys. We first show that

ksp(xay) < 1

: < —— 41
js,(w,y) ~— sin§

Clearly we may restrict to angles 6 € (0, 57), as otherwise the geodesic segment
Ji[z,y] is contained in a component of S, \ £,, and the ratiois <2 < 1/sin £ +1.
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For these angles, however

1 sin @ 1
. — > — —cot2 e (0,1
sin? tan¥ ~ sin ¥ 5 € (0.1,

and for 0 € (0, 7) we have that sinf + cos # > 1. Hence

) 1 sin 6
cos £ <1<sinf+cosf+—5 — —,
sin?  tan ¥

and thus o
cos £ cosf + silif ~ tan®

1 ( 2) <1 (1 2 2 ) = j(z, ).

o8 sinf/ — g\t sin 6 i(@,y)

Also, one can show that the inequality

1 in 6
(5.26) ﬂcos%,/l—l—sin%ﬁsin&—i—cos@-ﬁ- - _ o

[ [
sin 3 tan 5

holds. The proof is lengthy but elementary; define a function f by subtracting the
right-hand side of the inequality from the left-hand side. Studying the subcase
¢ € [2,n], 6 € (0,%] one shows that the partial derivative dpf < 0, and thus
no stationary points exist. Then, studying the boundary, the inequality follows.
In the subcase ¢ € (0, 2{], 0 € (0, 5?] a similar approach works, only here it is
easier to show that 0, f > 0.

Using trigonometric formulas, (5.26) is seen to imply the inequality

cos £ 1 sin @ \ 2
2 T—p 9 .
; t (=) cots < (s 0 + cos 0 + — - ) ,
smOCO ( 4 )CO e +sm§ tan £
and thus
cos 3 - .
log " + log cot (T52) +logcot § <2 j(x,y).
in
Then
P »
ks my) (= 1) loa g +1og 2% +logeot (5) + logcot §
js¢($’ y) B sz(xiy)
(g —1)is. o) + 25, 0y) 4
< = . =—+1L
JS, (z,y) sin &

Now, it is easy to compute the limit as # — 0, when one in fact sees that

k , 1
lim S (o, Yo) _

; = - + 1.
-0 jg (Tg,ys) sin ¥

But this proves that

1
Ag =
¢ sm%

cannot be replaced by a smaller constant, and that the extremal case occurs for
points z and y when x — 0 and y — 2 € 85, z # 0. O



QUASIHYPERBOLIC GEODESICS AND UNIFORMITY IN ELEMENTARY DOMAINS 37

As we have seen, in the case of the angular domain S, it was easy to obtain
the uniformity constant after we had found out which case represents the maximal
case. However, in a situation where the maximal case is already known, or if one
just wants an estimate for some special symmetric pair of points, the technique
presented next might be easier to use, as it doesn’t require the geometric machinery
used in the previous proofs. On the other hand, the results are not sharp, although
they seem to be good approximations (see Figure 6).

The idea is to pull back the quasihyperbolic metric to the known case of the
halfplane, and to use integral inequalities. In the case of the domain S, we can use
a modification by H. Brunn of the classical Chebyshev inequality (see e.g. [MiPeFi,
IX.13]). Namely, the result by Brunn gives us a Chebyshev type inequality in the
case where one of the functions is symmetric with respect to the midpoint of its
definition interval, and the other one is concave.

Lemma 5.27 (Brunn). Let f: (a,b) — R and g: (a,b) — R be continuous and

integrable functions defined on an interval (a,b). Let fn, = f f(z) dx and let x,,
be a point determined by the condition f(xn,) = fm. Then, if sgn(f(:v) — fm) =

—sgn(g(x) — g(zn)) the inequality

[ 1@ < f 0 @ [ @

holds. In particular, the result is valid if the function g is concave, and f is
symmetric with respect to the midpoint of the interval, “T“’, and decreasing in

a, GTH’] O
Theorem 5.28. Let G C R? be a domain such that there exists a conformal
mapping f: H> — G for which

!

IEIE

£ (2)]
for some constant ¢ and all z € H%. Let v = J,[f (), f ' (y)], and let 6; =
arg f(z), 0y = arg f'(y). Assume that dist(f(2),0G) = |f(2)|8(0,) for some

continuous and positive function [ : [61,0s] — R, where 8, = argz. Also assume
that the function sin 8/5(0) is concave, and that for all z € ~y the function |dz|/zy is

even with respect to the midpoint of the interval [0, 605] and decreasing in [0y, W].
Then the estimate
. . %2 sin @
(5.29) ka(z,y) <cpm(f (), f (W) £ —5 df
o B(0)

holds. Here zy denotes the second coordinate of z.

PROOF: Denote o(z) = dist(z,0G) !, and let v: A — H? be a path repre-
senting the hyperbolic geodesic J,[f~!(z), f~*(y)]. Then (see e.g. [Vil, 5.6]) we

have that
o(z)ldz| = [ o(f(z "(2)||dz].
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Now, by our assumptions

[f'Rlldz] — _ 1f'(2)lldz| _ |2l|f'(2)] |dz] sinf,
dist(f(2),0fG) f(2)B(62)  [f(2)] 2 B(6:)
< . M sinHz‘
o zZ2 B(oz)

Because of the assumed properties of the function |dz|/zs, it can be written as
a function of the argument #,. Then by concavity of sin(6,)/5(6,) and Theorem
5.27 it follows that

Lf'(2)]|dz] |dz| sin6, % |dz| sin#,
A%~ | TR g,

%2 |dz| %2 sing
c — db, £ de,
/01 22 o, B(0,)

%2 sin
~ el @ f S

IN

de,.

Corollary 5.30. The uniformity constant As, satisfies

2¢ /2 sing . D,(1)
< —
As, < 2 (/0 sin £6 d9> (15% U,(t))’

1 t \"% t
o(t) = arcosh (g) "+ (g
o(l) = arcos [2 sin( arcsin ¢) ( sin £ " sin £

U,(t) =log (1 —cot £ 4+ 1V1 — tZ).

where

AE]

)

and

PROOF: Let ¢ € (0,7] and let f: H> — S, be the conformal mapping z
2#/™. Then
/()]
£ (2)|
for every z € H?. Also, since arg(f(z)) = £arg(z), we have dist(f(z),9S,) =
| f(2)|sin(£ arg z), so we may choose 3: [0, ¢/2] — R, (f) = sin £6. Furthermore,
the function

¢
m

sin 6

sin £
is concave for § > 0. Following Lemma 5.25 we choose the points z;,y, € S, by
setting, in complex polar notation,

7y = ¥t
— t £3
Y= (singi)62 ’
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where 0, = argz = arcsint. Then the corresponding points in H? are

f ) = e W
) = (@)gegi

Now, ast — 0, arg f~'(z;) — 0 and arg f~'(y;) — 5. Then the points f~'(z;) and
f(y;) themselves approach e; and 0, respectively. Clearly |dz|/zo = df/ sin f cos 6
is even with respect to [0, 7], and decreasing in [0, ], so by Lemma 5.25 and Corol-
lary 5.28 we have that

/2 PLging
sz(fl(:ct),fl(yt»][ =% g
A 1 k5¢ (:U,y) . arcsin t sSin ;0
s, = Jjm ————= < lim 7
o Js, (@,y) T 0 o(t)
< 2o [Pt o 20
- 7% )y sinZ =0 W, (t) |
0
20
18+
16+
14+
12+
10+
8,
6F €
ar @)
2,
OO 055 i 155 é 255 é 315

Figure 6. Comparison of the estimate given by Lemma
5.30 (1), and the function 1/sin £ 41 (2).

We conclude this chapter with a discussion on the large angles, i.e. the cases
¢ € (m,2m). The main difficulties here are that first of all we would need a
counterpart for Lemma 5.25, which we do not have. Second, though the geodesics
can be determined, the explicit calculation of the distances is hard, quite like Case
5 in Theorem 1.3.
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For large angles ¢ € (m, 27) it seems difficult to obtain explicit expressions for
the geodesic segments, even if they can be constructed. Because of this we also
fail to get sharp results for the uniformity constant. However, the number 2 is of
course attained for every angle, and gives a lower bound. One is also tempted to
conjecture that the function ¢ +— Ag, is strictly increasing in [, 27). Namely, the
limiting domain R" \ [0, 00) is not even uniform. Also, it is possible to calculate
some explicit lower bounds for the uniformity constants, apart from the obvious
bound 2, using specific points with obvious quasihyperbolic geodesics. Natural
candidates are provided by the symmetric situations (ry,6;) = (1,0), (re,602) =
(1, — 0). Letting § — 0 we see that this limit does not depend on the angle ¢,
but is also 2. Numerically one can compute the angle 6 that gives the maximal
ratio kg, /js, for each angle ¢, but a formula for this angle as a function of ¢
seems to be hard to derive. A good estimate is obtained by 6 = 2”; ’
a lower bound in terms of the function

, which gives

2logtan ¥ + ¢ —7
log (1 — 2cos £)

Next we employ a result of Gehring and Hag to prove an upper bound.

PROOF OF THEOREM 1.8: The left-hand inequality follows from the discussion
above. For the right-hand inequality, denote S = S, and S* =R?*\ S,. In [GeHa,
Lemma 5.1] it is shown that the mapping f: S* — S

f(?"ew) — _refiL(go)G

is a reflection in the boundary 95, and also a bilipschitz mapping in the hyperbolic
metric. Here L = L(p) = max{(27 — ¢)/¢, /(27 — ¢)} (Note that in [GeHa|
the domain S, is symmetrically defined about the positive e;-axis). We first show
that js«(z,y) < L js(f(z), f(y)). Let x = (r4,6,) and y = (ry,6,) be points
in S*. Since f preserves distances to the origin, we may denote f(z) = (r,,6.,)
and f(y) = (ry,0,). Also, we assume that d(z) < d(y), and then also d(f(z)) <
d(f(y)). We want to show that

\/7“3 + 12 = 21,1y cos |0y — Oz 0
<L

(5.31) 2,
\/7”925 + 72 — 2r,ry cos |6!, — 67| sin 0,

Since angles with vertex at the origin grow in the mapping f, we have that |6 —

.| > |6, — 6], and thus the ratio of the square roots is < 1. Also, we have
0, <6, =L0,, and so

sin 0, < sin(L#,) < Lsinf,,
which proves (5.31), and the inequality

follows from Bernoulli’s inequality (2.14).
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Now denote the hyperbolic metric in an arbitrary domain G C R? by hg. From
the Koebe distortion theorem

1 2
Y dist(2,06) = "¢ = Gz a6y

where pg(z) is the metric density of the hyperbolic metric in G, we immediately
obtain

1
5 kG(I,y) S hG(.T,y) S 2 ]‘L'G(l',y)

From this inequality, together with the fact that f is a hyperbolic bilipschitz
mapping, the formula (5.32), and Theorem 1.7, we obtain

bs(wy) _ hs(ny) _ o hs (), 1)
Jjs(z,y) —  gs(z,y) — Js(z,y)
b (F@), 1) o ks () f@) o
S AT W) =Y e, fy) S

This completes the theorem. Il

We now turn to studying the punctured ball B? = B™ \ {0}, the geodesics of
which were determined in section 4. Unfortunately the formula for the geodesics
given by Lemma 4.12 is rather involved, but the case where the geodesic is tangent
to the ball B (%) is quite easy to compute, and the other cases can be handled using
easier estimates.

The natural lower bound is of course given by the constant w/log3, since
choosing = = e1/a, y = —e;/a for a > 2 gives exactly the maximal constant from
the case RT. It is also clear that if both points x and y are located within the ball
B"(3), the situation is reduced to the case R?. We then need to discuss only the
remaining cases, i.e. the case when both points x and y are outside S”‘l(%), and
the case when one is outside and the other is not. For this purpose we need the
following lemma.

Lemma 5.33. For each point z € B?\ B2(%) there is a unique quasihyperbolic
geodesic ¥ = Jy,[2,2] and a point z € S'(3) such that v Q, SY(3) and the
geodesic line v containing v satisfies ' L S'. The angle ¢ = m s given by
the expression

1—
(5.34) (© = arc cos ( | ||£d> —/2|z| - 1.
T

PROOF: Following [MaOs, p.41] and the formula for the geodesic in Lemma
4.12 we see that solving the integral for a = 1/2 gives for the geodesic the equation

1—
-2 = arccos( |x||$|) —V2z| =1,
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with that the statement concerning the angle is clear. The fact that v L S is
seen by computing the derivative of the geodesic equation

1-—r
r2r —1

Clearly 0'(r) — 0 as r — 1. O

0'(r) =

PROOF OF THEOREM 1.9: First of all we conclude that it is enough to consider
the case n = 2 since for every z,y we may restrict to (B™\ {0}) N X, where ¥ is
the 2-dimensional plane determined by 0,z and y.

Assume first that [z| < 7 < |y|. Applying a suitable rotation we may naturally
assume that y = te; for some ¢ € [1,1). Without loss of generality we may also
assume that the point z lies in the upper halfplane. Denote also s = |z| and
let w = m The idea is to estimate the geodesic by the logarithmic spiral

€1

connecting z with ¢ and the geodesic Ji[%,y]. Denoting z = &, and letting H

be the halfplane on the left side of the line L(e, e5), we obtain
kp2(z,2) + kp2(2,y)

kR,% (l‘a Z) + kH(Za y)

kRE (:I:a Z) + pH(Z, y)

kB,% ($, y) S
<

Then we may, using Lemma 4.11 and (2.11) define a function ®(w, s, s') by the
formula

klR% (.’E, 2) + pH(Z: y)
jB,% (ﬂf, y)

Vw? 4 log® 25 + log —

5.35 = 2
( ) log (1 n \/52+(t+%)2—23(t+%) cosw)

min{s,—s'}

O(w,s,s') =

where s and s’ take values in [0,1/2). The extremal situation for this subcase is
then obtained by maximizing the function ®. Differentiating, one can show that
g—f > 0 in all inner points of

{0<w<m 0<s<3, 0<s <3}

From this follows that & is strictly increasing with respect to w, and that no
stationary points exist. Hence we let w = m, and study the boundary of the
domain {0 < s < 1, 0 < &' < 1}. Setting s’ = 0 we see that the maximum of the
remaining one-variable function is attained at s = %, and is 7/log3. Similarly,
setting s = 5 the maximum is also 7/ log3, attained at s’ = 0. Finally, for s’ — %
it is easy to see that ®(r,-,s') — 1, and also ®(m,s,-) — 0 as s — 0. Hence we
conclude that
™

P:sup{@\0§w§7r,0<s§1/2,0§s'<1/2}:@.
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Next, assume that 7 < |y| < |z|. Then it is clear that the k-geodesic Ji[z,y] is
contained in the annulus B\ B2(3). From Lemma 5.33 we get unique points '’
and y' on Sl( ) and geodesms Jign [x '] and Jig. [y,y'] tangential to S*(3). Also,

the angles 70,1 ,0,2 and y ,O, y are given by the expression (5.34). Then we see that
kg2(2',y") = kr2(2',y) = w — arccos (11) + V2t — 1 — arccos (£52) +v/2s — 1.
It is also easy to derive formulas for kg~ (z,z") and kg~ (y,y’), them being
’ z
5.36 / dz,
( ) 1/2 (1—2)\/22—1

where r =t and r = s, respectively.

Hence, we see that defining a function ¥(w,t, s) by
kg2(z, ") + kre (2',y') + kB2 (y, V')
jB2 (SC, y)

it is enough to maximize ¥. However, this function is symmetric with respect to
variables ¢ and s, so the stationary points can be found studying

dz + % —arccos (1) + /2t — )
\II(w t, t) f1/2 1- z)\/T ( )

1
2 log (1 2tlsmt2 )

U(w,t,s) =

Y

V(w,t) =

Note that studying ¥’ we may restrict to angles
w € (2(arccos (%) + V2t — 1),7?],

since otherwise the quasihyperbolic geodesic Ji[z,y] is contained in B?\ B?(3). As
for the function @, differentiation shows that W’ is strictly increasing with respect
to w in the above interval, and hence no stationary points exist.

Setting w = m, and studying the two-variable function ¥(~,t,s), as in the

previous case, shows that the maximum is attained at t = %, § = % Hence,
i
Q = sup{V¥ | 0§w§w,1/2§t<1,1/2§s<1}:m,
0g

and it is clear that

™
Ap < {P , } - T
Bz = max @ log 3 log 3
Thus
PR 7T —
BY 7 log3 R

g

We conclude with a discussion on planar polygonal domains, for which some
upper bounds for the uniformity constant can be obtained as corollaries of the
results on S,. The question of the geodesics is here more delicate, and as they
have not been determined our results lack the sharpness of the ones considered in
the earlier sections.
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Lemma 5.37. Let A C R? be a triangle with vertices v,,vg and v., where o, 3
and vy are the corresponding angles. Also assume that o, 3,7y € (0,7/2]. Then for
any two points x and y on the triangle

|z — y| > sinf max{|z — vg|, |y — vl},
where 0 € {a, 8,7} is the angle between the two sides containing x and y.

PROOF: By symmetry, assume that z and y are such that « is the angle
between them, so that the situation corresponds to the figure below.

X
a
a b : Va
Figure 7.
First assume that y € [b, v,], where b is the point such that |z — v,| = |b— vy].
Then clearly
|z —y| _lrmyl S lemd G,
max{|z — va|, |y — va|} [T —va| T |7 — val
Now assume that y is left of the point b. We get
|z —y] _ lz—yl
max{|z — va|, |y — val} |y — val’
and the minimum of this ratio is attained for y = a. Thus
z—yl _ lz—a] _ .
> = sina.
Yy — Val [
The claim follows. O

Theorem 5.38. For every triangle A with angles o < § < v we have that
/"v'A(-’E, y) < =

for every x,y € A.

PrROOF: Let A be a triangle, with vertices a, b, c and angles a < g < 7, re-
spectively, in clockwise direction. Let ¢,,fg and £, be the bisectors of the angles,
correspondingly, and z be the point of intersection of the bisectors. The bisectors
define a partition {D;};=1 ¢ of the triangle A. Denote with D; the domain touch-
ing a on the right of ¢, as seen from the vertex a, and the others correspondingly
by D, ..., Dg in clockwise direction.
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Let =,y € A be arbitrary, and assume that x € D;. Now, if y € D; U D,
one easily sees that either Ag  is an upper bound for the uniformity constant,
since the S,-geodesic is within the domain Dy U D,. If y € Dg, there is a unique
circular arc C' L [a,¢] such that C O £, and C O ¢£,. First, if either the S,-
geodesic or the S,-geodesic is included in D; U Ds, we are done. If not, then
z € C; = comp(A(a,c,2) \ C,a) and y € Cy = comp(A(a,c, z) \ C,c), and we see,
since the angle @, z,¢ > m/2, that the extremal case is represented by the case in
the picture.

Figure 8.

Then we see that

|z —y| > Zmax{|z - 2, |y — 2[}.

Thus
ka(z,y) ka(z,2)  ka(z,y) _ V3 ka(z,2)  ka(z,y)
e S haen) T S 2 Gawd) T ialen))
V3 (ks (w,2) ks, (zy)\ _ 2
< S Getn Tinty) S vglist4s)
< Colsv(Asa-l‘Asg);

where we used the fact that Ag, is decreasing as a function of 6, and that the
largest angle v must be > 7/3.

Finally, if y € D, where n = 3,4 or 5, at least one of the triangles in the
partition is between the points z and y. It is easy to see that the smallest of the
angles at z is 57, and thus by Lemma 5.37, we see that

|z —y| > cos 3 max{|r — 2|, [y — 2|}
Then, a similar calculation as in the case of Dy gives the desired result. O
In the case of a regular n-gon we can use the fact that this figure is close a

disk, especially when n is large. We get the following estimate estimate for the
uniformity constant.
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Theorem 5.39. For the reqular n-gon P,
2

cost L’
n

+1< Ap <

cos T
n

PROOF: Let P, be a regular n-gon with vertices {v, vs, ..., v,}, and without
loss of generality assume that P, is origin centered and that |v;| = 1 for all ¢ =
1,...,n. For every z € dP,, denote by 2’ the unique point in ray(0,z) N S*.
Let F': P, — B? be the radial mapping which linearly stretches each segment
[0, z] onto the segment [0, 2’']. This mapping can easily be extended to a mapping
f: R? — R2?, by defining f to be a radial translation outside P,, i.e. for z €
ray(0,z) N (R? \ B?) we define f(z) = z + |z — 2’| - 2. Then the mapping f is
obviously bilipschitz, and letting ¢ be the midpoint of say the segment [vq, vg], it
is clear that the bilipschitz constant is obtained by

G

lc|]  cosZ’

Then, the upper bound follows from Lemma 3.2 and Remark 2.6 ii). The lower
bound follows from Theorem 1.7, since the maximal situation for the domain
Sr(n—2)/n 1s attained by letting x — v; and y — c. O

Remark 5.40. Note that for the equilateral triangle P; Theorem 5.39 only gives
the upper bound Ap, < 32, whereas Theorem 5.38 gives Ap, < 4+/3. However,
as n grows and P, approaches to a circle, the estimates in Theorem 5.39 improve,
and as expected it is easy to see that Ap, — 2 as n — oc.

For the rectangle, the approach of pulling back to the halfplane which we
used in the case of the angular domain, is also possible. Here we use an elliptic
integral, which provides a conformal mapping from the halfplane to a rectangle.
In this way the quasihyperbolic distance can be estimated from above. Again the
problem is that we do not know which points give the maximal ratio. However,
we can develop an estimate for points approaching two corners of the longer side,
a situation which probably is maximal in case the ratio of the rectangle sides is
small, i.e. the rectangle is close to a square. The hyperbolic metric of a rectangle
has recently been studied by A. Beardon in [Be2].

We want to examine the quasihyperbolic metric of the rectangle [0, a] x [0, b],
where a,b > 0. Denote for the complete elliptic integral

X

/2 dt
= Jc(’]") = / —,
0o \/1—r2sin’t
and for the complementary argument v/1 — r2, let

K = K'(r) =KW1 —r2).
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Since K: (0,1) — (7/2, 00) is a strictly increasing homeomorphism, and X': (0,1) —
(/2,00) is a strictly decreasing homeomorphism, there is a uniquely determined
number 7 € (0, 1) such that

2X(r) a

K'(r) b
Then it suffices to examine the rectangles R = [-X(r), X(r)] x [0, X' (r)].

The incomplete elliptic integral is defined for any complex number z by the

formula
# dt
Flz,r) = .
(z7) /0 V1 =121 = r22

It is a conformal mapping H?2 — R, which has Jacobi’s elliptic sine function
sn: R — H? as its inverse function. More on the mapping properties of the
incomplete elliptic integral can be found in e.g. [KoSt, 4.2].

Theorem 5.41. Let f: H? — R be the mapping defined by z — F(z,7), and let
z,y € H? be the points x = ¥, y = "9 where ¢ € (0,%). Then

kr(f(z), fy)) < max8(t,r) T(t,r) pan(z,y)

te[0,7]
< v2 (@)
= VT=r2 m(5(,r)) Y

where
sint
42 = .
(5.42) 8(t,7) sin(arg F(e', r))
and
(5.43) T(t, ) = !

‘gf(eit’ r) V1= e2ity/1 — r262it| '

PROOF: We follow the technique used in Corollary 5.28. Let o(z) = dist(z,0R) .
By [Vil, 5.6] we see that for all paths v: A — H? we have that

/J;m o(z)|dz| = Aa(f(z))\f (2)||dz|.

Let a: [0,7] — H? be the arc defined by ¢ — €. Then
|'(2)]dz] [f'(2)lldz|  _ [dz] |[f'(2)]|2] _sin(arg 2)

dist(f(2),0R) — |f(2)|sin(arg f(2)) ~ 2 [f(2)| sin(arg f(2))’
where 2z, = dist(z, dH?). Note that on o we have |z| = 1. Also, |f'(z)|/|f(2)| can
be expressed as a function of the argument § = arg z by setting
1

|3.'(ei0’ r) \/1 _ em\/l _ 7-262i6| )

T0,r) =
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Similarly sin(@)/ sin(arg f(z)) is a function of the argument by
. sin 0
 sin(arg Fet, 1))’

8(0,r)

Then, letting v € I'y(z)5() We get

En(f(@), f(3) = in / o(2)|dz] < /

7y f(a)

The product J(8,7) §(0,r) is bounded, so using Hoélder’s (1, 0o)-inequality we
obtain

o(z)|dz| = / % T(0,7) S(0,r) db.

kr(f(z), fly)) < /07T M max T(0,7) 8(0,r) = puz(z,y) max T(0,r) 8(4,r).

29  0€[0,7] 0€l0,m]
Now, one can show that
8(A,r) < 8(6,0) < 2 Vsin.
Also,
1F(,7)| = Im(F(3,7)) and [v/1— €20 = /2 sin,

and furthermore
V1 —r2e?0| > ‘ V1 —r2e20| =+/1—r2
6=0

Combining these yields the ¢-independent estimate in the statement of the theo-
rem. U

From Theorem 5.41 we see that to get an upper bound for the ratio k/j at the
corner points, we need to find a constant C' such that

PH2 (xa y)
7 @), fw) =<

However, this inequality seems to be nontrivial to prove. By the definition of jz
and (2.9) it holds true with C' = 4 if

logcot £ < 2log (1 + cot (arg F(e”, 7"))),
that is, if
cot £ < (1 + cot (argﬂ’(eit,r)))Q.
This, in turn, seems to hold for values r < 1/2, but as r grows the constant C

must be chosen larger. In fact it seems that C' — oo as r — 1.

It should be noted, that the estimate given by Theorem 5.41 is merely an
upper estimate for some special points, and does not qualify as a lower bound for
the uniformity constant, since we do not know whether the number is attained.
However, if one can prove that the situation is maximal, for instance for small
ratios a/b, then the theorem gives an upper bound.
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For rectangles with large ratio a/b the situation is somewhat different. Let
a>1,b=1andlet z,y € [0,a] x [0,b] be the points z = (3,3), y = (a — 3,3).
Then it is clear that the k-geodesic is the straight line segment [z, y], and we have

kr(z,y)  2a—2
jr(z,y)  log(2a — 1)
Clearly this grows without bound as a — oo. Then we see that the function
4K (r) — 2K'(r)
K'(r) log <4x7§(£) - 1)
is actually a lower bound for the uniformity constant of a rectangle with parameter

r€[3—-2v2,1).

It is actually also possible to obtain an upper bound for the uniformity constant,
using a bilipschitz mapping as in Theorem 5.39. The proof will be omitted, as the
technique is exactly the same as in the proof for polygons. However, the upper
bound in the following theorem gets large quite quickly, and probably is far from
optimal.

Theorem 5.44. Let R be the rectangle [0,a] x [0,1], where a > 1. Then, the
uniformity constant satisfies

2a — 2
" < AR <2(1+a%>2.
log(2a —1) = %= ( )
]
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