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1. Introduction

Different concepts of dimension and their geometry is an active area of interest
in geometric measure theory. One line of research is to study the behaviour of these
different dimensions, of both measures and sets, under orthogonal projections, plane
sections and general intersections. This work continues the study of dimensions of
intersection measures, in particular their local dimensions. Our results on local
dimensions lead to new results on Hausdorff and packing dimensions of intersection
measures. We also consider the case where intersection measures are defined using
general linear maps or continuously differentiable functions instead of previously
studied cases of isometries and similarities.

The lower and upper local dimensions of a Radon measure µ on Rn at point
x ∈ Rn, denoted by dimlocµ(x) and dimlocµ(x) respectively, are defined as the lower
and upper limits of the quantity log µ(B(x, h))/ log h as h goes to 0. Here B(x, r)
is a closed ball with centre at x and with radius r. The local dimensions of µ are
related to the Hausdorff and packing dimensions of µ via

dimH µ = µ- ess inf
x∈Rn

dimlocµ(x)

and

dimp µ = µ- ess inf
x∈Rn

dimlocµ(x),

and, if the essential infimum is replaced by the essential supremum, then we get the
upper Hausdorff and packing dimensions of µ, denoted by dim*

H and dim*
p respec-

tively. It turns out that local dimensions behave like their global counterparts when
considering dimensions of slices and intersections.

The relation between dimension of a Borel set A in Rn and dimension of its
intersections with affine planes, called slices of A, is well known for both Hausdorff
and packing dimensions. First Marstrand [21] proved in the plane and later Mattila
[22] generalized to Rn the following result. Let m and n be integers and let m ≤ s ≤
n. Denote by Hs the s-dimensional Hausdorff measure and by γn,n−m the natural
measure on the space of (n−m)-dimensional linear subspaces of Rn. If A ⊂ Rn is a
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Borel set with 0 < Hs(A) <∞, then we have for γn,n−m-almost all (n−m)-planes V
that

Hm({a ∈ V ⊥ : dimH(A ∩ Va) = s−m}) > 0.(1.1)

Here V ⊥ is the orthogonal complement of V and Va is the affine (n−m)-plane which
is parallel to V and goes through a.

The behaviour of packing dimension is more irregular than that of Hausdorff
dimension when considering slices of sets, and as we see later, the same phenomenon
happens with slices of measures and with general intersections. In other words,
equation (1.1) does not hold for packing dimension, as was shown by Falconer,
Järvenpää and Mattila [5], see also Csörnyei [2]. However, Järvenpää, Järvenpää and
Llorente obtained in [15] a sufficient condition for the stability of packing dimensions
of slices of sets, that is, under this condition it holds that for γn,n−m-almost all
(n−m) -planes V

Hm- ess sup
a∈V ⊥

dimp(A ∩ Va) = d−m.

Here d is a constant independent of the plane V , and it may be strictly less than
dimpA.

Slices of a Radon measure µ on Rn by affine (n −m)-planes Vx through a point
x ∈ Rn, denoted by µV,x, were introduced by Mattila in [23]. For the definition,
see Section 2.1. These measures, which are supported on sptµ∩ Vx, were originally
used to study capacities of slices of sets. Here sptµ is the support of µ. Dimensional
properties of sliced measures are also well known, see [7], [6], [19] and [15]. Järvenpää
and Mattila proved in [19] that if µ is a Radon measure on Rn with compact support,
then for γn,n−m-almost all (n−m)-planes V

Hm- ess inf{dimH µV,a : a ∈ V ⊥ with µV,a(Rn) > 0} = dimH µ−m(1.2)

provided that dimH µ > m, and

Hm- ess inf{dimp µV,a : a ∈ V ⊥ with µV,a(Rn) > 0} = µ- ess inf
x∈Rn

d
m

µ (x)−m(1.3)

provided that Im+ε(µ) <∞ for some ε > 0. Here Im+ε(µ) is the (m+ε)-energy of µ
and dmµ (x) is a modified local dimension which is obtained as a convolution of µ with
a certain kernel (see definition in Section 2.2.) They also got following relations for
upper Hausdorff and packing dimensions of sliced measures. For γn,n−m-almost all
(n−m)-planes V

Hm- ess sup
a∈V ⊥

dim*
H µV,a = dim*

H µ−m,(1.4)

provided that dimH µ > m, and

Hm- ess sup
a∈V ⊥

dim*
p µV,a = µ- ess sup

x∈Rn
d
m

µ (x)−m,(1.5)

provided that Im+ε(µ) <∞ for some ε > 0.
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Properties of local dimensions of sliced measures are similar to related global
dimensions. Local dimensions of sliced measures were first studied by Falconer and
O’Neil in [7]. Extending their result Järvenpää, Järvenpää and Llorente showed
in [15] that for γn,n−m-almost all (n−m)-planes V and for µ-almost all x ∈ Rn

dimlocµV,x(x) = dimlocµ(x)−m
if dimH µ > m, and

dimlocµV,x(x) = d
m

µ (x)−m

if Im+ε(µ) < ∞ for some ε > 0. Using the methods of the proof of Theorem
3.13 it is possible to show that the latter equality also holds under the assumption
dimH µ > m by approximating µ by measures with finite (m+ ε)-energy.

Another local concept of dimension is the average dimension dimA, which is de-
fined in a similar way as local dimensions, see Section 2.2. The average dimension
of a measure always lies between corresponding lower and upper local dimensions.
Llorente [20] showed that the average dimension of sliced measures behaves like the
lower local dimension. In other words, she proved that assuming dimH µ > m we
have for γn,n−m-almost all (n−m) -planes V and for µ-almost all x ∈ Rn

dimA µV,x(x) = dimA µ(x)−m.
Intersection measures µ ∩ f]ν, where µ and ν are Radon measures on Rn, f is a

mapping Rn → Rn and f]ν is the image of ν under f , can be considered as natural
measures on sptµ∩f(spt ν). They are defined by slicing the product measure µ×f]ν
by affine n-planes, which are parallel to the diagonal {(x, y) ∈ Rn×Rn : x = y}, see
definition in Section 2.1. Thus dimensional properties of these measures are closely
related to the dimensions of sliced measures.

Mattila introduced intersection measures in [24] in order to study dimensions of
intersections of two Borel sets in Rn. He considered the cases where f : R→Rn is
an isometry or a similarity map, i.e. a map for which there is r > 0 such that
|f(x) − f(y)| = r|x − y| for all x, y ∈ Rn. Every similarity map has a unique
decomposition as

f = τz ◦ g ◦ δr,

where τz : Rn → Rn, τz(x) = x+z, z ∈ Rn, g ∈ O(n) and δr : Rn → Rn, δr(x) = rx,
r > 0. Here O(n) is the orthogonal group of linear isometries Rn → Rn. Mattila
proved that if 0 < s < n, 0 < t < n, s + t > n and A and B are Borel sets in Rn

such that Hs(A) <∞ and Ht(B) <∞, then

dimH(A ∩ (τx ◦ g ◦ δr ◦ τ−y)(B)) ≥ s+ t− n(1.6)

for Hs×Ht× θn×L1-almost all (x, y, g, r) ∈ A×B×O(n)× (0,∞). Here θn is the
normalized Haar measure on O(n) and L1 is the 1-dimensional Lebesgue measure.

In [24] Mattila showed that the same result holds for isometries under the ad-
ditional assumption t > 1

2
(n + 1). However, it is not known if this assumption is

necessary. In general, the opposite inequality in (1.6) is false for both similarities
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and isometries. For any 0 < s ≤ n there are classes of sets in Rn with Hausdorff
dimension s, such that even their countable intersection has Hausdorff dimension
s, see Falconer [3]. However, Mattila proved that equality holds in (1.6) if we ad-
ditionally assume that the Hausdorff dimensions of A and B satisfy the equality
dimHA+ dimHB = dimH(A×B).

Hausdorff and packing dimensions of intersections measures in both isometry and
similarity cases have been studied by Järvenpää in [16], [17] and [18]. She showed
in [18] that if µ and ν are Radon measures on Rn with compact supports such that
dimH(µ × ν) = dimH µ + dimH ν > n and It(ν) < ∞ for all 0 < t < dimH ν < n,
then for θn × L1-almost all (g, r) ∈ O(n)× (0,∞)

Ln- ess inf{ dimH(µ ∩ (τz ◦ g ◦ δr)]ν) : z ∈ Rn with µ ∩ (τz ◦ g ◦ δr)]ν(Rn) > 0}
= dimH µ+ dimH ν − n.

(1.7)

Moreover, if we assume that Is(µ) < ∞ and It(ν) < ∞ for some 0 < s < n and
0 < t < n with s+ t > n, then for θn × L1-almost all (g, r) ∈ O(n)× (0,∞)

Ln- ess inf{ dimp(µ ∩ (τz ◦ g ◦ δr)]ν) : z ∈ Rn with µ ∩ (τz ◦ g ◦ δr)]ν(Rn) > 0}
= µ× ν- ess inf

(x,y)∈Rn×Rn
d
n

µ×ν(x, y)− n.

(1.8)

Here dnµ×ν(x, y) is as in (1.3). She also got similar relations for upper Hausdorff
and packing dimensions of intersection measures, and these results are analogous to
(1.4) and (1.5).

In the cases of the Hausdorff dimension and the upper Hausdorff dimension the
same results can be obtained for isometries using the same methods, provided that
dimH(µ×ν) = dimH µ+dimH ν > n and It(ν) <∞ for all (n+1)/2 < t < dimH ν <
n. For packing dimension the methods used to prove (1.8) cannot be applied in the
case of isometries, since an integration with respect to r is not involved. However,
the following lower bound for the packing dimensions of intersection measures is
obtained in [17]. Assuming Iα(µ) < ∞, Iβ(ν) < ∞, 0 < α < n, (n + 1)/2 ≤ β < n
and α + β > n, then we have for µ× ν × θn-almost all (x, y, g) ∈ Rn × Rn ×O(n)

dimp(µ ∩ (τx ◦ g ◦ τ−y)]ν) ≥
β dimp(α + β − n)
nα− (n− β) dimp µ

.

In Section 3 we will use our results concerning local dimensions of intersection
measures to improve equalities (1.7) and (1.8) in the case of similarities. We will
show that assuming only dimH(µ× ν) > n, we get instead of (1.7) that

Ln- ess inf{ dimH(µ ∩ (τz ◦ g ◦ δr)]ν) : z ∈ Rn with µ ∩ (τz ◦ g ◦ δr)]ν(Rn) > 0}
= dimH(µ× ν)− n

for θn×L1-almost all (g, r) ∈ O(n)×(0,∞). Moreover, the equality (1.8) holds. We
will also make similar improvements for the results on upper Hausdorff and upper
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packing dimensions of intersection measures. In other words, we will show that
assuming dimH(µ× ν) > n we have for θn × L1-almost all (g, r) ∈ O(n)× (0,∞)

Ln- ess sup
z∈Rn

dim*
H(µ ∩ (τz ◦ g ◦ δr)]ν) = dim*

H(µ× ν)− n

and

Ln- ess sup
z∈Rn

dim*
p(µ ∩ (τz ◦ g ◦ δr)]ν) = µ× ν- ess sup

(x,y)∈Rn×Rn
d
n

µ×ν(x, y)− n.

In this paper we study local dimensions of intersection measures for the first time
and it turns out that they behave just like the corresponding global dimensions. We
will prove in Section 3 the following result. Assuming dimH(µ× ν) > n we have for
θn × L1-almost all (g, r) ∈ O(n)× (0,∞) that

dimloc(µ ∩ (τx−g◦δr(y) ◦ g ◦ δr)]ν)(x) = dimloc(µ× ν)(x, y)− n = dnµ×ν(x, y)− n

and

dimloc(µ ∩ (τx−g◦δr(y) ◦ g ◦ δr)]ν)(x) = d
n

µ×ν(x, y)− n

for µ× ν-almost all (x, y) ∈ Rn × Rn.
When proving this we have to slice general Radon measures on Rn×Rn, not just

the ones which are products of two measures on Rn, and study their properties in
a similar way as in [24]. This is done in Section 3.1. This method cannot be used
in the case of isometries. Other ingredients needed for the proofs are methods from
[15], where local dimensions of sliced measures where studied, combined with those
from [18]. We also make use of results concerning Hausdorff and packing dimensions
of sliced measures from [19].

Average local dimensions of intersection measures were studied by Llorente in
[20]. She proved that if µ and ν are Radon measures on Rn with compact supports
such that Is(µ) < ∞ and It(ν) < ∞ for some 0 < s < n and 0 < t < n with
s+ t ≥ n, then for µ× ν × θn×L1-almost all (x, y, g, r) ∈ Rn×Rn×O(n)× (0,∞)

dimA µ(x) + dimlocν(y)− n ≤ dimA(µ ∩ (τx−g◦δr(y) ◦ g ◦ δr)]ν)(x)
≤ dimA µ(x) + dimlocν(y)− n.

She also proved the same result in the isometry case. We will show in Section 3.4
that the average dimension of intersection measures behaves like the lower local
dimension. That is, assuming dimH(µ× ν) > n we have for µ× ν × θn ×L1-almost
all (x, y, g, r) ∈ Rn × Rn ×O(n)× (0,∞)

dimA(µ ∩ (τx−g◦δr(y) ◦ g ◦ δr)]ν)(x) = dimA(µ× ν)(x, y)− n = dnµ×ν(x, y)− n.

Previous results show that dimensions of intersection measures depend on the
dimension of the product measure, not just on the dimension of two measures sep-
arately. Note that Hausdorff and packing dimensions do not behave nicely under
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products. For example for the Hausdorff dimension of the product measure the best
we can do are the following bounds:

dimH µ+ dimH ν ≤ dimH(µ× ν) ≤ dimH µ+ dimp ν.

In Section 4 we study intersection measures in the case where similarities are
replaced by general (invertible) affine maps. Note that almost all linear maps,
with respect to Lebesque measure Ln2 , are invertible. Every invertible linear map
L : Rn → Rn has a unique representation, the QR-decomposition, as

L = g ◦ T,

where g ∈ O(n) and T ∈ T (n)+, the group of upper triangular matrices with strictly
positive diagonal entries. Using this decomposition, we apply the same methods as
in the case of similarities to prove results for dimensions of more general intersection
measures. We will show for example that if dimH(µ× ν) > n, then for θn×L

n
2
(n+1)-

almost all (g, T ) ∈ O(n)× T (n)+

dimloc(µ ∩ (τx−g◦T (y) ◦ g ◦ T )]ν)(x) = dimloc(µ× ν)(x, y)− n = dnµ×ν(x, y)− n

and

dimloc(µ ∩ (τx−g◦T (y) ◦ g ◦ T )]ν)(x) = d
n

µ×ν(x, y)− n

for µ× ν-almost all (x, y) ∈ Rn × Rn. The average dimension behaves as the lower
local dimension in this setting. We also use the above equalities to obtain results
for Hausdorff and packing dimensions. All these results are analogous with the case
of similarities.

In Section 4 we also consider dimensions of intersection measures in the case
where similarity maps are replaced by continuously differentiable functions. Note
that there is no analogue for Lebesgue measure or Haar measure in the infinite-
dimensional space C1(Rn,Rn) of continuously differentiable functions. We use a
notion of prevalence by Hunt, Sauer and Yorke in [14], see also [1]. This concept
turns out to be a good notion of ’almost every’ in infinite dimensional spaces from
measure theoretical point of view. In fact, in finite dimensional spaces prevalence is
equivalent to ’Lebesgue almost every’. We will show that, if dimH(µ× ν) > n, then
in a prevalent set of functions f ∈ C1(Rn,Rn)

dimloc(µ ∩ (τx−f(y) ◦ f)]ν)(x) ≥ dimloc(µ× ν)(x, y)− n = dnµ×ν(x, y)− n(1.9)

and

dimloc(µ ∩ (τx−f(y) ◦ f)]ν)(x) ≥ d
n

µ×ν(x, y)− n.(1.10)

for µ× ν-almost all (x, y) ∈ Rn × Rn.
For the lower local dimension the equality holds in the above theorem at least

when the Hausdorff dimension of the product measure behaves nicely. Assuming
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dimH(µ × ν) = dimH µ + dimH ν > n, we have in a prevalent set of functions
f ∈ C1(Rn,Rn) that

dimloc(µ ∩ (τx−f(y) ◦ f)]ν)(x) = dimloc(µ× ν)(x, y)− n = dnµ×ν(x, y)− n

for µ× ν-almost all (x, y) ∈ Rn×Rn. Again the average dimension behaves like the
lower local dimension.

For the upper local dimension we have the following theorem. If dimH(µ×ν) > n
and f ∈ C1(Rn,Rn), then for θn × L

n
2
(n+1)-almost all (g, T ) ∈ O(n) × T (n)+ for

which g ◦ T + f is injective

dimloc(µ ∩ (τx−(g◦T+f)(y) ◦ f)]ν)(x) = d
n

µ×ν(x, y)− n

for µ × ν-almost all (x, y) ∈ Rn × Rn. It remains an open question whether the
equality holds in (1.10) in a prevalent set of functions f ∈ C1(Rn,Rn).

2. Preliminaries

We denote by B(x, r) a closed ball in Rn with centre at x and with radius r.
Further, we denote by d(x,A) = inf{|x − a| : a ∈ A} the distance between a point
x ∈ Rn and a set A ⊂ Rn.

Let m and n be positive integers with m < n and let µ be a Radon measure on
Rn with compact support. We denote by µ|B the restriction of a measure µ to a set
B ⊂ Rn, that is,

µ|B(A) = µ(A ∩B)

for all A ⊂ Rn. The image of the measure µ under f : Rn → Rm is denoted by f]µ,
that is,

f]µ(A) = µ(f−1(A))

for all A ⊂ Rm. Let ν be a Radon measure on Rn with compact support. The
measure µ is absolutely continuous with respect to ν if ν(A) = 0 implies µ(A) = 0
for all A ⊂ Rn. Then we write µ� ν. We say that measures µ and ν are mutually
singular if there exists a set A ⊂ Rn such that µ(A) = 0 = ν(Rn\A). In this case
we write µ⊥ν. For t > 0 the t-energy of µ is defined by

It(µ) =

∫ ∫
|x− y|−t dµ(x) dµ(y).

The n-dimensional Lebesgue measure is denoted by Ln. For s ≥ 0 the s-dimensional
Hausdorff measure is denoted by Hs and Hausdorff measures are normalized such
that Hn(B(x, r)) = (2r)n.

2.1. Slices and intersection measures. Let 0 < m < n be integers and denote
by G(n, n − m) the Grassmann manifold of (n − m)-dimensional linear subspaces
of Rn. The normalized Haar measure on G(n, n − m) is denoted by γn,n−m. Let
V ∈ G(n, n−m) and a ∈ V ⊥, where V ⊥ is the orthogonal complement of V . Then
Va = {v + a : v ∈ V } is the (n −m)-plane parallel to V and going through a. For
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Hm-almost all a ∈ V ⊥ there is a Radon measure µV,a, the slice of µ by Va, on Va
such that ∫

ϕdµV,a = lim
δ→0

(2δ)−m
∫
Va(δ)

ϕdµ,(2.1)

for all non-negative continuous ϕ on Rn with compact support. Here we use a
notation Va(δ) = {x ∈ Rn : d(x, Va) ≤ δ}. For x ∈ Rn we define µV,x = µV,a, if
a = PV ⊥(x) and µV,a is defined. Here PV ⊥ : Rn → V ⊥ is the orthogonal projection.
The construction of sliced measures and the proofs of their basic properties can be
found in [25].

Sliced measures have the following properties. If ϕ is a non-negative lower semi-
continuous function on Rn, then∫

ϕdµV,a ≤ lim inf
δ→0

(2δ)−m
∫
Va(δ)

ϕdµ.(2.2)

Moreover, if ϕ is a non-negative Borel function on Rn such that
∫
ϕdµ < ∞, then

for any Borel set B ⊂ V ⊥∫
B

∫
ϕdµV,a dHma ≤

∫
P−1

V⊥
(B)

ϕdµ,(2.3)

with equality if PV ⊥]µ � Hm
∣∣
V ⊥

. Finally, if B ⊂ Rn is a Borel set and PV ⊥]µ �
Hm|V ⊥ , then

µV,a|B = (µ|B)V,a(2.4)

for Hm-almost all a ∈ V ⊥, see [19, Lemma 3.2].
Let µ and ν be Radon measures on Rn with compact supports. For Ln-almost all

z ∈ Rn we can define the intersection of µ and τz]ν, where τz(x) = x+ z, by slicing
the product measure µ× ν by the n-plane

W(z,−z)/2 = {(x, y) ∈ Rn × Rn : x− y = z},

which goes through (z,−z)/2 ∈ W⊥, and by projecting the sliced measure to Rn.
That is, for Ln-almost all z ∈ Rn we can define the intersection measure by

µ ∩ τz]ν = π]
[
(µ× ν)W,(z,−z)/2

]
,

where π : Rn × Rn → Rn, π(x, y) = x. Then

spt(µ ∩ τz]ν) ⊂ sptµ ∩ spt τz]ν,

where spt is the support of a measure.
Later we replace ν by f]ν, where f is some function, for example a similarity or

a linear mapping. We also need to consider the following more general setting. Let
Rf : Rn × Rn → Rn × Rn, Rf (x, y) = (x, f(y)) and let λ be a Radon measure on
Rn ×Rn with compact support. We slice measures Rf]λ by the planes W(z,−z)/2. It
turns out that for Ln-almost all z ∈ Rn there is a Radon measure (Rf]λ)W,(z,−z)/2
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such that the following properties hold. For all non-negative lower semicontinuous
functions ϕ on Rn × Rn we have by (2.2)∫

ϕd(Rf]λ)W,(z,−z)/2

≤ lim inf
δ→0

(
√
2δ)−n

∫
{(x,y)∈Rn×Rn:|Sf (x,y)−z|≤δ}

ϕ(x, y) dλ(x, y),
(2.5)

where Sf : Rn × Rn → Rn, Sf (x, y) = x − f(y). Moreover, if ϕ is a non-negative
Borel function on Rn×Rn such that

∫
ϕdRf]λ <∞, then for any Borel set B ⊂ W⊥∫

B

∫
ϕd(Rf]λ)W,a dHn|W⊥(a) ≤

∫
P−1

W⊥
(B)

ϕdRf]λ(2.6)

with equality if Sf]λ � Ln. This follows from (2.3) since Sf]λ � Ln if and only if
PW⊥](Rf]λ)� Hn|W⊥ .

2.2. Dimensions of measures. In this section we define some concepts related to
dimensions of measures. For more detailed information on this subject, see [4]. Let
µ be a Radon measure on Rn with compact support. The lower and upper local
dimensions of µ at a point x ∈ Rn are defined by

dimlocµ(x) = lim inf
h→0

log µ(B(x, h))

log h

and

dimlocµ(x) = lim sup
h→0

log µ(B(x, h))

log h
.

For 0 ≤ s <∞ let

Ds
µ(x) = lim inf

δ→0

1

| log δ|

∫ 1

δ

µ(B(x, r))

rs
1

r
dL1(r).

Then the average dimension of µ at a point x ∈ Rn is defined by

dimA µ(x) = sup{s ≥ 0 : Ds
µ(x) = 0} = inf{s ≥ 0 : Ds

µ(x) =∞}.
We have the following relations

dimlocµ(x) ≤ dimA µ(x) ≤ dimlocµ(x).

Hausdorff and packing dimensions of µ are defined as follows

dimH µ = µ- ess inf
x∈Rn

dimlocµ(x)

= inf{dimHA : A is a Borel set and µ(A) > 0}

and

dimp µ = µ- ess inf
x∈Rn

dimlocµ(x)

= inf{dimpA : A is a Borel set and µ(A) > 0}.
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Upper Hausdorff and packing dimensions of µ are defined by

dim*
H µ = µ- ess sup

x∈Rn
dimlocµ(x)

= inf{dimHA : A is a Borel set and µ(Rn\A) = 0}

and

dim*
p µ = µ- ess sup

x∈Rn
dimlocµ(x)

= inf{dimpA : A is a Borel set and µ(Rn\A) = 0}.
Letting ν be a Radon measure on Rn with compact support, we have

dimH µ+ dimH ν ≤ dimH(µ× ν) ≤ dimH µ+ dimp ν(2.7)

and

dimH µ+ dimp ν ≤ dimp(µ× ν) ≤ dimp µ+ dimp ν.(2.8)

The corresponding inequalities hold if we replace dimH by dim*
H and dimp by dim*

p,
see [11] and [12].

As in [15], in order to study local dimensions of slices by (n − m)-planes, we
modify the definitions of local dimensions of measures using the function

ψmh (x) =

{
hm|x|−m, if |x| ≤ h

0, if |x| > h
,

and defining

dmµ (x) = lim inf
h→0

log(µ ∗ ψmh (x))
log h

= lim inf
h→0

log(hm
∫
B(x,h)

|x− a|−m dµ(a))
log h

and

d
m

µ (x) = lim sup
h→0

log(µ ∗ ψmh (x))
log h

= lim sup
h→0

log(hm
∫
B(x,h)

|x− a|−m dµ(a))
log h

.

Here µ ∗ ψmh is the convolution of µ and ψmh .

Remark 2.1. (1) It is shown in [7, (4.12)] that, if
∫
|x − y|−m dµ(y) < ∞ for some

x ∈ Rn, then

dmµ (x) = dimlocµ(x) ≥ m.

(2) If B ⊂ Rn is a Borel set, then

dimlocµ|B(x) = dimlocµ(x) and dimlocµ|B(x) = dimlocµ(x)

for µ-almost all x ∈ B, and moreover,

dmµ|B(x) = dmµ (x) and d
m

µ|B(x) = d
m

µ (x)

for µ-almost all x ∈ B. These equalities follow from the density point theorem [25,
Corollary 2.14].
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(3) Since

dimlocµ(x) = sup{s ≥ 0 :

∫
|x− y|−s dµ(y) <∞},

we have
∫
|x− a|−m dµ(a) =∞ provided that dimlocµ(x) < m. Moreover,

d
m

µ (x) = −∞ if and only if
∫
|x− a|−m dµ(a) =∞.

Lemma 2.2. Let µ be a Radon measure on Rn and let s > 0. Let L : Rn → Rn be
a linear mapping such that c1|x| ≤ |Lx| ≤ c2|x| for all x ∈ Rn. Then for all x ∈ Rn

(1) dmL]µ(Lx) = dmµ (x)

(2) d
m

L]µ
(Lx) = d

m

µ (x).

and

(3) dimA L]µ(Lx) = dimA µ(x).

Proof. First we prove (1) and (2). Since

c−m2

∫
B(x,h/c2)

|x− a|−m dµ(a) ≤
∫
B(Lx,h)

|Lx− a|−m dL]µ(a)

≤ c−m1

∫
B(x,h/c1)

|x− a|−m dµ(a),
(2.9)

we have for all 0 < h < 1

log
(
(h/c1)

m
∫
B(x,h/c1)

|x− a|−m dµ(a)
)

log(h/c1) + log c1

≤
log
(
hm
∫
B(Lx,h)

|Lx− a|−m dL]µ(a)
)

log h

≤
log
(
(h/c2)

m
∫
B(x,h/c2)

|x− a|−m dµ(a)
)

log(h/c2) + log c2
.

The equalities follow by letting h→ 0. The equality (3) follows from the fact

µ(B(x, h/c2)) ≤ L]µ(B(Lx, h)) ≤ µ(B(x, h/c1)).

�

3. Similarities

First we consider dimensions of measures µ∩f]ν, where f : Rn → Rn is a similarity
map, that is, there is r > 0 such that |f(x) − f(y)| = r|x − y| for all x, y ∈ Rn.
Let O(n) be the orthogonal group of linear isometries in Rn and let θn be the Haar
measure on O(n) such that θn(O(n)) = 1. Every f has a unique representation as

f = τz ◦ g ◦ δr,
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where τz : Rn → Rn is the translation τz(x) = x+ z, g ∈ O(n) and δr : Rn → Rn is
the dilation δr(x) = rx.

3.1. Properties of intersection measures. We need to prove analogues of [24,
Lemma 6.5, Theorem 6.6 and Theorem 6.7] in a more general setting, where we
consider measures Rg◦δr]λ instead of the product µ× (g ◦ δr)]ν. Here λ is a Radon
measure on Rn × Rn with compact support and

Rg◦δr : Rn × Rn → Rn × Rn, Rg◦δr](x, y) = (x, g ◦ δr(y)).

From (2.5) we get that for all non-negative lower semicontinuous functions ϕ on
Rn × Rn we have∫

ϕd(Rg◦δr]λ)W,(z,−z)/2

≤ lim inf
δ→0

(
√
2δ)−n

∫
{(x,y)∈Rn×Rn:|Sg◦δr (x,y)−z|≤δ}

ϕ(x, y) dλ(x, y),
(3.1)

where

Sg◦δr : Rn × Rn → Rn, Sg◦δr(x, y) = x− g ◦ δr(y).

Moreover from (2.6) we get that, if ϕ is a non-negative Borel function on Rn × Rn

such that
∫
ϕdRg◦δr]λ <∞, then for any Borel set B ⊂ W⊥∫

B

∫
ϕd(Rg◦δr]λ)W,a dHn|W⊥(a) ≤

∫
P−1

W⊥
(B)

ϕdRg◦δr]λ(3.2)

with equality if Sg◦δr]λ� Ln.
Note that the following lemmas hold for intersection measures sinceRg◦δr](µ×ν) =

µ × (g ◦ δr)]ν. Moreover [24, Theorem 6.6] follows from Theorem 3.2, since if
Is(µ) < ∞ and It(ν) < ∞ for some 0 < s < n and 0 < t < n with s + t ≥ n, then
Is+t(µ× ν) <∞.

Lemma 3.1. Let α be a Radon measure on Rn×Rn with compact support. Assume
that

∫
|(a, b)|−s dα(a, b) <∞ for some s ≥ n. Then for all 0 < r1 < r2 <∞

lim sup
δ→0

δ−n
∫∫ r2

r1

θn{g ∈ O(n) : |a− g ◦ δr(b)| ≤ δ} dL1(r)|(a, b)|−s+n dα(a, b)

≤ c

∫
|(a, b)|−s dα(a, b),

where c is a constant depending on n, s, r1 and r2.

Proof. The proof is a slight modification of that of [24, Lemma 6.5]. We denote by c1,
c2 and c3 constants which may depend on n, r1 and r2. Define for all (a, b) ∈ Rn×Rn

Iδ(a, b) =

∫ r2

r1

θn{g ∈ O(n) : |a− g ◦ δr(b)| ≤ δ} dL1(r).
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If r /∈ {r ∈ [r1, r2] :
∣∣|a| − r|b|∣∣ ≤ δ}, then

|a− g ◦ δr(b)| ≥ ||a| − |g ◦ δr(b)|| =
∣∣|a| − r|b|∣∣ > δ,

and thus

Iδ(a, b) =

∫
{r∈[r1,r2]:||a|−r|b||≤δ}

θn{g ∈ O(n) : |a− g ◦ δr(b)| ≤ δ} dL1(r).

Define a Borel set

Aδ = {(a, b) ∈ Rn × Rn : r1|b| − δ ≤ |a| ≤ r2|b|+ δ}.

Then for (a, b) /∈ Aδ we have for all r ∈ [r1, r2] that |a| − r|b| ≥ |a| − r2|b| > δ or
r|b| − |a| ≥ r1|b| − |a| > δ, which means that {r ∈ [r1, r2] :

∣∣|a| − r|b|∣∣ ≤ δ} = ∅, and
therefore ∫

Iδ(a, b)|(a, b)|−s+n dα(a, b) =
∫
Aδ

Iδ(a, b)|(a, b)|−s+n dα(a, b).

Defining

A1
δ = {(a, b) ∈ Aδ : |a| ≤ 2δ}

A2
δ = {(a, b) ∈ Aδ : r1|b| ≤ 2δ}

A3
δ = {(a, b) ∈ Aδ : |a| > 2δ, r1|b| > 2δ},

we have Aδ = A1
δ ∪ A2

δ ∪ A3
δ .

If (a, b) ∈ A1
δ , then |a| ≤ 2δ and r1|b| ≤ 3δ giving

|(a, b)| =
√
|a|2 + |b|2 ≤ c1δ.

Since
∫
|(a, b)|−s dα(a, b) <∞ we get

lim sup
δ→0

δ−n
∫
A1
δ

Iδ(a, b)|(a, b)|−s+n dα(a, b)

≤ cn1 (r2 − r1) lim sup
δ→0

∫
A1
δ

|(a, b)|−s dα(a, b) = 0.

(3.3)

Similarly, if (a, b) ∈ A2
δ , then r1|b| ≤ 2δ and |a| ≤ (1 + 2r2

r1
)δ, and thus

lim sup
δ→0

δ−n
∫
A2
δ

Iδ(a, b)|(a, b)|−s+n dα(a, b) = 0.(3.4)

Finally, let (a, b) ∈ A3
δ . Then 1

2
r1|b| ≤ |a| ≤ 2r2|b|, which implies |a| ≥ c2|(a, b)|.

Moreover, using [25, Lemma 3.8] we have

Iδ(a, b) ≤ c3δ
n−1|a|1−nL1

(
{r ∈ [r1, r2] :

∣∣|a| − r|b|∣∣ ≤ δ}
)

≤ c3δ
n−1|a|1−n2δ|b|−1

≤ 4c3r2δ
n|a|−n.
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Thus

lim sup
δ→0

δ−n
∫
A3
δ

Iδ(a, b)|(a, b)|−s+n dα(a, b)

≤ 4c3r2 lim sup
δ→0

∫
A3
δ

|a|−n|(a, b)|−s+n dα(a, b)

≤ c lim sup
δ→0

∫
A3
δ

|(a, b)|−s dα(a, b)

and the lemma follows by combining this with (3.3) and (3.4). �

Now we are ready to prove a modification of [24, Theorem 6.6].

Theorem 3.2. Let λ be Radon measure on Rn×Rn with compact support such that
In(λ) <∞. Then

Sg◦δr]λ� Ln

for θn × L1-almost all (g, r) ∈ O(n)× (0,∞).

Proof. Let α = S](λ× λ), where S : (Rn)4 → Rn×Rn, S(a, b, x, y) = (a− x, b− y).
Then ∫∫

|(u, v)|−n dα(u, v) =
∫∫
|(x, y)− (a, b)|−n dλ(a, b) dλ(x, y) <∞.

Let 0 < r1 < r2 <∞. Using the methods of [23, Section 2.5] we can show that the
function

(z, g, r) 7→ lim inf
δ→0

δ−nSg◦δr]λ(B(z, δ))

is Borel measurable. Thus applying Fatou’s lemma, Fubini’s theorem and Lemma 3.1
for α and s = n, we get∫ r2

r1

∫∫
lim inf
δ→0

δ−nSg◦δr]λ(B(z, δ)) dSg◦δr]λ(z) dθn(g) dL1(r)

≤ lim inf
δ→0

δ−n
∫ ∫ r2

r1

θn{g ∈ O(n) : |a− x− g ◦ δr(b− y)| ≤ δ}

× dL1(r) d(λ× λ)(a, b, x, y)

= lim inf
δ→0

δ−n
∫ ∫ r2

r1

θn{g ∈ O(n) : |u− g ◦ δr(v)| ≤ δ} dL1(r) dα(u, v)

≤ c

∫
|(u, v)|−n dα(u, v) <∞,

where c depends on n, r1 and r2.
Thus it follows that for θn × L1-almost all (g, r) ∈ O(n)× (0,∞)

lim inf
δ→0

δ−nSg◦δr]λ(B(z, δ)) <∞
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for Sg◦δr]λ-almost all z ∈ Rn. Then [25, Theorem 2.12(3)] implies that for such
(g, r) ∈ O(n)× (0,∞) we have Sg◦δr]λ� Ln. �

By a simple approximation we only need to assume the following local energy
condition.

Corollary 3.3. Let λ be a Radon measure on Rn × Rn with compact support such
that

∫
|(x, y)− (a, b)|−n dλ(a, b) <∞ for λ-almost all (x, y) ∈ Rn × Rn. Then

Sg◦δr]λ� Ln

for θn × L1-almost all (g, r) ∈ O(n)× (0,∞).

Proof. For j = 1, 2, . . . define Borel sets Aj by

Aj = {(x, y) ∈ Rn × Rn :

∫
|(x, y)− (a, b)|−n dλ(a, b) < j}.

Now

In(λ|Aj) <∞

and so Theorem 3.2 implies that for θn × L1-almost all (g, r) ∈ O(n)× (0,∞)

Sg◦δr](λ|Aj)� Ln.

Since

lim
j→∞

λ((Rn × Rn)\Aj) = λ((Rn × Rn)\
⋃
j

Aj) = 0,

we get

Sg◦δr](λ)(B) = lim
j→∞

Sg◦δr](λ|Aj)(B)

for all B ⊂ Rn, and the lemma follows. �

We also need the following modification of [24, Theorem 6.7].

Lemma 3.4. Let λ be a Radon measure on Rn×Rn with compact support. Assume
Is(λ) <∞ for some s > n. Then for θn × L1-almost all (g, r) ∈ O(n)× (0,∞)

Is−n(Rg◦δr]λ)W,(z,−z)/2) <∞

for Hn-almost all (z,−z)/2 ∈ W⊥.

Proof. Let 0 < r1 < r2 <∞. We denote by c1 and c2 constants which may depend
on r1, r2, s and n. Letting w = (z,−z)/2 and using (2.2), Fatou’s lemma and
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Fubini’s theorem we obtain

∫ r2

r1

∫∫
Is−n(Rg◦δr]λ)W,w dHn|W⊥(w) dθn(g) dL1(r)

≤ lim inf
δ→0

(2δ)−n
∫ r2

r1

∫∫∫ ∫
Ww(δ)

|(x, y)− (a, b)|−s+n

× dRg◦δr]λ(a, b) d(Rg◦δr]λ)W,w(x, y) dHn|W⊥(w) dθn(g) dL1(r)

= lim inf
δ→0

(2δ)−n
∫ r2

r1

∫∫∫
{(a,b):d((a,b),Ww)≤δ}

∫
|(x, y)− (a, b)|−s+n

× d(Rg◦δr]λ)W,w(x, y) dRg◦δr]λ(a, b) dHn|W⊥(w) dθn(g) dL1(r)

= lim inf
δ→0

(2δ)−n
∫ r2

r1

∫∫∫
{w∈W⊥:d((a,b),Ww)≤δ}

∫
|(x, y)− (a, b)|−s+n

× d(Rg◦δr]λ)W,w(x, y) dHn|W⊥(w) dRg◦δr]λ(a, b) dθn(g) dL1(r).

The measurability of a function (w, g, r) 7→ Is−n(Rg◦δr]λ)W,w can be shown in a
similar way as in [23, Lemma 4.2].

If B = {w ∈ W⊥ : d((a, b),Ww) ≤ δ}, then

P−1
W⊥

(B) = {(x, y) ∈ Rn × Rn : |PW⊥((a, b)− (x, y))| ≤ δ}

= {(x, y) ∈ Rn × Rn : |a− x− (b− y)| ≤
√
2δ}.

So by Theorem 3.2 and (3.2)

∫ r2

r1

∫∫
Is−n(Rg◦δr]λ)W,w dHn|W⊥(w) dθn(g) dL1(r)

≤ lim inf
δ→0

(2δ)−n
∫ r2

r1

∫∫∫
{(x,y):|a−x−(b−y)|≤

√
2δ}
|(x, y)− (a, b)|−s+n

× dRg◦δr]λ(x, y) dRg◦δr]λ(a, b) dθn(g) dL1(r)

= lim inf
δ→0

(2δ)−n
∫ r2

r1

∫∫∫
{(x,y):|a−x−g◦δr(b−y)|≤

√
2δ}
|(x, g ◦ δr(y))− (a, g ◦ δr(b))|−s+n

× dλ(x, y) dλ(a, b) dθn(g) dL1(r).

Thus using the fact

|(a, g ◦ δr(b))| ≥ c1|(a, b)|, if r ∈ [r1, r2]
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and Fubini’s theorem, and then applying Lemma 3.1 for the measure α = S](λ×λ),
where S : (Rn)4 → Rn is as in the proof of Theorem 3.2, we get∫ r2

r1

∫∫
Is−n((Rg◦δr]λ)W,w) dHn|W⊥(w) dθn(g) dL1(r)

≤ c−s+n1 lim inf
δ→0

(2δ)−n
∫ r2

r1

∫∫∫
{(x,y):|a−x−g◦δr(b−y)|≤

√
2δ}
|(x, y)− (a, b)|−s+n

× dλ(x, y) dλ(a, b) dθn(g) dL1(r)

= c−s+n1 (
√
2)−n lim inf

δ→0
δ−n

∫∫∫ r2

r1

θn{g ∈ O(n) : |a− x− g ◦ δr(b− y)| ≤ δ}

× |(a− x, b− y)|−s+n dL1(r) dλ(x, y) dλ(a, b)

≤ c2

∫
|(a, b)− (x, y)|−s dλ(x, y) dλ(a, b) <∞.

Thus for θn × L1-almost all (g, r) ∈ O(n)× [r1, r2]

Is−n((Rg◦δr]λ)W,w) <∞

for Hn|W⊥-almost all w ∈ W⊥, and the result follows. �

3.2. Local dimensions of intersection measures. In this section we consider
local dimensions of intersection measures. We need a lemma whose proof is a mod-
ification of the proof of [18, Lemma 5.4].

Lemma 3.5. Let λ be a Radon measure on Rn × Rn with compact support. Fix
0 < r1 < r2 <∞. If (x, y) ∈ Rn ×Rn is such that

∫
|(x, y)− (a, b)|−n dλ(a, b) <∞,

then ∫ r2

r1

∫
π][(Rg◦δr]λ)W,(x−g◦δr(y),g◦δr(y)−x)/2)](B(x, h)) dθn(g) dL1(r)

≤ c

∫
B((x,y),c̃h)

|(x, y)− (a, b)|−n dλ(a, b),

where c and c̃ are constants depending only on n, r1 and r2.

Proof. We denote by c1, . . . , c4 constants which may depend on n, r1 and r2. Let ϕ be
the characteristic function of the open ball with centre x and radius 2h. Using (3.1)
for ϕ ◦ π, Fatou’s lemma and Fubini’s theorem we have∫ r2

r1

∫
π][(Rg◦δr]λ)W,(x−g◦δr(y),g◦δr(y)−x)/2)](B(x, h)) dθn(g) dL1(r)

≤
∫ r2

r1

∫
lim inf
δ→0

(
√
2δ)−n

∫
{(a,b):|a−x−g◦δr(b−y)|≤δ}

ϕ(a) dλ(a, b) dθn(g) dL1(r)

≤ lim inf
δ→0

δ−n
∫
B(x,2h)×Rn

Iδ(a, b) dλ(a, b),
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where

Iδ(a, b) =

∫
{r∈[r1,r2]:||a−x|−r|b−y||≤δ}

θn{g ∈ O(n) : |a− x− g ◦ δr(b− y)| ≤ δ} dL1(r).

As in the proof of Lemma 3.1 we get∫ r2

r1

∫
π][(Rg◦δr]λ)W,(x−g◦δr(y),g◦δr(y)−x)/2)](B(x, h)) dθn(g) dL1(r)

≤ lim inf
δ→0

δ−n
∫
(B(x,2h)×Rn)∩B3

δ

Iδ(a, b) dλ(a, b),

where

Bδ = {(a, b) ∈ Rn × Rn : r1|b− y| − δ ≤ |a− x| ≤ r2|b− y|+ δ}

and

B3
δ = {(a, b) ∈ Bδ : |a− x| > 2δ, r1|b− y| > 2δ}.

Since for (a, b) ∈ B3
δ we have by [25, Lemma 3.8]

Iδ(a, b) ≤ 4c1r2δ
n|a− x|−n

and

|a− x| ≥ c2|(a, b)− (x, y)|

we get ∫ r2

r1

∫
π][(Rg◦δr]λ)W,(x−g◦δr(y),g◦δr(y)−x)/2)](B(x, h)) dθn(g) dL1(r)

≤ lim sup
δ→0

4c1r2

∫
(B(x,2h)×Rn)∩B3

δ

|a− x|−n dλ(a, b)

≤ lim sup
δ→0

c3

∫
B(x,2h)×Rn∩B3

δ

|(a, b)− (x, y)|−n dλ(a, b)

≤ c3

∫
B((x,y),c4h)

|(x, y)− (a, b)|−n dλ(a, b).

The last inequality follows from the fact that (B(x, 2h) × Rn) ∩ B3
δ ⊂ B(x, 2h) ×

B(y, 4h/r1). �

Now we can prove an analogue of [7, Proposition 4.1].

Theorem 3.6. Let λ be a Radon measure on Rn × Rn with compact support such
that

∫
|(x, y) − (a, b)|−n dλ(a, b) < ∞ for λ-almost all (x, y) ∈ Rn × Rn. Then for

θn × L1-almost all (g, r) ∈ O(n)× (0,∞)

dimlocπ][(Rg◦δr]λ)W,(x−g◦δr(y),g◦δr(y)−x)/2](x) ≥ dimlocλ(x, y)− n = dnλ(x, y)− n
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and

dimlocπ][(Rg◦δr]λ)W,(x−g◦δr(y),g◦δr(y)−x)/2](x) ≥ d
n

λ(x, y)− n
for λ-almost all (x, y) ∈ Rn × Rn.

Proof. Let c and c̃ be as in Lemma 3.5. Using Lemma 3.5 we get for λ-almost all
(x, y) ∈ Rn × Rn and for all ε > 0

θn × L1{(g, r) ∈ O(n)× [r1, r2] : π][(Rg◦δr]λ)W,(x−g◦δr(y),g◦δr(y)−x)/2](B(x, h))

> ch−n−ελ ∗ ψnc̃h(x, y)} ≤ hε.

Defining Borel sets

Ak = {(g, r) ∈ O(n)× [r1, r2] : π][(Rg◦δr]λ)W,(x−g◦δr(y),g◦δr(y)−x)/2](B(x, 2−k))

> c(2−k)−n−ελ ∗ ψnc̃2−k(x, y)}
and then applying the Borel-Cantelli lemma to Ak we get for λ× θn×L1-almost all
(x, y, g, r) ∈ Rn × Rn ×O(n)× [r1, r2] that

π][(Rg◦δr]λ)W,(x−g◦δr(y),g◦δr(y)−x)/2](B(x, 2−k)) ≤ c(2−k)−n−ελ ∗ ψnc̃2−k(x, y)
for all sufficiently large k. Clearly this holds for sufficiently small h. Thus for
λ× θn × L1-almost all (x, y, g, r) ∈ Rn × Rn ×O(n)× [r1, r2]

π][(Rg◦δr]λ)W,(x−g◦δr(y),g◦δr(y)−x)/2](B(x, h)) ≤ ch−n−ελ ∗ ψnc̃h(x, y)
for all sufficiently small h. Now the theorem follows from the definition of local
dimensions and from Remark 2.1(1). �

As a corollary we get a result for intersection measures.

Corollary 3.7. Let µ and ν be Radon measures on Rn with compact supports such
that

∫
|(x, y) − (a, b)|−n d(µ × ν)(a, b) < ∞ for µ × ν-almost all (x, y) ∈ Rn × Rn.

Then for θn × L1-almost all (g, r) ∈ O(n)× (0,∞)

dimloc(µ ∩ (τx−g◦δr(y) ◦ g ◦ δr)]ν)(x) ≥ dimloc(µ× ν)(x, y)− n = dnµ×ν(x, y)− n

and

dimloc(µ ∩ (τx−g◦δr(y) ◦ g ◦ δr)]ν)(x) ≥ d
n

µ×ν(x, y)− n
for µ× ν-almost all (x, y) ∈ Rn × Rn.

Next we show that Theorem 3.6 holds without assuming the local energy condi-
tion. A decomposition of a Radon measure into absolutely continuous and singular
parts from [15] is used for this purpose. For all g ∈ O(n) and r ∈ (0,∞), define

Eg,r = {(x, y) ∈ Rn × Rn : (Rg◦δr]λ)W,(x−g◦δr(y),g◦δr(y)−x)/2 is defined}.

Remark 3.8. If
∫
|(x, y) − (a, b)|−n dλ(a, b) < ∞ for λ-almost all (x, y) ∈ Rn × Rn,

then the measures (Rg◦δr]λ)W,(x−g◦δr(y),g◦δr(y)−x)/2 are defined for λ× θn×L1-almost
all (x, y, g, r) ∈ Rn×Rn×O(n)× (0,∞). This follows from Corollary 3.3 as in [24,
Lemma 4.6].
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Theorem 3.9. Let λ be a Radon measure on Rn×Rn with compact support. Then
for θn × L1-almost all (g, r) ∈ O(n)× (0,∞)

dimlocπ][(Rg◦δr]λ)W,(x−g◦δr(y),g◦δr(y)−x)/2](x) ≥ dimlocλ(x, y)− n ≥ dnλ(x, y)− n

and

dimlocπ][(Rg◦δr]λ)W,(x−g◦δr(y),g◦δr(y)−x)/2](x) ≥ d
n

λ(x, y)− n

for λ-almost all (x, y) ∈ Eg,r and moreover d
n

λ(x, y) = −∞ for λ-almost all (x, y) ∈
(Rn × Rn)\Eg,r.

Proof. Since the map π : W(z,−z)/2 → Rn, π(x, y) = x is bi-Lipschitz, it’s enough
to consider local dimensions of sliced measures (Rg◦δr]λ)W,(x−g◦δr(y),g◦δr(y)−x)/2. We
prove the second inequality. The proof of the first one is similar: one has to use
the first inequality in Theorem 3.6 instead of the second one, and the fact that
dimlocλ(x, y)− n ≥ dnλ(x, y)− n for all (x, y) ∈ Rn × Rn.

Defining a Borel set

B = {(x, y) ∈ Rn × Rn :

∫
|(x, y)− (a, b)|−n dλ(a, b) <∞}

we have by Theorem 3.6 and Remark 2.1(2) for θn × L1-almost all (g, r) ∈ O(n)×
(0,∞) and for λ-almost all (x, y) ∈ B

dimloc((Rg◦δr](λ|B))W,(x−g◦δr(y),g◦δr(y)−x)/2)(x, g ◦ δr(y))
= dimlocπ][(Rg◦δr](λ|B))W,(x−g◦δr(y),g◦δr(y)−x)/2](x)
≥ d

n

λ|B(x, y)− n
= d

n

λ(x, y)− n.

(3.5)

Moreover,

Rg◦δr](λ|B) = (Rg◦δr]λ)|Bg,r ,(3.6)

where Bg,r = Rg◦δr(B). Corollary 3.3 gives for θn × L1-almost all (g, r) ∈ O(n) ×
(0,∞) that Sg◦δr](λ|B)� Ln, which implies

PW⊥]((Rg◦δr]λ)|Bg,r)� Hn
∣∣
W⊥

(3.7)

for θn × L1-almost all (g, r) ∈ O(n)× (0,∞).
Fix (g, r) ∈ O(n) × (0,∞) such that (3.5) and (3.7) hold and decompose λ̃ :=

Rg◦δr]λ into

λ̃ = λ̃Wabs + λ̃Wsing,

where
PW⊥](λ̃

W
sing) ⊥ Hn|W⊥ ,

PW⊥](λ̃
W
abs)� Hn|W⊥ and

λ̃(A) = λ̃Wsing(A) + λ̃Wabs(A)

(3.8)
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for all Borel sets A ⊂ Rn × Rn, see [15, Lemma 2.4]. Now by (3.8) and (3.7)

λ̃Wsing(Bg,r) = ((Rg◦δr]λ)|Bg ,r)Wsing(Bg,r) = 0.(3.9)

Moreover, (λ̃Wsing)W,(z,−z)/2 = 0 for Ln-almost all z ∈ Rn by [15, Proposition 2.5(1)].
Thus using also (2.4) we get

(λ̃|Bg,r)W,(z,−z)/2 = (λ̃Wabs|Bg,r)W,(z,−z)/2
= (λ̃Wsing)W,(z,−z)/2|Bg,r + (λ̃Wabs)W,(z,−z)/2|Bg,r
= (λ̃Wabs + λ̃Wsing)W,(z,−z)/2|Bg,r
= λ̃W,(z,−z)/2|Bg,r

(3.10)

for Ln-almost all z ∈ Rn. Combining this with (3.5), (3.6) and (3.7) we get

dimloc((Rg◦δr]λ)W,(x−g◦δr(y),g◦δr(y)−x)/2
∣∣
Bg,r

)(x, g ◦ δr(y)) ≥ d
n

λ(x, y)− n

for λ-almost all (x, y) ∈ B.
Remark 2.1(2) gives for Ln-almost all z ∈ Rn

dimloc((Rg◦δr]λ)W,(z,−z)/2
∣∣
Bg,r

)(x, y) = dimloc((Rg◦δr]λ)W,(z,−z)/2)(x, y)(3.11)

for (Rg◦δr]λ)W,(z,−z)/2-almost all (x, y) ∈ Bg,r. Moreover, using (3.7), (3.2) and (3.10)
we get for all Borel sets F ⊂ Bg,r

Rg◦δr]λ(F ) =

∫
(Rg◦δr]λ)W,a(F ) dHn|W⊥(a).(3.12)

Now defining Borel sets

F1 = {(x, y) ∈ B : dimloc((Rg◦δr]λ)W,(x−g◦δr(y),g◦δr(y)−x)/2|Bg,r)(x, g ◦ δr(y))
6= dimloc((Rg◦δr]λ)W,(x−g◦δr(y),g◦δr(y)−x)/2)(x, g ◦ δr(y))}

and

F2 = {(x, y) ∈ Bg,r : dimloc((Rg◦δr]λ)W,(x−y,y−x)/2|Bg,r)(x, y)
6= dimloc((Rg◦δr]λ)W,(x−y,y−x)/2)(x, y)}

we have by (3.11) for Ln-almost all z ∈ Rn

(Rg◦δr]λ)W,(z−z)/2(F2) = 0.

Then (3.12) gives

λ(F1) = Rg◦δr]λ(F2) = 0.

Thus

dimloc((Rg◦δr]λ)W,(x−g◦δr(y),g◦δr(y)−x)/2)(x, g ◦ δr(y)) ≥ d
n

λ(x, y)− n(3.13)

for λ-almost all (x, y) ∈ B. By Remark 2.1(3) we have dnλ(x, y) = −∞ for all
(x, y) /∈ B. Thus the inequality (3.13) holds for λ-almost all (x, y) ∈ Eg,r.
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For the last claim define

E1 = {(x, y) ∈ Rn × Rn : (Rg◦δr]λ)W,(x−g◦δr(y),g◦δr(y)−x)/2 is not defined

and dnλ(x, y) > −∞}

and

E2 = {(x, y) ∈ Rn × Rn : (Rg◦δr]λ)W,(x−y,y−x)/2 is not defined

and dnRg◦δr]λ(x, y) > −∞}

Then by Lemma 2.2(2)

d
n

λ(x, y) = d
n

Rg◦δr]λ
(x, (g ◦ δr)(y))

and

d
n

Rg◦δr]λ
(x, y) = d

n

λ(x, (g ◦ δr)−1(y))

and so Remark 2.1(3) gives

λ(E1) = Rg◦δr]λ(E2) = Rg◦δr]λ(E2 ∩Bg,r).

Now applying [15, Corollary 2.6] to Rg◦δr]λ and using (3.9) yields

Rg◦δr]λ(E2 ∩Bg,r) = 0.

�

As an immediate consequence we get:

Corollary 3.10. Let µ and ν be Radon measures on Rn with compact supports.
Then for θn × L1-almost all (g, r) ∈ O(n)× (0,∞)

dimloc(µ ∩ (τx−g◦δr(y) ◦ g ◦ δr)]ν)(x) ≥ dimloc(µ× ν)(x, y)− n ≥ dnµ×ν(x, y)− n

and

dimloc(µ ∩ (τx−g◦δr(y) ◦ g ◦ δr)]ν)(x) ≥ d
n

µ×ν(x, y)− n

for µ× ν-almost all (x, y) ∈ Eg,r and d
n

µ×ν(x, y) = −∞ for µ× ν-almost all (x, y) ∈
Rn × Rn\Eg,r, where

Eg,r = {(x, y) ∈ Rn × Rn : µ ∩ (τx−g◦δr(y) ◦ g ◦ δr)]ν is defined}.

Next we consider the validity of the opposite inequalities in Theorem 3.6. The
proof is based on results concerning dimensions of sliced measures. For the proof
of the lower local dimension we will show that the upper bound of lower local
dimensions of sliced measures µV,x (see [15, Theorem 2.11]) holds for all planes for
which PV ⊥]µ � Hm. The idea of the proof is from [20, Theorem 2.8] where the
same question for the average dimension was considered.
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Lemma 3.11. Let µ be a Radon measure on Rn with compact support such that
dimH µ > m. If V ∈ G(n, n−m) is such that PV ⊥]µ� Hm, then

dimlocµV,x(x) ≤ dimlocµ(x)−m
for µ-almost all x ∈ Rn.

Proof. Let Dk, k = 1, 2, . . . be the standard half open disjoint dyadic cubes Q of
side-lengths l(Q) = 2−k. Denote by D =

⋃∞
k=1Dk. Let ε > 0 and η > 0. For each

Q ∈ D define

AQ = {x ∈ 2Q : µV,x(2Q) < η µ(2Q) l(Q)ε−m},

where 2Q is the cube centred at the same point as Q and with side-length 2l(Q).
Denote A =

⋃
Q∈D AQ. Then by (2.3)

µ(A) ≤
∑
Q∈D

µ(AQ) ≤
∑
Q∈D

∫
P
V⊥ (AQ)

µV,a(2Q) dHm(a)

≤
∑
Q∈D

η µ(2Q) l(Q)ε−mHm(PV ⊥(AQ)) ≤ ηc1

∞∑
k=1

2−kε
∑
Q∈Dk

µ(2Q)

≤ η c2 µ(Rn)
1

2ε − 1
= c3η,

(3.14)

where c1, c2 and c3 are constants which may depend on m,n and ε.
Let x ∈ Rn\A and 0 < r < 1. Now there exist Q ∈ D and a constant 0 < c4 < 1

depending only on n such that

B(x, c4r) ⊂ 2Q ⊂ B(x, r).

Hence,

µV,x(B(x, r)) ≥ µV,x(2Q) ≥ η µ(2Q) l(Q)ε−m ≥ η c5 µ(B(x, c4r)) r
ε−m,

where c5 depends on n,m and ε. Thus

dimlocµV,x(x) ≤ dimlocµ(x)−m+ ε

for all x ∈ Rn\A. Since in (3.14) we may choose η as small as we wish, the claim
follows. �

The following modification of [19, Lemma 2.4] and of [18, Lemma 5.6] is needed
to make sure that results for upper packing dimensions of sliced measures can be
used.

Lemma 3.12. Let λ be a Radon measure on Rn × Rn with compact support. If
Is(λ) <∞ for some s > n, then for θn ×L1-almost all (g, r) ∈ O(n)× (0,∞) there
exists for any ε > 0 a compact set Cε ⊂ Rn × Rn with Rg◦δr]λ((Rn × Rn)\Cε) < ε
and Hε such that for Hn-almost all (z,−z)/2 ∈ W⊥ we have

((Rg◦δr]λ)
∣∣
Cε
)W,(z,−z)/2(B((x, y), h)) ≤ ch(s−n)/2
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for all (x, y) ∈ W(z,−z)/2 and 0 < h ≤ Hε. Here c is a constant depending only on s
and n.

Proof. Lemma 3.4 implies that for θn×L1-almost all (g, r) ∈ O(n)× (0,∞) we have

Is−n(Rg◦δr]λ)W,(z,−z)/2) <∞(3.15)

for Hn-almost all (z,−z)/2 ∈ W⊥. Consider (g, r) ∈ O(n) × (0,∞) such that
(3.15) holds and Sg◦δr]λ � Ln (by Theorem 3.2 this is true for θn × L1-almost all
(g, r) ∈ O(n)× (0,∞)). Then using (3.2) and ( 3.15) we have for Rg◦δr]λ-almost all
(x, y) ∈ Rn × Rn∫

|(x, y)− (a, b)|n−s d(Rg◦δr]λ)W,(x−y,y−x)/2(a, b) <∞.

Let ε > 0. For every i = 1, 2, . . . define a Borel set

Bi = {(x, y) ∈ Rn × Rn :

∫
|(x, y)− (a, b)|n−s d(Rg◦δr]λ)W,(x−y,y−x)/2(a, b) ≤ i}.

Since

lim
i→∞

Rg◦δr]λ((Rn × Rn)\Bi) = 0

we find a compact set Cε ⊂ Rn × Rn such that Rg◦δr]λ((Rn × Rn)\Cε) < ε and
Cε ⊂ Biε for some iε.

Let Hε = i
−2
s−n
ε /9. Consider (z,−z)/2 ∈ W⊥ such that both (Rg◦δr]λ)W,(z,−z)/2 and

(Rg◦δr]λ|Cε)W,(z,−z)/2 are defined. If (z,−z)/2 /∈ PW⊥(Cε), then

(Rg◦δr]λ|Cε)W,(z,−z)/2(B((x, y), h)) = 0

for all (x, y) ∈ W(z,−z)/2 and h > 0. This follows from (2.1) and from the fact that
W(z,−z)/2(δ)∩Cε = ∅ for all small δ > 0, since Cε is compact. If (z,−z)/2 ∈ PW⊥(Cε)
and (x, y) ∈ W(z,−z)/2 ∩ Cε, then for any 0 < h ≤ 3Hε, we have

(Rg◦δr]λ|Cε)W,(z,−z)/2(B((x, y), h))

≤ (Rg◦δr]λ)W,(x−y,y−x)/2(B((x, y), h))

≤ hs−n
∫
(B((x,y),h))

|(x, y)− (a, b)|n−s d(Rg◦δr]λ)W,(x−y,y−x)/2(a, b)

≤ hs−niε ≤ 3(n−s)/2h(s−n)/2.

(3.16)

If (z,−z)/2 ∈ PW⊥(Cε) and (x, y) /∈ W(z,−z)/2 ∩ Cε, then there exists hx,y > 0 such
that B((x, y), h) ∩ Cε ∩W(z,−z)/2 = ∅ for all 0 < h < hx,y and B((x, y), h) ∩ Cε ∩
W(z,−z)/2 6= ∅ for all h ≥ hx,y. If 0 < h < hx,y, then by (2.1)

(Rg◦δr]λ|Cε)W,(z,−z)/2(B((x, y), h)) = 0.

If hx,y ≤ h ≤ Hε, then B((x, y), h) ⊂ B((a, b), 3h) for some (a, b) ∈ W(z,−z)/2 ∩ Cε,
and (3.16) gives the claim. �
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Theorem 3.13. Let λ be a Radon measure on Rn × Rn with compact support.
Assume that dimH λ > n. Then for θn × L1-almost all (g, r) ∈ O(n)× (0,∞)

(1) dimlocπ][(Rg◦δr]λ)W,(x−g◦δr(y),g◦δr(y)−x)/2](x) = dimlocλ(x, y)− n = dnλ(x, y)− n

and

(2) dimlocπ][(Rg◦δr]λ)W,(x−g◦δr(y),g◦δr(y)−x)/2](x) = d
n

λ(x, y)− n
for λ-almost all (x, y) ∈ Rn × Rn.

Proof. The lower bounds for local dimensions follow in both cases from Theorem
3.6. In order to prove the upper bounds, it is enough to consider sliced measures
(Rg◦δr]λ)W,(x−g◦δr(y),g◦δr(y)−x)/2. Moreover, in both (1) and (2) we have

PW⊥](Rg◦δr]λ)� Hn
∣∣
W⊥

(3.17)

for θn × L1-almost all (g, r) ∈ O(n)× (0,∞) by Remark 2.1(3) and Corollary 3.3.
First we prove the upper bound in (1). Since dimH(Rg◦δr]λ) = dimH λ we may by

(3.17) for θn × L1-almost all (g, r) ∈ O(n) × (0,∞) apply Lemma 3.11 to Rg◦δr]λ
and W . Thus by Lemma 2.2 and Remark 2.1(1)

0 = Rg◦δr]λ{(x, y) ∈ Rn × Rn : dimloc((Rg◦δr]λ)W,(x−y,y−x)/2)(x, y)

> dimloc(Rg◦δr]λ)(x, y)− n}
= λ{(x, y) ∈ Rn × Rn : dimloc((Rg◦δr]λ)W,(x−g◦δr(y),g◦δr(y)−x)/2)(x, g ◦ δr(y))

> dimloc(Rg◦δr]λ)(x, g ◦ δr(y))− n}
= λ{(x, y) ∈ Rn × Rn : dimloc((Rg◦δr]λ)W,(x−g◦δr(y),g◦δr(y)−x)/2)(x, g ◦ δr(y))

> dimlocλ(x, y)− n}.
Now we prove the upper bound in (2). Assume first that Is(λ) < ∞ for some

s > n. Then we can use results for packing dimension of sliced measures. It
follows from (3.17) that measures π][(Rg◦δr]λ)W,(x−g◦δr(y),g◦δr(y)−x)/2)] are defined for
λ× θn × L1-almost all (x, y, g, r) ∈ Rn × Rn ×O(n)× (0,∞) (see Remark 3.8).

Assume to the contrary that there are t1, t2 ∈ R so that

0 < λ× θn × L1{(x, y, g, r) ∈ Rn × Rn ×O(n)× (0,∞) :

dimloc((Rg◦δr]λ)W,(x−g◦δr(y),g◦δr(y)−x)/2)(x, g ◦ δr(y)) > t1 > t2 > d
n

λ(x, y)− n}.
By Fubini’s theorem there exists a Borel set B such that

B ⊂ {(x, y) ∈ Rn × Rn : d
n

λ(x, y)− n < t2}
with λ(B) > 0 and for all (x, y) ∈ B we have

0 < θn × L1{(g,r) ∈ O(n)× (0,∞) :

dimloc((Rg◦δr]λ)W,(x−g◦δr(y),g◦δr(y)−x)/2)(x) > t1}.
(3.18)

For every (g, r) ∈ O(n)× (0,∞) define

λg,r = Rg◦δr](λ|B) = (Rg◦δr]λ)|Bg,r ,
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where Bg,r = Rg◦δr(B).
Consider (g, r) ∈ O(n)× (0,∞) such that both (3.17) and Lemma 3.12 hold. In

the proof of [19, Theorem 6.4] it is proved that if k and p are integers with 0 < p < k
and λ is a Radon measure on Rk with compact support and Ip+d(λ) <∞ for some
d > 0, then

Hp- ess sup
a∈V ⊥

dim*
p λV,a ≤ λ- ess sup

x∈Rk
d
p

λ(x)− p(3.19)

provided that V ∈ G(k, k − p) is such that [19, Lemma 2.4] holds and PV ⊥]λ �
Hp
∣∣
V ⊥

. Now λg,r and W satisfy these assumptions. In other words, we have for
θn × L1-almost all (g, r) ∈ O(n)× (0,∞)

Ln- ess sup
z∈Rn

dim*
p(λg,r)W,(z,−z)/2 ≤ λg,r- ess sup

(x,y)∈Rn×Rn
d
n

λg,r(x, y)− n.(3.20)

On the other hand, using Remark 2.1(2) and Lemma 2.2 and the definition of set
B we get for θn × L1-almost all (g, r) ∈ O(n)× (0,∞)

λg,r{(x, y) ∈ Rn × Rn : d
n

λg,r(x, y)− n > t2}

= λ{(x, y) ∈ B : d
n

(Rg◦δr]λ)|Bg,r (x, g ◦ δr(y))− n > t2}

= λ{(x, y) ∈ B : d
n

λ(x, y)− n > t2} = 0.

(3.21)

Thus λg,r- ess sup(x,y)∈Rn×Rn d
n

λg,r(x, y)− n ≤ t2.
Moreover, by (3.18), Remark 2.1(2) and (2.4) we have for θn×L1-positively many

(g, r) ∈ O(n)× (0,∞)

0 < λ{(x, y) ∈ B : dimloc((Rg◦δr]λ)W,(x−g◦δr(y),g◦δr(y)−x)/2)(x, g ◦ δr(y)) > t1}
= λ{(x, y) ∈ B : dimloc((Rg◦δr]λ)W,(x−g◦δr(y),g◦δr(y)−x)/2|Bg,r)(x, g ◦ δr(y)) > t1}
= λg,r{(x, y) ∈ Rn × Rn : dimloc((λg,r)W,(x−y,y−x)/2)(x, y) > t1}

This implies by Corollary 3.3 and (3.2)

0 < Ln{z ∈ Rn : (λg,r)W,(z,−z)/2{(x, y) ∈ Rn × Rn :

dimloc((λg,r)W,(z,−z)/2)(x, y) > t1} > 0}.
(3.22)

Therefore

Ln- ess sup
z∈Rn

dim*
p(λg,r)W,(z,−z)/2 ≥ t1 > t2 ≥ λg,r- ess sup

(x,y)∈Rn×Rn
d
n

λg,r(x, y)− n

for θn×L1-positively many (g, r) ∈ O(n)×(0,∞) giving a contradiction with (3.20).
Thus the claim holds, if we assume that Is(λ) <∞ for some s > n.

Now assume that dimH λ > n. Let n < s < dimH λ and define for every i = 1, 2, . . .

Bi = {(x, y) ∈ Rn × Rn :

∫
|(x, y)− (a, b)|−s dλ(a, b) < i}.
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Then

lim
i→∞

λ((Rn × Rn)\Bi) = λ((Rn × Rn)\
⋃
i

Bi) = 0.(3.23)

Since Is(λ|Bi) <∞ we get for θn × L1-almost all (g, r) ∈ O(n)× (0,∞)

0 = λ{(x,y) ∈ Bi :

dimlocπ][(Rg◦δr](λ|Bi))W,(x−g◦δr(y),g◦δr(y)−x)/2](x) 6= d
n

λ|Bi
(x, y)− n}.

Moreover

Rg◦δr](λ|Bi) = (Rg◦δr]λ)|Rg◦δr (Bi).
Using these with (2.4) and Remark 2.1(2) gives

0 = λ{(x, y) ∈ Bi : dimlocπ][(Rg◦δr]λ)W,(x−g◦δr(y),g◦δr(y)−x)/2](x) 6= d
n

λ(x, y)− n}
for θn × L1-almost all (g, r) ∈ O(n)× (0,∞). Now the claim follows by (3.23). �

Remark 3.14. (1) The upper bound for lower local dimensions holds for all (g, r) ∈
O(n)× (0,∞) for which PW⊥](Rg◦δr]λ)� Hn

∣∣
W⊥

.
(2) In [15] it is shown, that if Im+ε(µ) <∞ for some ε > 0, then for γn,n−m-almost

all (n−m)-planes V and for µ-almost all x ∈ Rn

dimlocµV,x(x) = d
m

µ (x)−m.
Using the methods of the proof of Theorem 3.13 it is possible to show that the
equality also holds under the assumption dimH µ > m.

Theorem 3.13 implies the following results for intersection measures.

Corollary 3.15. Let µ and ν be Radon measures on Rn with compact supports.
Assume that dimH(µ× ν) > n. Then for θn × L1-almost all (g, r) ∈ O(n)× (0,∞)

(1) dimloc(µ ∩ (τx−g◦δr(y) ◦ g ◦ δr)]ν)(x) = dimloc(µ× ν)(x, y)− n = dnµ×ν(x, y)− n

and

(2) dimloc(µ ∩ (τx−g◦δr(y) ◦ g ◦ δr)]ν)(x) = d
n

µ×ν(x, y)− n
for µ× ν-almost all (x, y) ∈ Rn × Rn.

Corollary 3.16. Let µ and ν be Radon measures on Rn with compact supports.
Assume that dimH(µ× ν) > n. Then for Ln × θn × L1-almost all (z, g, r) ∈
Rn ×O(n)× (0,∞)

(1) dimloc(µ ∩ (τz ◦ g ◦ δr)]ν)(x) = dimloc(µ× ν)(x, (τz ◦ g ◦ δr)−1(x))− n
= dnµ×ν(x, (τz ◦ g ◦ δr)−1(x))− n

and

(2) dimloc(µ ∩ (τz ◦ g ◦ δr)]ν)(x) = d
n

µ×ν(x, (τz ◦ g ◦ δr)−1(x))− n
for µ ∩ (τz ◦ g ◦ δr)]ν-almost all x ∈ Rn.
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Proof. We will prove (1). The proof of (2) is similar. By Corollary 3.15(1) and
Lemma 2.2 we have for θn × L1-almost all (g, r) ∈ O(n)× (0,∞)

0 = µ× ν{(x, y) ∈ Rn × Rn : dimloc(µ ∩ (τx−g◦δr(y) ◦ g ◦ δr)]ν)(x) 6= dnµ×ν(x, y)− n}
= µ× (g ◦ δr)]ν{(x, y) ∈ Rn × Rn : dimloc(µ ∩ (τx−y ◦ g ◦ δr)]ν)(x)

6= dnµ×(g◦δr)]ν(x, y)− n}.

Now (µ× (g ◦ δr)]ν)W,(z,−z)/2 is a measure on

W(z,−z)/2 = {(x, y) ∈ Rn × Rn : x− y = z}.

Thus (3.2) and Lemma 2.2 imply that for θn ×L1-almost all (g, r) ∈ O(n)× (0,∞)
and for Ln-almost all z ∈ Rn we have

0 = (µ× (g ◦ δr)]ν)W,(z,−z)/2{(x, y) ∈ Rn × Rn : dimloc(µ ∩ (τx−y ◦ g ◦ δr)]ν)(x)
6= dnµ×(g◦δr)]ν(x, y)− n}

= (µ× (g ◦ δr)]ν)W,(z,−z)/2{(x, x− z) ∈ Rn × Rn : dimloc(µ ∩ (τz ◦ g ◦ δr)]ν)(x)
6= dnµ×(g◦δr)]ν(x, x− z)− n}

= (µ× (g ◦ δr)]ν)W,(z,−z)/2{(x, x− z) ∈ Rn × Rn : dimloc(µ ∩ (τz ◦ g ◦ δr)]ν)(x)
6= dnµ×ν(x, (τz ◦ g ◦ δr)−1(x))− n}

and the claim follows by Remark 2.1(1). �

Remark 3.17. In Corollary 3.15(2) it is not sufficient to assume that dimp(µ×ν) > n.
Thus the upper local dimensions and packing dimensions of intersection measures
depend on dimH µ×ν. Consider example from [20, Remark 3.6]. For 0 < α < β < 1
there are Radon measures µ and ν on [0, 1] such that

dimloc(µ× ν)(x, y) ≥ β + β > α + β ≥ dimlocµ(x) + dimlocν(y)

for µ × ν-almost all (x, y) ∈ [0, 1] × [0, 1]. Choosing α and β properly we have
dimp(µ×ν) > 1, but dimloc(µ×ν)(x, y) < 1 in a set of positive µ×ν -measure. Thus
Remark 2.1(3) implies that for any such (x, y) ∈ [0, 1]× [0, 1] we have d1µ×ν(x, y) =
−∞, which means that µ ∩ (τx−g◦δr(y) ◦ g ◦ δr)]ν is not defined in a set of positive
µ× ν-measure.

3.3. Hausdorff and packing dimensions of intersection measures. Results in
Sections 3.1 and 3.2 imply that results concerning Hausdorff and packing dimensions
in [18] hold with fewer assumptions. In the case of Hausdorff and upper Hausdorff
dimensions we get the following improved versions of [18, Theorem 3.7 and Theorem
4.5].

Theorem 3.18. Let µ and ν be Radon measures on Rn with compact supports.
Assume that dimH(µ× ν) > n. Then for θn × L1-almost all (g, r) ∈ O(n)× (0,∞)

Ln- ess inf{ dimH(µ ∩ (τz ◦ g ◦ δr)]ν) : z ∈ Rn with µ ∩ (τz ◦ g ◦ δr)]ν(Rn) > 0}
= dimH(µ× ν)− n.
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Proof. The proof of [19, Lemma 3.1] shows that for any plane V ∈ G(n, n−m) such
that PV ⊥]µ� Hm|V ⊥ we have

Hm- ess inf{dimH µV,a : a ∈ V ⊥ with µV,a(Rn) > 0} ≤ dimH µ−m.
Since

dimH(µ× (g ◦ δr)]ν) = dimH(µ× ν) > n

we may by Corollary 3.3 apply this for θn ×L1-almost all (g, r) ∈ O(n)× (0,∞) to
µ× (g ◦ δr)]ν and W to get the upper bound.

For the lower bound define for all (g, r) ∈ O(n)× (0,∞)

Cg,r = {z ∈ Rn : µ ∩ (τz ◦ g ◦ δr)]ν(Rn) > 0}.
It is enough to show that for all n < t < dimH(µ× ν)

Ln{z ∈ Cg,r : dimH(µ ∩ (τz ◦ g ◦ δr)]ν) < t− n} = 0

for θn × L1-almost all (g, r) ∈ O(n)× (0,∞). Then

Ln- ess inf{ dimH(µ ∩ (τz ◦ g ◦ δr)]ν) : z ∈ Rn with µ ∩ (τz ◦ g ◦ δr)]ν(Rn) > 0}
≥ t− n

for θn × L1-almost all (g, r) ∈ O(n) × (0,∞), and the result follows by taking a
sequence ti ↗ dimH(µ× ν).

Fix (g, r) ∈ O(n)× (0,∞) such that Sg◦δr](µ×ν)� Ln and Corollary 3.15 holds.
If we have Ln(Eg,r) > 0, where

Eg,r = {z ∈ Cg,r : dimH(µ ∩ (τz ◦ g ◦ δr)]ν) < t− n},
then

µ ∩ (τz ◦ g ◦ δr)]ν{x ∈ Rn :

dimloc(µ ∩ (τz ◦ g ◦ δr)]ν)(x) < t− n} > 0

for z ∈ Eg,r, and it follows by using (3.2) that

µ× (g ◦ δr)]ν{(x, y) ∈ Rn × Rn : dimloc(µ ∩ (τx−y ◦ g ◦ δr)]ν)(x) < t− n} > 0.

Then Corollary 3.15 implies that

µ× ν{(x, y) ∈ Rn × Rn : dimloc(µ× ν)(x, y) < t}
= µ× ν{(x, y) ∈ Rn × Rn : dimloc(µ ∩ (τx−g◦δr(y) ◦ g ◦ δr)]ν)(x) < t− n}
= µ× (g ◦ δr)]ν{(x, y) ∈ Rn × Rn : dimloc(µ ∩ (τx−y ◦ g ◦ δr)]ν)(x) < t− n}
> 0.

Thus t > dimH(µ× ν) which is a contradiction. �

Theorem 3.19. Let µ and ν be Radon measures on Rn with compact supports.
Assume that dimH(µ× ν) > n. Then for θn × L1-almost all (g, r) ∈ O(n)× (0,∞)

Ln- ess sup
z∈Rn

dim*
H(µ ∩ (τz ◦ g ◦ δr)]ν) = dim*

H(µ× ν)− n.
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Proof. The proof of [19, Lemma 4.1] shows that for any plane V ∈ G(n, n−m) such
that PV ⊥]µ� Hm|V ⊥ we have

Hm- ess sup
a∈V ⊥

dim*
H µV,a ≤ dim*

H µ−m.

Since

dimH(µ× (g ◦ δr)]ν) = dimH(µ× ν) > n

and

dim*
H(µ× (g ◦ δr)]ν) = dim*

H(µ× ν)
we may by Corollary 3.3 apply this for θn ×L1-almost all (g, r) ∈ O(n)× (0,∞) to
µ× (g ◦ δr)]ν and W to get the upper bound.

For the lower bound let 0 < t < dim*
H(µ× ν)−n. Fix (g, r) ∈ O(n)× (0,∞) such

that Sg◦δr](µ× ν)� Ln and Corollary 3.15 holds. Then

µ× (g ◦ δr)]ν{(x, y) ∈ Rn × Rn : dimloc(µ ∩ (τx−y ◦ g ◦ δr)]ν)(x) > t}
= µ× ν{(x, y) ∈ Rn × Rn : dimloc(µ ∩ (τx−g◦δr(y) ◦ g ◦ δr)]ν)(x) > t}
= µ× ν{(x, y) ∈ Rn × Rn : dimloc(µ× ν)(x, y) > t+ n} > 0.

Thus Corollary 3.3 and (3.2) imply that
Ln{z ∈ Rn : (µ× (g ◦ δr)]ν)W,(z,−z)/2{(x, x− z) ∈ Rn × Rn :

dimloc(µ ∩ (τz ◦ g ◦ δr)]ν)(x) > t} > 0} > 0

which gives
Ln{z ∈ Rn : µ ∩ (τz ◦ g ◦ δr)]ν{x ∈ Rn :

dimloc(µ ∩ (τz ◦ g ◦ δr)]ν)(x) > t} > 0} > 0.

So we have

Ln- ess sup
z∈Rn

dim*
H(µ ∩ (τz ◦ g ◦ δr)]ν) ≥ t

for θn × L1-almost all (g, r) ∈ O(n) × (0,∞), and the theorem follows by taking a
sequence ti ↗ dim*

H(µ× ν)− n. �

Remark 3.20. In previous theorems it is necessary to consider dimension of product
measure instead of dimensions of µ and ν separately. That is, there does not exist
a function of dimH µ and dimH ν that could replace the right hand side in Theorem
3.18 and Theorem 3.19. In [20, Example 3.5] there is an example of measures µ
and ν on R such that dimH(µ × ν) > dimH µ + dimH ν. Let µ̃ and ν̃ be measures
on self-similar Cantor sets in R such that dimH µ̃ = dimH µ and dimH ν̃ = dimH ν.
Then

dimH µ̃× ν̃ = dimH µ̃+ dimH ν̃ < dimH(µ× ν).

For packing and upper packing dimension we get that [18, Theorem 5.9 and
Theorem 6.3] hold under assumption dimH(µ× ν) > n.
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Theorem 3.21. Let µ and ν be Radon measures on Rn with compact supports such
that dimH(µ× ν) > n. Then for θn × L1-almost all (g, r) ∈ O(n)× (0,∞) we have

Ln- ess inf{ dimp(µ ∩ (τz ◦ g ◦ δr)]ν) : z ∈ Rn with µ ∩ (τz ◦ g ◦ δr)]ν(Rn) > 0}
= µ× ν- ess inf

(x,y)∈Rn×Rn
d
n

µ×ν(x, y)− n.

Proof. The proof of the lower bound goes as in the proof of Theorem 3.18.
For the upper bound let t > µ × ν- ess inf(x,y)∈Rn×Rn d

n

µ×ν(x, y). Fix (g, r) ∈
O(n)× (0,∞) such that Sg◦δr](µ× ν)� Ln and Corollary 3.15 holds. Then

µ× (g ◦ δr)]ν{(x, y) ∈ Rn × Rn : dimloc(µ ∩ (τx−y ◦ g ◦ δr)]ν)(x) < t− n}
= µ× ν{(x, y) ∈ Rn × Rn : dimloc(µ ∩ (τx−g◦δr(y) ◦ g ◦ δr)]ν)(x) < t− n}
= µ× ν{(x, y) ∈ Rn × Rn : d

n

µ×ν(x, y) < t} > 0.

Thus (3.2) implies that

0<Ln{z∈Rn : (µ× (g ◦ δr)]ν)W,(z,−z)/2{(x, x− z) ∈ Rn × Rn :

dimloc(µ ∩ (τz ◦ g ◦ δr)]ν)(x) < t− n} > 0}
and further

Ln{z ∈ Rn : µ ∩ (τz ◦ g ◦ δr)]ν(Rn) > 0 and dimp(µ ∩ (τz ◦ g ◦ δr)]ν) ≤ t− n} > 0.

So we have for θn × L1-almost all (g, r) ∈ O(n)× (0,∞)

Ln- ess inf{ dimp(µ ∩ (τz ◦ g ◦ δr)]ν) : z ∈ Rn with µ ∩ (τz ◦ g ◦ δr)]ν(Rn) > 0}
≤ t− n,

and the claim follows. �

Theorem 3.22. Let µ and ν be Radon measures on Rn with compact supports such
that dimH(µ× ν) > n. Then for θn × L1-almost all (g, r) ∈ O(n)× (0,∞) we have

Ln- ess sup
z∈Rn

dim*
p(µ ∩ (τz ◦ g ◦ δr)]ν) = µ× ν- ess sup

(x,y)∈Rn×Rn
d
n

µ×ν(x, y)− n.

Proof. The lower bound can be proven as in the proof of Theorem 3.19.
For the upper bound let

t < Ln- ess sup
z∈Rn

dim*
p(µ ∩ (τz ◦ g ◦ δr)]ν).

Fix (g, r) ∈ O(n) × (0,∞) such that Sg◦δr](µ × ν) � Ln and Corollary 3.15 holds.
Then

Ln{z ∈ Rn : µ ∩ (τz ◦ g ◦ δr)]ν{x : dimloc(µ ∩ (τz ◦ g ◦ δr)]ν)(x) > t} > 0} > 0,

which means that

Ln{z ∈ Rn : (µ× (g ◦ δr)]ν)W,(z,−z)/2{(x, x− z) :
dimloc(µ ∩ (τz ◦ g ◦ δr)]ν)(x) > t} > 0} > 0.
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Thus (3.2) gives

0 < µ× (g ◦ δr)]ν{(x, y) ∈ Rn × Rn : dimloc(µ ∩ (τx−y ◦ g ◦ δr)]ν)(x) > t}
= µ× ν{(x, y) ∈ Rn × Rn : dimloc(µ ∩ (τx−g◦δr(y) ◦ g ◦ δr)]ν)(x) > t}
= µ× ν{(x, y) ∈ Rn × Rn : d

n

µ×ν(x, y)− n > t}.

So we have for θn × L1-almost all (g, r) ∈ O(n)× (0,∞)

t ≤ µ× ν- ess sup
(x,y)∈Rn×Rn

d
n

µ×ν(x, y)− n,

and thus by taking a sequence ti ↗ Ln- ess supz∈Rn dim*
p(µ∩ (τz ◦g ◦δr)]ν) the claim

follows. �

3.4. Average dimensions. Next we will show that the average dimension of in-
tersection measures behaves like the lower local dimension. This improves a result
by Llorente [20, Theorem 4.7 and Theorem 4.10].

Theorem 3.23. Let µ and ν be Radon measures on Rn with compact supports and
let dimH(µ× ν) > n. Then for θn × L1-almost all (g, r) ∈ O(n)× (0,∞)

dimA(µ ∩ (τx−g◦δr(y) ◦ g ◦ δr)]ν)(x) = dimA(µ× ν)(x, y)− n
for µ× ν-almost all (x, y) ∈ Rn × Rn.

Proof. First we prove the upper bound. The proof of [20, Theorem 2.8] shows that
for any plane V ∈ G(n, n−m) such that PV ⊥]µ� Hm|V ⊥ we have

dimA µV,x(x) ≤ dimA µ(x)−m
for µ-almost all x ∈ Rn. Since

dimH(µ× (g ◦ δr)]ν) = dimH(µ× ν)

we may by Corollary 3.3 apply this for θn ×L1-almost all (g, r) ∈ O(n)× (0,∞) to
µ× (g ◦ δr)]ν and W . Thus

µ× (g ◦ δr)]ν{(x, y) ∈ Rn × Rn : dimA(µ× (g◦δr)]ν)W,(x−y,y−x)/2(x, y)
> dimA µ× (g ◦ δr)]ν(x, y)− n} = 0

and further

µ× ν{(x, y) ∈ Rn × Rn : dimA(µ× (g◦δr)]ν)W,(x−g◦δr(y),g◦δr(y)−x)/2(x, g ◦ δr(y))
> dimA µ× (g ◦ δr)]ν(x, g ◦ δr(y))− n} = 0,

which gives by Lemma 2.2(3)

µ× ν{(x, y) ∈ Rn × Rn : dimA(µ ∩ (τx−g◦δr(y) ◦ g ◦ δr)]ν)(x)
> dimA(µ× ν)(x, y)−n} = 0.

For the lower bound let

0 < s < dimA(µ× ν)(x, y)− n.(3.24)
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We want to show that for µ× ν× θn×L1-almost all (x, y, g, r) ∈ Rn×Rn×O(n)×
(0,∞)

Ds
µ∩(τx−g◦δr(y)◦g◦δr)]ν

(x) = 0.

Let 0 < r1 < r2 < ∞ and let c1, . . . , c5 be constants which may depend on r1, r2, s
and n. Now using Lemma 3.5, Fubini’s theorem and a change of variable we get for
µ× ν-almost all (x, y) ∈ Rn × Rn

∫ r2

r1

∫
µ ∩ (τx−g◦δr(y) ◦ g ◦ δr)]ν(B(x, h)) dθn(g) dL1(r)

≤ c1

∫
B((x,y),c2h)

|(x, y)− (a, b)|−n d(µ× ν)(a, b)

= c1

∫ ∞
0

µ× ν{(a, b) ∈ B((x, y), c2h) : |(x, y)− (a, b)|−n ≥ u} dL1(u)

= c1(c2h)
−nµ× ν(B((x, y), c2h) + c1

∫ c2h

0

t−n−1µ× ν(B((x, y), t) dL1(t)

Since

c1(c2h)
−nµ× ν(B((x, y), c2h)

= c1nµ× ν(B((x, y), c2h)
[ ∫ 2c2h

c2h

t−n−1 dL1(t) +

∫ ∞
2c2h

t−n−1 dL1(t)
]

= c1n

∫ 2c2h

c2h

µ× ν(B((x, y), c2h))t
−n−1 dL1(t) + c1(2c2h)

−nµ× ν(B((x, y), c2h))

we get

c1(c2h)
−nµ× ν(B((x, y), c2h) ≤ c3

∫ 2c2h

c2h

µ× ν(B((x, y), t))t−n−1 dL1(t),

and thus ∫ r2

r1

∫
µ ∩ (τx−g◦δr(y) ◦ g ◦ δr)]ν(B(x, h)) dθn(g) dL1(r)

≤ c4

∫ 2c2h

0

t−n−1µ× ν(B((x, y), t)) dL1(t).

(3.25)
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Then, since dimH(µ × ν) > n, by using Fatou’s lemma, Fubini’s theorem,(3.24),
(3.25) and [20, Lemma 2.7] we get for µ× ν-almost all (x, y) ∈ Rn × Rn∫ r2

r1

∫
Ds
µ∩(τx−g◦δr(y)◦g◦δr)]ν

(x) dθn(g) dL1(r)

≤ lim inf
δ→0

1

| log δ|

∫ 1

δ

p−s−1
∫ r2

r1

∫
µ ∩ (τx−g◦δr(y) ◦ g ◦ δr)]ν(B(x, p))

× dθn(g) dL1(r) dL1(p)

≤ c4 lim inf
δ→0

1

| log δ|

∫ 1

δ

p−s−1
∫ 2c2p

0

t−n−1µ× ν(B((x, y), t)) dL1(t) dL1(p)

= c4 lim inf
δ→0

1

| log δ|

[ ∫ 2c2

2c2δ

∫ 1

t/2c2

p−s−1t−n−1µ× ν(B((x, y), t)) dL1(p) dL1(t)

+

∫ 2c2δ

0

∫ 1

δ

p−s−1t−n−1µ× ν(B((x, y), t)) dL1(p) dL1(t)
]

≤ c5 lim inf
δ→0

1

| log δ|

[ ∫ 1

2c2δ

µ× ν(B((x, y), t))

ts+n+1
dL1(t)

+

∫ 2c2

1

µ× ν(B((x, y), t))

ts+n+1
dL1(t) + δ−s

∫ 2c2δ

0

µ× ν(B((x, y), t))

tn+1
dL1(t)

]
= c5 lim inf

δ→0

1

| log δ|

[ ∫ 1

2c2δ

µ× ν(B((x, y), t))

ts+n+1
dL1(t)

+ δ−s
∫ 2c2δ

0

µ× ν(B((x, y), t))

tn+1
dL1(t)

]
= 0

�

Corollary 3.24. Let µ and ν be Radon measures on Rn with compact supports such
that dimH(µ×ν) > n. Then for Ln×θn×L1-almost all (z, g, r) ∈ Rn×O(n)×(0,∞)

dimA(µ ∩ (τz ◦ g ◦ δr)]ν)(x) = dimA(µ× ν)(x, (τz ◦ g ◦ δr)−1(x))− n
for µ ∩ (τz ◦ g ◦ δr)]ν-almost all x ∈ Rn.

Proof. As the proof of Corollary 3.16. �

4. Linear maps and continuously differentiable functions

We study intersection measures in the case where similarities are replaced by
linear mappings. We only need to consider invertible linear mappings, since almost
all linear mappings L : Rn → Rn are invertible.

We denote by GL(n) the group of invertible linear mappings L : Rn → Rn. Now
every L ∈ GL(n) has a unique representation, the QR-decomposition, as

L = g ◦ T,
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where g ∈ O(n) and T ∈ T (n)+, which is the group of upper triangular matrices
with strictly positive diagonal entries, see for example [8, Theorem 1.6.1]. Thus we
consider intersection measures

µ ∩ (τz ◦ g ◦ T )]ν = π]
[
(µ× (g ◦ T )]ν)W,(z,−z)/2

]
.

Denote the singular values of L, that is, the lengths of the semiaxes of the image
of the unit ball, by %L1 , . . . , %Ln . Let %L1 ≥ . . . ≥ %Ln and define

GL(n)r1,r2 = {L ∈ GL(n) : r1 ≤ %Ln and %L1 ≤ r2}

and

T (n)r1,r2+ = {T ∈ T (n)+ : r1 ≤ %Tn and %T1 ≤ r2}.

By [8, Proposition 5.3.2] there exists a measure α on GL(n) such that for every
integrable Borel function f : GL(n)r1,r2 → R we have∫

f(L) dα(L) =

∫∫
T (n)+

f(g ◦ T ) dθn(g)L
n
2
(n+1)(T ).

Moreover, this measure is mutually absolutely continuous with the Haar measure
on GL(n) (and with Ln2).

We also consider the case where similarities are replaced by continuously differ-
entiable functions, that is, we consider intersection measures

µ ∩ (τz ◦ f)]ν = π]
[
(µ× f]ν)W,(z,−z)/2

]
,

where f : Rn → Rn is continuously differentiable. Now it is not clear what we mean
by ’almost every continuously differentiable function’, since there is no analogue
for Lebesgue measure or Haar measure in the infinite-dimensional space C1(Rn,Rn)
of continuously differentiable functions. We use a notion of prevalence from [14]
instead.

Definition 4.1. Let V be a complete metric linear space. A Borel measure µ on V
is transverse to a Borel set S ⊂ V if

(1) there exists a compact set U ⊂ V for which 0 < µ(U) <∞ and
(2) µ(S + v) = 0 for every v ∈ V .

A Borel set P ⊂ V is prevalent if there exist a measure transverse to the complement
of P .

In our application we take µ to be the measure θn×L
n
2
(n+1). We begin by proving

results for continuously differentiable functions. Then as a corollary we get results
for almost all linear maps by choosing f = 0. Proofs in this chapter are often just
slight modifications of those in Chapter 3 and in these cases the details of the proofs
are omitted.
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4.1. Properties of intersection measures. As before we need to consider mea-
sures (Rg◦T+f]λ)W,(z,−z)/2 instead of product measures. Here λ is a Radon measure
on Rn×Rn with compact support. The following analogue of Lemma 3.1 is impor-
tant in proving properties of these measures.

Lemma 4.2. Let λ be a Radon measure on Rn×Rn and let f ∈ C1(Rn,Rn). Assume
that Is(λ) <∞ for some s ≥ n. Then for all 0 < r1 < r2 <∞

lim sup
δ→0

δ−n
∫∫

T (n)
r1,r2
+

θn{g∈O(n) : |a− x−g ◦ T (b− y)− (f(b)− f(y))|≤δ}

× dL
n
2
(n+1)(T )|(a, b)− (x, y)|−s+nd(λ× λ)(a, b, x, y)

≤ cIs(λ),

where c is a constant depending only on n, s, r1 and r2.

In the proof of the lemma we need to integrate in polar coordinates. We denote
by Sn−1 the surface of the unit ball, that is,

Sn−1 = {x ∈ Rn : |x| = 1},

and for x ∈ Rn\{0} we define

r = |x| and x̂ =
x

r
∈ Sn−1.

Then there is a unique Borel measure σ on Sn−1 such that for every integrable Borel
function f : Rn → [0,∞)∫

f(x) dLn(x) =
∫
Sn−1

∫ ∞
0

f(rx̂)rn−1 dL1(r) dσ(x̂).(4.1)

For the proof see for example [9, Theorem 2.49].

Proof of Lemma 4.2. Denote by c1, . . . , c9 constants which may depend on n, s, r1
and r2. Define for all (a, b, x, y) ∈ (Rn)4

Iδ(a, b, x, y)=

∫
T (n)

r1,r2
+

θn{g ∈ O(n) :

|a− x−g ◦ T (b− y)− (f(b)− f(y))|≤δ} dL
n
2
(n+1)(T ).

As is the proof of Lemma 3.1 we get

Iδ(a, b, x, y) =

∫
{T∈T (n)r1,r2+ :

∣∣|a−x−(f(b)−f(y))|−|T (b−y)|∣∣≤δ} θn{g ∈O(n) :
|a− x−g ◦ T (b− y)− (f(b)− f(y))| ≤ δ} dL

n
2
(n+1)(T ),



LOCAL DIMENSIONS OF INTERSECTION MEASURES 41

and further, ∫
Iδ(a, b, x, y)|(a, b)− (x, y)|−s+n d(λ× λ)(a, b, x, y)

=

∫
Aδ

Iδ(a, b, x, y)|(a, b)− (x, y)|−s+n d(λ× λ)(a, b, x, y),

where

Aδ = {(a, b, x, y) ∈ (Rn)4 : r1|b− y| − δ ≤ |a− x− (f(b)− f(y))| ≤ r2|b− y|+ δ}.
Let

A1
δ = {(a, b, x, y) ∈ Aδ : |a− x− (f(b)− f(y))| ≤ 2δ},

A2
δ = {(a, b, x, y) ∈ Aδ : r1|b− y| ≤ 2δ}

and

A3
δ = {(a, b, x, y) ∈ Aδ : |a− x− (f(b)− f(y))| > 2δ, r1|b− y| > 2δ},

in which case Aδ = A1
δ ∪ A2

δ ∪ A3
δ .

If (a, b, x, y) ∈ A1
δ , then |a−x−(f(b)−f(y))| ≤ 2δ and r1|b−y| ≤ 3δ. Moreover, if

(a, b, x, y) ∈ sptλ×sptλ, the facts that λ has a compact support and f ∈ C1(Rn,Rn)
imply |f(b)− f(y)| ≤M |b− y|, where M is independent of b and y. Thus we have
for (a, b, x, y) ∈ A1

δ ∩ sptλ× sptλ

|a− x| ≤ 2δ + |f(b)− f(y)| ≤ c1δ.

So

|(a, b)− (x, y))| =
√
|a− x|2 + |b− y|2 ≤ c2δ,

and using finiteness of the s-energy, we get

lim sup
δ→0

δ−n
∫
A1
δ

Iδ(a, b, x, y)|(a, b)− (x, y)|−s+n d(λ× λ)(a, b, x, y)

≤ cn2L
n
2
(n+1)(T (n)r1,r2+ ) lim sup

δ→0

∫
A1
δ

|(a, b)− (x, y)|−s d(λ× λ)(a, b, x, y) = 0.

(4.2)

Similarly, if (a, b, x, y) ∈ A2
δ , then r1|b − y| ≤ 2δ and |a − x − (f(b) − f(y))| ≤

(1 + 2r2
r1
)δ. So

lim sup
δ→0

δ−n
∫
A2
δ

Iδ(a, b, x, y)|(a, b)− (x, y)|−s+n d(λ× λ)(a, b, x, y) = 0.(4.3)

Finally, let (a, b, x, y) ∈ A3
δ . Then

1

2
r1|b− y| ≤ |a− x− (f(b)− f(y))| ≤ 2r2|b− y|(4.4)

and thus for (a, b, x, y) ∈ A3
δ ∩ sptλ× sptλ

|a− x| ≤ 2r2|b− y|+ |f(b)− f(y)| ≤ c3|b− y|,
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which implies

|(a, b)− (x, y)| =
√
|a− x|2 + |b− y|2 ≤ c4|b− y|.(4.5)

We write every T ∈ T (n)r1,r2+ in polar coordinates, that is T = rT̂ , where r =√∑
i,j |Ti,j|2 and T̂ = T

r
. Then %T̂i = r−1%Ti for every i = 1, . . . , n. We also have the

following relation

%T1 ≤
√∑

i,j

|Ti,j|2 ≤
√
n%T1 .

For the proof of this, see for example [10, (2.2-9) and (2.3-6)]. Thus we get that, if
T ∈ T r1,r2+ , then T̂ ∈ T c5,r2/r1+ , where c5 = r1√

nr2
.

Now by (4.1), binomial formula and (4.4) we have

L
n
2
(n+1){T ∈ T (n)r1,r2+ :

∣∣|a− x− (f(b)− f(y))| − |T (b− y)|
∣∣ ≤ δ}

≤
∫
S
n
2 (n+1)−1∩T c5,r2/r1+

∫ |a−x−(f(b)−f(y))|+δ
|T̂ (b−y)|

|a−x−(f(b)−f(y))|−δ
|T̂ (b−y)|

r
n
2
(n+1)−1 dL1(r) dσ(T̂ )

=
(n
2
(n+ 1)

)−1[
(|a− x− (f(b)− f(y))|+ δ)

n
2
(n+1) − (|a− x− (f(b)− f(y))|

− δ)
n
2
(n+1)

] ∫
S
n
2 (n+1)−1∩T c5,r2/r1+

|T̂ (b− y)|−
n
2
(n+1) dσ(T̂ )

≤
(n
2
(n+ 1)

)−1
c6δ|a− x− (f(b)− f(y))|

n
2
(n+1)−1

∫
S
n
2 (n+1)−1∩T c5,r2/r1+

c
−n

2
(n+1)

5

× |b− y|−
n
2
(n+1) dσ(T̂ )

≤ c7δ|b− y|−1.

Using this with [25, Lemma 3.8] gives

Iδ(a, b, x, y)

≤ c8δ
n−1|a− x− (f(b)− f(y))|1−nc7δ|b− y|−1

≤ c8c7δ
n|b− y|−n.

Thus, using also (4.5), we get

lim sup
δ→0

δ−n
∫
A3
δ

Iδ(a, b, x, y)|(a, b)− (x, y)|−s+n d(λ× λ)(a, b, x, y)

≤ c7c8 lim sup
δ→0

∫
A3
δ

|b− y|−n|(a, b)− (x, y)|−s+n d(λ× λ)(a, b, x, y)

≤ c9 lim sup
δ→0

∫
A3
δ

|(a, b)− (x, y)|−s d(λ× λ)(a, b, x, y)

and the lemma follows by (4.2) and (4.3). �
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Now we can prove an analogue of Theorem 3.2.

Theorem 4.3. Let λ be a Radon measure on Rn × Rn with compact support such
that In(λ) < ∞ and let f ∈ C1(Rn,Rn). Then for θn × L

n
2
(n+1)-almost all (g, T ) ∈

O(n)× T (n)+
S(g◦T+f)]λ� Ln.

Proof. As the proof of Theorem 3.2 using Lemma 4.2 instead of Lemma 3.1. �

As in the case of similarities we only need to assume the following local energy
condition.

Corollary 4.4. Let λ be a Radon measure on Rn × Rn with compact support such
that

∫
|(x, y) − (a, b)|−n dλ(a, b) < ∞ for λ-almost all (x, y) ∈ Rn × Rn and let

f ∈ C1(Rn,Rn). Then

S(g◦T+f)]λ� Ln

for θn × L
n
2
(n+1)-almost all (g, T ) ∈ O(n)× T (n)+.

Proof. As the proof of Corollary 3.3. �

4.2. Local dimensions of intersection measures. We prove results analogous
to results in Section 3.2. The following analogue of Lemma 3.5 is needed for this.

Lemma 4.5. Let λ be a Radon measure on Rn × Rn with compact support. Fix
0 < r1 < r2 < ∞ and f ∈ C1(Rn,Rn). If (x, y) ∈ Rn × Rn is such that

∫
|(x, y) −

(a, b)|−n dλ(a, b) <∞, then∫
T (n)

r1,r2
+

∫
π][(R(g◦T+f)]λ)W,(x−(g◦T+f)(y),(g◦T+f)(y)−x)/2] dθn(g) dL

n
2
(n+1)(T )

≤ c

∫
B((x,y),c̃h)

|(x, y)− (a, b)|−n dλ(a, b),

where c and c̃ are constants depending on n, r1 and r2.

Proof. As the proof of Lemma 3.5 using similar modifications as was used in the
proof of Lemma 4.2. �

Now we can prove a result for intersection measures.

Theorem 4.6. Let µ and ν be Radon measures on Rn with compact supports such
that

∫
|(x, y) − (a, b)|−n d(µ × ν)(a, b) < ∞ for µ × ν-almost all (x, y) ∈ Rn × Rn

and let f ∈ C1(Rn,Rn). Then for θn × L
n
2
(n+1)-almost all (g, T ) ∈ O(n)× T (n)+

dimloc(µ ∩ (τx−(g◦T+f)(y) ◦ (g ◦ T + f))]ν)(x) ≥ dimloc(µ× ν)(x, y)− n
= dnµ×ν(x, y)− n

and

dimloc(µ ∩ (τx−(g◦T+f)(y) ◦ (g ◦ T + f))]ν)(x) ≥ d
n

µ×ν(x, y)− n
for µ× ν-almost all (x, y) ∈ Rn × Rn.
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Proof. As the proof of Theorem 3.6 using Lemma 4.5 instead of Lemma 3.5. �

In order to prove that Theorem 4.6 holds without assuming the local energy
condition we have to make an extra assumption that g ◦ T + f is injective. We also
need the following analogue of Lemma 2.2 for the proof.

Lemma 4.7. Let λ be a Radon measure on Rn × Rn with compact support and let
f ∈ C1(Rn,Rn). Then for θn × L

n
2
(n+1)-almost all (g, T ) ∈ O(n)× T (n)+

(1) dnR(g◦T+f)]λ
(x, (g ◦ T + f)(y)) ≤ dnλ(x, y),

(2) d
n

R(g◦T+f)]λ
(x, (g ◦ T + f)(y)) ≤ d

n

λ(x, y)

and

(3) dimA(R(g◦T+f)]λ)(x, (g ◦ T + f)(y)) ≤ dimA λ(x, y)

for λ-almost all (x, y) ∈ Rn×Rn. Equalities hold in (1), (2) and (3) for θn×L
n
2
(n+1)-

almost all (g, T ) ∈ O(n)× T (n)+ for which g ◦ T + f is injective.

Proof. The proof of the upper bounds in both (1) and (2) goes as in the proof of
Lemma 2.2, since for fixed (g, T ) ∈ O(n)× T (n)+ we have

|(x, (g ◦ T + f)(y))− (a, (g ◦ T + f)(b))| ≤ c1|(x, y)− (a, b)|

for all (x, y), (a, b) ∈ sptλ. Here c1 is a constant which does not depend on (x, y) or
(a, b). This also implies

λ(B((x, y), h/c1)) ≤ R(g◦T+f)]λ(B((x, (g ◦ T + f)(y)), h))

which gives the upper bound in (3).
For the opposite inequalities fix (x, y) ∈ sptλ and let (g, T ) ∈ O(n) × T (n)+ be

such that g ◦T + f is injective and |(Df(y)+ g ◦T )(b)| ≥ c2|b| for all b ∈ Rn, where
c2 is a constant. Now

f(b)− f(y) = Df(y)(b− y) + |b− y|ε(b− y),

where ε is a function such that ε(b− y)→ 0 as |b− y| → 0.
Let |b− y| be so small that |ε(b− y)| ≤ c2/2. Then

|(g ◦ T + f)(b)− (g ◦ T + f)(y)| = |f(b)− f(y) + (g ◦ T )(b− y)|
= |(Df(y) + g ◦ T )(b− y) + |b− y|ε(b− y)|
≥
∣∣|(Df(y) + g ◦ T )(b− y)| − |b− y||ε(b− y)|

∣∣
≥ 1

2
c2|b− y|,

which implies

|(x, y)− (a, b)| ≤ c3|(x, (g ◦ T + f)(y))− (a, (g ◦ T + f)(b))|(4.6)
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for all (a, b) ∈ Rn × Rn such that |(a, b) − (x, y)| is small enough. Further, since
g ◦ T + f is injective, we get∫

B((x,(g◦T+f)(y)),h)
|(a, b)− (x, (g ◦ T + f)(y))|−n dR(g◦T+f)]λ(a, b)

≤
∫
B((x,y),c3h)

|(a, (g ◦ T + f)(b))− (x, (g ◦ T + f)(y))|−n dλ(a, b)

≤ cn3

∫
B((x,y),c3h)

|(a, b)− (x, y)|−n dλ(a, b),

if h is small enough. The equalities (1) and (2) follow then by using Fubini’s theorem,
since

θn × L
n
2
(n+1)(O(n)× T (n)+)

= θn × L
n
2
(n+1)(

⋃
i

{(g, T ) : |(Df(y) + g ◦ T )(b)| ≥ 2−i|b| for all b ∈ Rn}).

Combining this with (4.6) also implies that if h is small enough, then for θn×L
n
2
(n+1)-

almost all (g, T ) ∈ O(n)× T (n)+ for which g ◦ T + f is injective

R(g◦T+f)]λ(B((x, (g ◦ T + f)(y)), h)) ≤ λ(B((x, y), h/c3))

for λ-almost all (x, y) ∈ Rn × Rn. Thus the equality in (3) follows. �

Corollary 4.8. Let λ be a Radon measure on Rn × Rn with compact support and
let f ∈ C1(Rn,Rn). If dimH λ > n, then

dimH(R(g◦T+f)]λ) = dimH λ

and

dim*
H(R(g◦T+f)]λ) = dim*

H λ

for θn × L
n
2
(n+1)-almost all (g, T ) ∈ O(n)× T (n)+ for which g ◦ T + f is injective.

Proof. Follows from Lemma 4.7(1) and Remark 2.1(1). �

Now we can prove the theorem. As before we define for all g ∈ O(n), T ∈ T (n)+
and f ∈ C1(Rn,Rn)

Eg,T,f = {(x, y) ∈ Rn × Rn : µ ∩ (τx−(g◦T+f)(y) ◦ (g ◦ T + f))]ν is defined}.

Remark 4.9. If
∫
|(x, y) − (a, b)|−n d(µ × ν)(a, b) < ∞ for µ × ν-almost all (x, y) ∈

Rn × Rn, then intersection measures µ ∩ (τx−(g◦T+f)(y) ◦ (g ◦ T + f))]ν are defined
for all f ∈ C1(Rn,Rn) and for µ × ν × θn × L

n
n
(n+1)-almost all (x, y, g, T ) ∈ Rn ×

Rn ×O(n)× T (n)+. Again, this follows from Corollary 4.4 as in [24, Lemma 4.6].
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Theorem 4.10. Let µ and ν be Radon measures on Rn with compact supports and
let f ∈ C1(Rn,Rn). Then for θn × L

n
2
(n+1)-almost all (g, T ) ∈ O(n) × T (n)+ for

which g ◦ T + f is injective

dimloc(µ ∩ (τx−(g◦T+f)(y) ◦ (g ◦ T + f))]ν)(x) ≥ dimloc(µ× ν)(x, y)− n
≥ dnµ×ν(x, y)− n

and

dimloc(µ ∩ (τx−(g◦T+f)(y) ◦ (g ◦ T + f))]ν)(x) ≥ d
n

µ×ν(x, y)− n

for µ × ν-almost all (x, y) ∈ Eg,T,f and d
n

µ×ν(x, y) = −∞ for µ × ν-almost all
(x, y) ∈ (Rn × Rn)\Eg,T,f .

Proof. As the proof of Theorem 3.9 using Corollary 4.4, Theorem 4.6 and Lemma
4.7. �

In order to prove upper bounds for local dimensions of intersection measures
we again have to make an assumption that g ◦ T + f is injective. In the case of
the lower local dimension we can replace this assumption by the assumption that
dimH(µ× ν) = dimH µ+ dimH ν. We need the next lemma for that.

Lemma 4.11. Let µ and ν be Radon measures on Rn with compact supports. If
dimH(µ×ν) = dimH µ+dimH ν, then in a prevalent set of functions f ∈ C1(Rn,Rn)

dimH(µ× f]ν) = dimH(µ× ν)

and

dim*
H(µ× f]ν) = dim*

H(µ× ν).

Proof. Since (x, y) 7→ (x, f(y)) is Lipschitz on the compact set spt(µ× ν), we have
dimH(µ× f]ν) ≤ dimH(µ× ν). It is proved in [13] that if ν is a Radon measure on
Rn with compact support, then in a prevalent set of functions f ∈ C1(Rn,Rn)

dimH(f]ν) = dimH ν.

Thus by (2.7) in a prevalent set of functions f ∈ C1(Rn,Rn)

dimH(µ× f]ν) ≥ dimH µ+ dimH(f]ν) = dimH µ+ dimH ν = dimH(µ× ν).

The same proof works for dim*
H. �

For the upper bound of upper local dimensions of intersection measures we need
the following lemma, which is an analogue of Lemma 3.12.

Lemma 4.12. Let λ be a Radon measure on Rn × Rn with compact support such
that dimH λ = s > n and let f ∈ C1(Rn,Rn). Then for θn × L

n
2
(n+1)-almost all

(g, T ) ∈ O(n)× T (n)+ there exists for any ε > 0 a compact set Cε ⊂ Rn × Rn with
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R(g◦T+f)]λ((Rn × Rn)\Cε) < ε and Hε such that for Hn-almost all (z,−z)/2 ∈ W⊥

we have

((R(g◦T+f)]λ)
∣∣
Cε
)W,(z,−z)/2(B((x, y), h)) ≤ ch(s−n)/2

for all (x, y) ∈ W(z,−z)/2 and 0 < h ≤ Hε. Here c is a constant depending only on s
and n.

Proof. Theorem 4.6 implies that for θn ×L
n
2
(n+1)-almost all (g, T ) ∈ O(n)× T (n)+

we can find for R(g◦T+f)]λ-almost all (x, y) ∈ Rn × Rn a constant H depending on
(x, y) such that for all h < H

(R(g◦T+f)]λ)W,(x−y,y−x)/2(B(x, y), h) ≤ h(s−n)/2.

Let ε > 0. For every i = 1, 2, . . . define a Borel set

Bi = {(x,y) ∈ Rn × Rn :

(R(g◦T+f)]λ)W,(x−y,y−x)/2(B(x, y), h) ≤ h(s−n)/2 for all h ≤ 2−i}.

Since

lim
i→∞

R(g◦T+f)]λ((Rn × Rn)\Bi) = 0

we find a compact set Cε ⊂ Rn × Rn such that R(g◦T+f)]λ((Rn × Rn)\Cε) < ε and
Cε ⊂ Biε for some iε.

Let Hε = 2−iε/3. Consider (z,−z)/2 ∈ W⊥ such that both (R(g◦T+f)]λ)W,(z,−z)/2
and (R(g◦T+f)]λ|Cε)W,(z,−z)/2 are defined. If (z,−z)/2 /∈ PW⊥(Cε), then

(R(g◦T+f)]λ|Cε)W,(z,−z)/2(B((x, y), h)) = 0

for all (x, y) ∈ W(z,−z)/2 and h > 0. This follows from (2.1) and from the fact that
W(z,−z)/2(δ)∩Cε = ∅ for all small δ > 0, since Cε is compact. If (z,−z)/2 ∈ PW⊥(Cε)
and (x, y) ∈ W(z,−z)/2 ∩ Cε, then for any 0 < h ≤ 3Hε, we have

(R(g◦T+f)]λ|Cε)W,(z,−z)/2(B((x, y), h))

≤ (R(g◦T+f)]λ)W,(x−y,y−x)/2(B((x, y), h))

≤ h(s−n)/2.

(4.7)

If (z,−z)/2 ∈ PW⊥(Cε) and (x, y) /∈ W(z,−z)/2 ∩ Cε, then there exists hx,y > 0 such
that B((x, y), h) ∩ Cε ∩W(z,−z)/2 = ∅ for all 0 < h < hx,y and B((x, y), h) ∩ Cε ∩
W(z,−z)/2 6= ∅ for all h ≥ hx,y. If 0 < h < hx,y, then by (2.1)

(R(g◦T+f)]λ|Cε)W,(z,−z)/2(B((x, y), h)) = 0.

If hx,y ≤ h ≤ Hε, then B((x, y), h) ⊂ B((a, b), 3h) for some (a, b) ∈ W(z,−z)/2 ∩ Cε,
and (4.7) gives the claim. �

Now we are ready to prove the theorem.

Theorem 4.13. Let µ and ν be Radon measures on Rn with compact supports.
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(1) If dimH(µ×ν) > n, then for all f ∈ C1(Rn,Rn) and for θn×L
n
2
(n+1)-almost

all (g, T ) ∈ O(n)× T (n)+ for which g ◦ T + f is injective

dimloc(µ ∩ (τx−(g◦T+f)(y) ◦ (g ◦ T + f))]ν)(x) = dimloc(µ× ν)(x, y)− n
= dnµ×ν(x, y)− n

and

dimloc(µ ∩ (τx−(g◦T+f)(y) ◦ (g ◦ T + f))]ν)(x) = d
n

µ×ν(x, y)− n

for µ× ν-almost all (x, y) ∈ Rn × Rn.
(2) If dimH(µ× ν) = dimH µ+ dimH ν > n, then in a prevalent set of functions

f ∈ C1(Rn,Rn)

dimloc(µ ∩ (τx−f(y) ◦ f)]ν)(x) = dimloc(µ× ν)(x, y)− n = dnµ×ν(x, y)− n

for µ× ν-almost all (x, y) ∈ Rn × Rn.

Proof. The lower bounds in both cases follow from Theorem 4.6. In order to get the
upper bound for the lower local dimensions in both cases we apply Lemma 3.11 to
µ× (g ◦ T + f)]ν (or to µ× f]ν ) as in the proof Theorem 3.13. This can be done
by Corollary 4.4, Lemma 4.7, Remark 2.1(1) and Corollary 4.8 (or Lemma 4.11).
Note, that from Lemma 4.7 we only need the part which holds in a prevalent set.

The upper bound for the upper local dimension can be proven as in the proof of
Theorem 3.13 using Lemma 4.4, Lemma 4.7, Corollary 4.8 and Lemma 4.12. �

Corollary 4.14. Let µ and ν be Radon measures on Rn with compact supports. If
dimH(µ× ν) > n, then for all f ∈ C1(Rn,Rn) and for Ln × θn ×L

n
2
(n+1)-almost all

(z, g, T ) ∈ Rn ×O(n)× T (n)+ for which g ◦ T + f is injective

(1) dimloc(µ ∩ (τz ◦ (g ◦ T + f))]ν)(x) = dimloc(µ× (g ◦ T + f)]ν)(x, x− z)− n
= dnµ×(g◦T+f)]ν(x, x− z)− n

and

(2) dimloc(µ ∩ (τz ◦ g ◦ T )]ν)(x) = d
n

µ×(g◦T+f)]ν(x, x− z)− n

for µ ∩ (τz ◦ (g ◦ T + f))]ν-almost all x ∈ Rn.

Proof. As the proof of Corollary 3.16. �

4.3. Hausdorff, packing and average dimensions. Using Theorem 4.13 we get
results for Hausdorff and packing dimensions. We also consider average dimensions
of intersection measures. All these results are analogous to the similarity case in
Sections 3.3 and 3.4.

Theorem 4.15. Let µ and ν be Radon measures on Rn with compact supports.
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(1) If dimH(µ×ν) > n, then for all f ∈ C1(Rn,Rn) and for θn×L
n
2
(n+1)-almost

all (g, T ) ∈ O(n)× T (n)+
Ln- ess inf{dimH(µ ∩ (τz ◦ (g ◦ T + f))]ν) :

z ∈ Rn with µ ∩ (τz ◦ (g ◦ T + f))]ν(Rn) > 0}
≥ dimH(µ× ν)− n.

The equality holds for all f ∈ C1(Rn,Rn) and for θn × L
n
2
(n+1)-almost all

(g, T ) ∈ O(n)× T (n)+ for which g ◦ T + f is injective.
(2) If dimH(µ× ν) = dimH µ+ dimH ν > n, then in a prevalent set of functions

f ∈ C1(Rn,Rn)

Ln- ess inf{dimH(µ ∩ (τz ◦ f)]ν) :
z ∈ Rn with µ ∩ (τz ◦ f)]ν(Rn) > 0}

= dimH(µ× ν)− n.

Proof. As the proof of Theorem 3.18 using Corollary 4.4, Corollary 4.8, Lemma 4.11
and Theorem 4.13. �

Theorem 4.16. Let µ and ν be Radon measures on Rn with compact supports.
(1) If dimH(µ×ν) > n, then for all f ∈ C1(Rn,Rn) and for θn×L

n
2
(n+1)-almost

all (g, T ) ∈ O(n)× T (n)+
Ln- ess sup

z∈Rn
dim*

H(µ ∩ (τz ◦ (g ◦ T + f))]ν) ≥ dim*
H(µ× ν)− n.

The equality holds for all f ∈ C1(Rn,Rn) and for θn × L
n
2
(n+1)-almost all

(g, T ) ∈ O(n)× T (n)+ for which g ◦ T + f is injective.
(2) If dimH(µ× ν) = dimH µ+ dimH ν > n, then in a prevalent set of functions

f ∈ C1(Rn,Rn)

Ln- ess sup
z∈Rn

dim*
H(µ ∩ (τz ◦ f)]ν) = dim*

H(µ× ν)− n.

Proof. As the proof of Theorem 3.19 using Corollary 4.4, Corollary 4.8, Lemma 4.11
and Theorem 4.13. �

Theorem 4.17. Let µ and ν be Radon measures on Rn with compact supports.
If dimH(µ × ν) > n, then for all f ∈ C1(Rn,Rn) and for θn × L

n
2
(n+1)-almost all

(g, T ) ∈ O(n)× T (n)+
Ln- ess inf{dimp(µ ∩ (τz ◦ (g ◦ T + f))]ν) :

z ∈ Rn with µ ∩ (τz ◦ (g ◦ T + f))]ν(Rn) > 0}
≥ µ× ν- ess inf

(x,y)∈Rn×Rn
d
n

µ×ν(x, y)− n.

The equality holds for all f ∈ C1(Rn,Rn) and for θn × L
n
2
(n+1)-almost all (g, T ) ∈

O(n)× T (n)+ for which g ◦ T + f is injective.

Proof. As the proof of Theorem 3.21 using Corollary 4.4 and Theorem 4.13. �
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Theorem 4.18. Let µ and ν be Radon measures on Rn with compact supports.
If dimH(µ × ν) > n, then for all f ∈ C1(Rn,Rn) and for θn × L

n
2
(n+1)-almost all

(g, T ) ∈ O(n)× T (n)+
Ln- ess sup

z∈Rn
dim*

p(µ ∩ (τz ◦ (g ◦ T + f))]ν) ≥ µ× ν- ess sup
(x,y)∈Rn×Rn

d
n

µ×ν(x, y)− n.

The equality holds for all f ∈ C1(Rn,Rn) and for θn × L
n
2
(n+1)-almost all (g, T ) ∈

O(n)× T (n)+ for which g ◦ T + f is injective.

Proof. As the proof of Theorem 3.22 using Corollary 4.4 and Theorem 4.13. �

For the average dimension of intersection measures we get the following results.

Theorem 4.19. Let µ and ν be Radon measures on Rn with compact supports.
(1) If dimH(µ×ν) > n, then for all f ∈ C1(Rn,Rn) and for θn×L

n
2
(n+1)-almost

all (g, T ) ∈ O(n)× T (n)+
dimA(µ ∩ (τx−(g◦T+f)(y) ◦ (g ◦ T + f))]ν)(x) ≥ dimA(µ× ν)(x, y)− n

for µ × ν-almost all (x, y) ∈ Rn × Rn. The equality holds for all f ∈
C1(Rn,Rn) and for θn×L

n
2
(n+1)-almost all (g, T ) ∈ O(n)×T (n)+ for which

g ◦ T + f is injective.
(2) If dimH(µ× ν) = dimH µ+ dimH ν > n, then in a prevalent set of functions

f ∈ C1(Rn,Rn)

dimA(µ ∩ (τx−f(y) ◦ f)]ν)(x) = dimA(µ× ν)(x, y)− n

for µ× ν-almost all (x, y) ∈ Rn × Rn.

Proof. For the upper bounds we may apply [20, Theorem 2.8] to µ× (g ◦ T + f)]ν
(or to µ × f]ν ) as in the proof of Theorem 3.23. This can be done by Corollary
4.4, Lemma 4.7 and Corollary 4.8 (or Lemma 4.11). Note, that from Lemma 4.7 we
only need the part which holds in a prevalent set.

The lower bounds can be proven as in the proof of Theorem 3.23 using Lemma 4.5.
�

Corollary 4.20. Let µ and ν be Radon measures on Rn with compact supports. If
dimH(µ× ν) > n, then for all f ∈ C1(Rn,Rn) and for Ln × θn ×L

n
2
(n+1)-almost all

(z, g, T ) ∈ Rn ×O(n)× T (n)+ for which g ◦ T + f is injective

dimA(µ ∩ (τz ◦ (g ◦ T + f))]ν)(x) = dimA(µ× (g ◦ T + f)]ν)(x, x− z)− n

for µ ∩ (τz ◦ (g ◦ T + f))]ν-almost all x ∈ Rn.

Proof. As the proof of Corollary 3.16. �

Remark 4.21. It remains an open question whether equalities in results for upper
local dimension and packing dimension (i.e. in Theorem 4.14(2), Theorem 4.17 and
Theorem 4.18) hold in a prevalent set of functions f ∈ C1(Rn,Rn).
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