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1. INTRODUCTION

Different concepts of dimension and their geometry is an active area of interest
in geometric measure theory. One line of research is to study the behaviour of these
different dimensions, of both measures and sets, under orthogonal projections, plane
sections and general intersections. This work continues the study of dimensions of
intersection measures, in particular their local dimensions. Our results on local
dimensions lead to new results on Hausdorff and packing dimensions of intersection
measures. We also consider the case where intersection measures are defined using
general linear maps or continuously differentiable functions instead of previously
studied cases of isometries and similarities.

The lower and upper local dimensions of a Radon measure g on R™ at point
x € R", denoted by dim,,.u(z) and dimy,cu(z) respectively, are defined as the lower
and upper limits of the quantity log u(B(z, h))/logh as h goes to 0. Here B(x,r)
is a closed ball with centre at x and with radius r. The local dimensions of p are
related to the Hausdorff and packing dimensions of u via

dimy p = p-ess nixnf dim, ()
zeR"
and
dimy, 1 = p-ess %nf dimyeepu(x),
zeR™

and, if the essential infimum is replaced by the essential supremum, then we get the
upper Hausdorff and packing dimensions of pu, denoted by dim*H and dim; respec-
tively. It turns out that local dimensions behave like their global counterparts when
considering dimensions of slices and intersections.

The relation between dimension of a Borel set A in R" and dimension of its
intersections with affine planes, called slices of A, is well known for both Hausdorff
and packing dimensions. First Marstrand [21]| proved in the plane and later Mattila
[22] generalized to R™ the following result. Let m and n be integers and let m < s <
n. Denote by H® the s-dimensional Hausdorff measure and by +, ,,— the natural
measure on the space of (n —m)-dimensional linear subspaces of R”. If A C R" is a
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Borel set with 0 < H*(A) < oo, then we have for 7, ,,—,-almost all (n—m)-planes V/
that

(1.1) H™({a € V' :dimg(ANV,) =s5—m}) > 0.

Here V* is the orthogonal complement of V and V,, is the affine (n —m)-plane which
is parallel to V' and goes through a.

The behaviour of packing dimension is more irregular than that of Hausdorff
dimension when considering slices of sets, and as we see later, the same phenomenon
happens with slices of measures and with general intersections. In other words,
equation (1.1) does not hold for packing dimension, as was shown by Falconer,
Jarvenpéad and Mattila [5], see also Csornyei [2]. However, Jarvenpéd, Jarvenpéad and
Llorente obtained in [15] a sufficient condition for the stability of packing dimensions
of slices of sets, that is, under this condition it holds that for 7, ,_.-almost all
(n —m) -planes V/

H™-esssupdim,(ANV,) =d—m.
acV+
Here d is a constant independent of the plane V', and it may be strictly less than
dim, A.

Slices of a Radon measure p on R™ by affine (n — m)-planes V, through a point
z € R", denoted by py,, were introduced by Mattila in [23]. For the definition,
see Section 2.1. These measures, which are supported on spt N V., were originally
used to study capacities of slices of sets. Here spt p is the support of . Dimensional
properties of sliced measures are also well known, see [7], [6], [19] and [15]. Jérvenp&d
and Mattila proved in [19] that if i is a Radon measure on R™ with compact support,
then for 7, ,,—m-almost all (n — m)-planes V'

(1.2) H™-essinf{dimy j1y, : @ € V- with piyo(R™) > 0} = dimp pp — m
provided that dimy g > m, and

(1.3)  H™-essinf{dim, py,q : @ € V' with pyq(R") > 0} = u- essénfﬁi?(x) —m
zeR™

provided that I,,,.(u) < oo for some € > 0. Here I,,,,.(p) is the (m+¢)-energy of u
and C_ZZL(:B) is a modified local dimension which is obtained as a convolution of p with
a certain kernel (see definition in Section 2.2.) They also got following relations for
upper Hausdorff and packing dimensions of sliced measures. For 7, ,,_,,-almost all
(n — m)-planes V'

(1.4) H™- ess sup dimy pry,, = dimy g — m,
acV+

provided that dimy g > m, and

(1.5) H™- ess sup dim; [v.a = - €SSSUp c_i:f(:c) —m,
acV+ TER™

provided that I,,1.(u) < oo for some € > 0.
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Properties of local dimensions of sliced measures are similar to related global
dimensions. Local dimensions of sliced measures were first studied by Falconer and
O’Neil in [7]. Extending their result Jarvenpéd, Jarvenpdd and Llorente showed
in [15] that for 7, ,,—m,-almost all (n — m)-planes V' and for py-almost all x € R

dimyepivz () = dimy, pi(x) —m
if dimy 0 > m, and
dimyoefty . () = c_llT(x) -m

if Inie(n) < oo for some ¢ > 0. Using the methods of the proof of Theorem
3.13 it is possible to show that the latter equality also holds under the assumption
dimy # > m by approximating p by measures with finite (m + ¢)-energy.

Another local concept of dimension is the average dimension dim,, which is de-
fined in a similar way as local dimensions, see Section 2.2. The average dimension
of a measure always lies between corresponding lower and upper local dimensions.
Llorente [20] showed that the average dimension of sliced measures behaves like the
lower local dimension. In other words, she proved that assuming dimyp > m we
have for 7, ,—m-almost all (n —m) -planes V' and for p-almost all z € R”

dimp py(z) = dimy p(z) — m.

Intersection measures p1 N fyv, where p and v are Radon measures on R", f is a
mapping R" — R" and fyv is the image of v under f, can be considered as natural
measures on spt 41N f(spt v). They are defined by slicing the product measure px f;v
by affine n-planes, which are parallel to the diagonal {(x,y) € R" xR" : z = y}, see
definition in Section 2.1. Thus dimensional properties of these measures are closely
related to the dimensions of sliced measures.

Mattila introduced intersection measures in [24] in order to study dimensions of
intersections of two Borel sets in R™. He considered the cases where f : R7R" is
an isometry or a similarity map, i.e. a map for which there is » > 0 such that
|f(z) = f(y)| = r|lz — y| for all z,y € R". Every similarity map has a unique
decomposition as

f:TzogO(Sra

where 7, : R" = R", 7,(z) =2+2z,2 € R", g € O(n) and 6, : R* — R", §,(x) = rz,
r > 0. Here O(n) is the orthogonal group of linear isometries R” — R"™. Mattila
proved that if 0 < s <n,0 <t <mn, s+t >nand A and B are Borel sets in R"
such that H*(A) < oo and H'(B) < oo, then

(1.6) dimy(AN (1, 0906, 07 ) (B)) >s+t—n

for H* x H' x 0,, x L -almost all (z,y,g,7) € Ax Bx O(n) x (0,00). Here 6, is the
normalized Haar measure on O(n) and £! is the 1-dimensional Lebesgue measure.

In [24] Mattila showed that the same result holds for isometries under the ad-
ditional assumption ¢ > %(n + 1). However, it is not known if this assumption is
necessary. In general, the opposite inequality in (1.6) is false for both similarities
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and isometries. For any 0 < s < n there are classes of sets in R" with Hausdorff
dimension s, such that even their countable intersection has Hausdorff dimension
s, see Falconer [3|. However, Mattila proved that equality holds in (1.6) if we ad-
ditionally assume that the Hausdorff dimensions of A and B satisfy the equality

Hausdorff and packing dimensions of intersections measures in both isometry and
similarity cases have been studied by Jérvenp#d in [16], [17] and [18]. She showed
in [18] that if 4 and v are Radon measures on R" with compact supports such that
dimp(p X v) = dimyg g + dimg v > n and [;(v) < oo for all 0 < ¢t < dimpv < n,
then for 6, x £L'-almost all (g,7) € O(n) x (0, 00)

(1.7)
L"-essinf{ dimy(p N (7, 0909, )4v) : z € R" with g N (7, 0 g0 4, )3 (R") > 0}

= dimy p + dimg v — n.

Moreover, if we assume that I,(1) < oo and [;(v) < oo for some 0 < s < n and
0 <t <n with s +¢ > n, then for §,, x £L'-almost all (g,7) € O(n) x (0, 00)

(1.8)
L"-essinf{ dim,(pN (17, 09006, )yv) : z € R* with N (7, 0 g 0 6,)yv(R") > 0}
=/ X V- (x,S)SESRITI}f]R” Ay (T,9y) — 1.
Here %Xy(x,y) is as in (1.3). She also got similar relations for upper Hausdorff
and packing dimensions of intersection measures, and these results are analogous to
(1.4) and (1.5).

In the cases of the Hausdorff dimension and the upper Hausdorff dimension the
same results can be obtained for isometries using the same methods, provided that
dimp(pu x v) = dimpg p+dimpg v > nand [;(v) < oo for all (n+1)/2 <t < dimpv <
n. For packing dimension the methods used to prove (1.8) cannot be applied in the
case of isometries, since an integration with respect to r is not involved. However,
the following lower bound for the packing dimensions of intersection measures is
obtained in [17]. Assuming [, () < 0o, Is(v) < oo, 0 <a <n, (n+1)/2< B <n
and a + 8 > n, then we have for pu x v x ,-almost all (z,y,g) € R” x R" x O(n)

pdim, (o + 8 — n)
na— (n— f)dim, p

dim, (N (7, 0 goT_y)4v) >

In Section 3 we will use our results concerning local dimensions of intersection
measures to improve equalities (1.7) and (1.8) in the case of similarities. We will
show that assuming only dimy(px X v) > n, we get instead of (1.7) that

L"-essinf{ dimy(p N (7, 0909, )4v) : z € R" with g N (7, 0 g 0§, )3 (R™) > 0}
=dimpg(u X v) —n

for 6,, x L'-almost all (g,r) € O(n) x (0, 00). Moreover, the equality (1.8) holds. We
will also make similar improvements for the results on upper Hausdorff and upper
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packing dimensions of intersection measures. In other words, we will show that
assuming dimg(p x v) > n we have for 6,, x L'-almost all (g,7) € O(n) x (0,0)

L"-ess sup dimy (1N (7, 0 g 0 8,)3v) = dimy(p x v) —n
z€R™

and

L"- ess sup dim;(,u N(T,0g006,)j) = pu X V- esssup C_ZMXV(Z‘, y) —n.
z€R™ (z,y)€R™ xR™
In this paper we study local dimensions of intersection measures for the first time
and it turns out that they behave just like the corresponding global dimensions. We
will prove in Section 3 the following result. Assuming dimy(p X v) > n we have for
0, x L'-almost all (g,7) € O(n) x (0,00) that

di—mloc(ﬂ N (TI—9°5r(y) ©go 57‘)ﬁy)(x) = di_mloc(:u X I/)(l’, y) -—n= C—iny(xv y) -n

and

dimjoc(p2 N (To—gos,(y) © 9 © 0r)gv) () = Enuxu(x> y)—n

for p x v-almost all (z,y) € R" x R™.

When proving this we have to slice general Radon measures on R™ x R", not just
the ones which are products of two measures on R", and study their properties in
a similar way as in [24|. This is done in Section 3.1. This method cannot be used
in the case of isometries. Other ingredients needed for the proofs are methods from
[15], where local dimensions of sliced measures where studied, combined with those
from [18]. We also make use of results concerning Hausdorff and packing dimensions
of sliced measures from [19].

Average local dimensions of intersection measures were studied by Llorente in
[20]. She proved that if 4 and v are Radon measures on R™ with compact supports
such that I (u) < oo and [;(v) < oo for some 0 < s < n and 0 < t < n with
s+t >n, then for p x v x 0, x L-almost all (z,y,g,7) € R" x R" x O(n) x (0, c0)

dimy ju(2) + ditmy, () — 1 < dima (0 (Te—gos, ) © 9 © 8730 ()
< dimy p(z) + dimyeer(y) — n.
She also proved the same result in the isometry case. We will show in Section 3.4
that the average dimension of intersection measures behaves like the lower local
dimension. That is, assuming dimy(p X ) > n we have for u x v x 6, x £L'-almost
all (z,y,9,7) € R" X R" x O(n) x (0, 00)
dima (1 O (Ta—gos, (v) © 9 © 0r)gv) (2) = dima(u x v)(2,y) —n = dj,, (z,y) — n.

Previous results show that dimensions of intersection measures depend on the
dimension of the product measure, not just on the dimension of two measures sep-
arately. Note that Hausdorff and packing dimensions do not behave nicely under
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products. For example for the Hausdorff dimension of the product measure the best
we can do are the following bounds:

dimyg o + dimpy v < dimp(p % v) < dimg g+ dim,, v.

In Section 4 we study intersection measures in the case where similarities are
replaced by general (invertible) affine maps. Note that almost all linear maps,
with respect to Lebesque measure £, are invertible. Every invertible linear map
L : R" — R™ has a unique representation, the QR-decomposition, as

L=goT,

where g € O(n) and T' € T'(n), the group of upper triangular matrices with strictly
positive diagonal entries. Using this decomposition, we apply the same methods as
in the case of similarities to prove results for dimensions of more general intersection
measures. We will show for example that if dimg(u x v) > n, then for 6,, x £z ®+1-
almost all (¢,7) € O(n) x T'(n)+

dimy, (1 NV (Te—gor(y) © g 0 T)yv) (w) = dimy, (1 x v)(2,y) —n = d,, (x,y) —n

and

m100(:“ N (Tx—goT(y) ogoT)w)(r) = Equ(xa y) —n

for p x v-almost all (z,y) € R™ x R"™. The average dimension behaves as the lower
local dimension in this setting. We also use the above equalities to obtain results
for Hausdorff and packing dimensions. All these results are analogous with the case
of similarities.

In Section 4 we also consider dimensions of intersection measures in the case
where similarity maps are replaced by continuously differentiable functions. Note
that there is no analogue for Lebesgue measure or Haar measure in the infinite-
dimensional space C*(R™ R") of continuously differentiable functions. We use a
notion of prevalence by Hunt, Sauer and Yorke in [14], see also [1]. This concept
turns out to be a good notion of ’almost every’ in infinite dimensional spaces from
measure theoretical point of view. In fact, in finite dimensional spaces prevalence is
equivalent to "'Lebesgue almost every’. We will show that, if dimg(p X ) > n, then
in a prevalent set of functions f € C'(R" R")

(19) di—rnloc(:u N (Tw*f(y) © f)ﬁl/)(l’) > di_nhoc(ﬂ X 1/)(1', y) —n= dZXV($a y) -n
and

(1.10) di—rnlOC(,u N (Tmff(y) © f)ﬁl/)(ﬂ?) > EZXu(%?J) - n.

for p x v-almost all (z,y) € R” x R™.
For the lower local dimension the equality holds in the above theorem at least
when the Hausdorff dimension of the product measure behaves nicely. Assuming
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dimyg(p x v) = dimgp + dimgv > n, we have in a prevalent set of functions
f € CY(R",R") that

dimy, (1N (Tem gy © fgv) () = dimy, (1 x v)(z,y) —n =dj, (7,y) —n

for p x v-almost all (z,y) € R™ x R". Again the average dimension behaves like the
lower local dimension.

For the upper local dimension we have the following theorem. If dimy(pu x v) > n
and f € C*(R™ R"), then for 6, x £3™D-almost all (¢,T) € O(n) x T(n), for
which g o T + f is injective

di_mIOC<,u n (Tmf(goTJrf)(y) o flv)(z) = szy(x’ y)—n

for u x v-almost all (x,y) € R* x R™. It remains an open question whether the
equality holds in (1.10) in a prevalent set of functions f € C'(R", R").

2. PRELIMINARIES

We denote by B(x,r) a closed ball in R™ with centre at x and with radius r.
Further, we denote by d(z, A) = inf{|z — a| : a € A} the distance between a point
x € R" and a set A C R".

Let m and n be positive integers with m < n and let u be a Radon measure on
R™ with compact support. We denote by pu|p the restriction of a measure p to a set
B C R”, that is,

pls(A) = (AN B)

for all A C R". The image of the measure x under f : R"™ — R™ is denoted by fyu,
that is,

fu(A) = u(f~1(4))
for all A € R™. Let v be a Radon measure on R" with compact support. The
measure p is absolutely continuous with respect to v if v(A) = 0 implies pu(A) =0
for all A C R™. Then we write ; < v. We say that measures p and v are mutually
singular if there exists a set A C R" such that u(A) = 0 = v(R"\ A). In this case
we write ulv. For ¢t > 0 the t-energy of u is defined by

L) = [ [ 1o = ol duta) duty).

The n-dimensional Lebesgue measure is denoted by £". For s > 0 the s-dimensional
Hausdorff measure is denoted by H*® and Hausdorff measures are normalized such
that H"(B(z,r)) = (2r)".

2.1. Slices and intersection measures. Let 0 < m < n be integers and denote
by G(n,n —m) the Grassmann manifold of (n — m)-dimensional linear subspaces
of R™. The normalized Haar measure on G(n,n —m) is denoted by 7y, n—m. Let
V € G(n,n—m) and a € V*+, where V' is the orthogonal complement of V. Then
Vo, ={v+a:v e V}isthe (n — m)-plane parallel to V' and going through a. For
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H™-almost all @ € V' there is a Radon measure py,, the slice of u by V,, on V,
such that

(2.1) /soduv,a = lim(25)_m/ pdp,
6—0 a(é)

for all non-negative continuous ¢ on R" with compact support. Here we use a
notation V,(0) = {z € R : d(z,V,) < §}. For z € R we define py, = py,, if
a = Pyi(x) and py, is defined. Here Py. : R® — V1 is the orthogonal projection.
The construction of sliced measures and the proofs of their basic properties can be
found in [25].

Sliced measures have the following properties. If ¢ is a non-negative lower semi-
continuous function on R", then

(2.2) /gpduvﬂ < 1iminf(25)_m/ wdp.
0—0 a(a)

Moreover, if ¢ is a non-negative Borel function on R" such that [ ¢ dp < oo, then
for any Borel set B C V*+

(2.3) / / pduy,.dH™a < / pdu,
B P-1(B)

vL

with equality if Pyoyu < ’Hm‘v . Finally, if B C R" is a Borel set and Pyu <
H™|y 1, then

(2-4) MV,a|B = (M|B)v,a

for H™-almost all @ € V*, see [19, Lemma 3.2|.

Let 1 and v be Radon measures on R” with compact supports. For £™-almost all
z € R™ we can define the intersection of y and 7,4, where 7,(z) = x + z, by slicing
the product measure p X v by the n-plane

Wi—ne ={(z,y) ER"XR" 1z —y = z},

which goes through (z,—z)/2 € W+, and by projecting the sliced measure to R".
That is, for £"-almost all 2 € R™ we can define the intersection measure by

O T = (10 X V) wiz—2) /2]
where 7 : R” x R* — R", 7(x,y) = x. Then
spt(p N To4v) C spt p N spt T4,

where spt is the support of a measure.

Later we replace v by fyv, where f is some function, for example a similarity or
a linear mapping. We also need to consider the following more general setting. Let
Ry :R" x R" — R" x R", Ry(z,y) = (z, f(y)) and let A\ be a Radon measure on
R"™ x R™ with compact support. We slice measures R\ by the planes W, ... It
turns out that for £"-almost all z € R" there is a Radon measure (Rp\)w,(z,—2)/2
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such that the following properties hold. For all non-negative lower semicontinuous
functions ¢ on R™ x R™ we have by (2.2)

/ P Ad(RpN)w(z,—2)/2

< li%rgglf(ﬂa)—” / e(z,y) dA\(z,y),

{(z,y)eER" xR":|Sf (x,y)—2|<6}

(2.5)

where Sy : R* x R* — R", S¢(z,y) = v — f(y). Moreover, if ¢ is a non-negative
Borel function on R™ x R™ such that f @dR g < 00, then for any Borel set B C W

(26) //god(Rfﬁ/\)W@dHﬂWL(a) S/ gOdeﬁ)\
B P (B)

with equality if SpA < £". This follows from (2.3) since SpA < L™ if and only if
2.2. Dimensions of measures. In this section we define some concepts related to
dimensions of measures. For more detailed information on this subject, see [4]. Let

it be a Radon measure on R" with compact support. The lower and upper local
dimensions of 1 at a point x € R™ are defined by

. .. Jdogu(B(z,h
dimypi(r) = lim inf %

and

- 1 B(x, h
dimloc,u(;p) = lim sup M
h—0 log h

For 0 < s < oo let

s .. 1 ! IU(B(I',T)) 1 1
Dj(x) = lim inf Tog ) /5 - . ac(r).

5—0
Then the average dimension of y at a point x € R" is defined by
dimy pu(x) = sup{s > 0: D;(x) = 0} = inf{s > 0: D} (z) = co}.
We have the following relations
dimy,op(z) < dima p(z) < dimioes(z).
Hausdorff and packing dimensions of i are defined as follows
dimy o = p-essinf dim; p(z)

TeR™
= inf{dimy A : A is a Borel set and u(A) > 0}
and
dimy, j1 = p- ess inf dimygep ()

z€R™

= inf{dim, A : A is a Borel set and p(A) > 0}.
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Upper Hausdorff and packing dimensions of y are defined by

dimy; p = pi- esssup dim,, ()
TER™

= inf{dimy A : A is a Borel set and u(R"\A) =0}
and
dim; = - eiseagp dimyeesi()
= inf{dim, A : A is a Borel set and p(R"\A) = 0}.

Letting v be a Radon measure on R™ with compact support, we have

(2.7) dimyg p + dimpy v < dimg(p % v) < dimg g+ dim, v
and
(2.8) dimpy p + dimp, v < dim, (g x v) < dim,, g + dim,, v.

The corresponding inequalities hold if we replace dimy by dimy; and dim,, by dim;,
see [11] and [12].

As in [15], in order to study local dimensions of slices by (n — m)-planes, we
modify the definitions of local dimensions of measures using the function

e i ] <
vi (@) = {o, if |z > b

and defining

! h log h™ = I—aimdua
d(x) = liminf og(p * Yy (x)) — liminf ( fB( h) | | (a))
H h—0 logfl h—0 IOg}L

and

. 1 m log(h™ [ p 12 — a7 du(a))
d, () = limsup o8y x Vil (x)) = lim sup fB( ) )
h—0 log h h—0 log h

Here g * )} is the convolution of p and }".

Remark 2.1. (1) It is shown in |7, (4.12)] that, if [ |z — y| ™ du(y) < oo for some
r € R", then

d7(x) = dimyyepu(x) = m.
(2) If B C R™ is a Borel set, then
dimy, | p(7) = dimy,opu(r) and  dimieept|p(z) = dimigep()
for p-almost all x € B, and moreover,
a7 (0) = d7(e) and @), (x) = 4 ()

for p-almost all x € B. These equalities follow from the density point theorem |25,
Corollary 2.14].
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(3) Since

dimy, () = sup{s > 0 / 1z -y duly) < oo},

we have [ |z —a| ™ du(a) = oo provided that dimy,.u(z) < m. Moreover,

—m

d, (r) = —oo if and only if / |z —a|™™ du(a) = .

Lemma 2.2. Let p be a Radon measure on R™ and let s > 0. Let L : R™ — R" be
a linear mapping such that ¢;|x| < |Lz| < co|x| for all x € R™. Then for all x € R™
(1) dp,,(Lz) = d;(x)
(2)  dp,(Le) =d,(2).

Lyp
and

(3) dimp Lypu(Lz) = dimp p(x).
Proof. First we prove (1) and (2). Since

o" [ e mdu@ < [ |Lo—al ™ dLyla)
B(z,h/c2) B(Lz,h)

<o [ je-dmdn),
B(z,h/c1)
we have forall 0 < h < 1

log ((h/cl)m fB(z,h/cl) |z —al™™ dﬂm))
log(h/c1) +log
- log (h™ Jo(ran 1Lz —al™" dLyp(a))

(2.9)

log h
10g ((h/¢2)™ [y ey 7 = al ™™ dp(a)
log(h/c2) + log cz '
The equalities follow by letting h — 0. The equality (3) follows from the fact
w(B(x,h/cs)) < Lyp(B(Lx, h)) < p(B(x, h/cr)).

3. SIMILARITIES

First we consider dimensions of measures uM fyv/, where f : R* — R" is a similarity
map, that is, there is » > 0 such that |f(x) — f(y)| = r|lz — y| for all z,y € R™.
Let O(n) be the orthogonal group of linear isometries in R"™ and let 6,, be the Haar
measure on O(n) such that 6, (O(n)) = 1. Every f has a unique representation as

f=m.0g00,
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where 7, : R” — R™ is the translation 7,(x) =z + 2, g € O(n) and ¢, : R - R" is
the dilation ¢, (z) = rx.

3.1. Properties of intersection measures. We need to prove analogues of |24,
Lemma 6.5, Theorem 6.6 and Theorem 6.7] in a more general setting, where we
consider measures Ryos 4\ instead of the product p x (g 06, )sv. Here A is a Radon
measure on R” x R™ with compact support and

Ryos, : R" X R" = R" X R", Ryos,4(x,y) = (z,906,(y)).

From (2.5) we get that for all non-negative lower semicontinuous functions ¢ on
R"™ x R™ we have

/ © d(Rgos, s\ w(z,—2) /2

< lim inf(v/26) ™" /
00 {(2,y) ER™ XR™:|S 05, (2,y)—2| <5}

p(r,y) dA\(z,y),
Sgos, : R" x R" = R", Spos,(2,y) =2 — g0 d,(y).

Moreover from (2.6) we get that, if ¢ is a non-negative Borel function on R" x R"
such that [ ¢ dRyes.4\ < oo, then for any Borel set B C W+

(3.2) / / 0 d(Ryos s\ i dH - (a) < / o AR o5 1\
B P Y (B)

with equality if Sgos, A << L.

Note that the following lemmas hold for intersection measures since Ryos,4(ptxv) =
p x (g o 6,)yv. Moreover [24, Theorem 6.6] follows from Theorem 3.2, since if
I(p) < oo and Ii(v) < oo for some 0 < s <nand 0 <t < n with s +¢ > n, then
I X v) < o0.

Lemma 3.1. Let o be a Radon measure on R™ x R™ with compact support. Assume
that [ |(a,b)|”* da(a,b) < oo for some s > n. Then for all 0 <1 <1y < 00

limsup §~ // 0,{g € O(n): la—god,.(b)| <s}dL (r)|(a,b)| """ da(a,b)

6—0
<c [ b dafa.b)
where ¢ 1s a constant depending on n, s, ry and rs.

Proof. The proof is a slight modification of that of 24, Lemma 6.5]. We denote by ¢,
¢y and g constants which may depend on n, r; and r5. Define for all (a,b) € R" xR"™

Is(a,b) = /T2 0,{g € O(n) : |la —god.(b)| <d}dL(r).

T1
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Ifré¢{relr,mr: Ha! — r]bH < 6}, then

la—god,.(b)] > lla] — |go&(b)]| = ||la| —r[b]| >0,
and thus

1) = | 009 € O) : |a— g 06.(b)| < 6} dL (1),
{relri,ra]:|lal—r|b]|<d}

Define a Borel set
As ={(a,b) e R" x R" : r1]b] — 0 < |a| < ro|b| 4+ 0}.

Then for (a,b) ¢ As we have for all r € [ry, 7] that |a| — r|b| > |a| — r2|b] > § or
r|b] = |a| > r1|b| — |a| > &, which means that {r € [ry, 5] : ||a| —r[b]| < 6} =0, and
therefore

[ @iy datay) = [ 5@l n] " data.b)
As

Defining
A; = {(a,b) € As : |a] < 25}
A2 ={(a,b) € As : m1|b| < 26}
A3 ={(a,b) € As : |a|] > 20, r1|b| > 25},

we have A; = A} U A2 U A3

If (a,b) € A}, then |a| < 26 and r]b| < 36 giving

(@, )] = V]a* + [b]? < c10.

Since [ |(a,b)|™* dafa,b) < co we get

lim sup 5_”/ Is(a,b)|(a,b)|*" da(a, b)

(33) 6—0 A}

< {(rg —ry)limsup [ [(a,b)|”* da(a,b) = 0.
6—0 Al

Similarly, if (a,b) € A2, then r]b] < 2§ and |a| < (1 + 2%)5, and thus

(3.4) lim sup 5" / Is(a, b)|(a, b)|~+" da(a, b) = 0.
A

2
6—0 2

Finally, let (a,b) € A3. Then iri|b| < |a| < 2r5|b|, which implies |a| > c2|(a,b)|.
Moreover, using [25, Lemma 3.8] we have
Is(a,b) < cs6" Mal' "L ({r € [r1,72) : ||a] — r[b]| < 6})
< c30™ Ha|'Tm26|b|

< degrad™|a| ™"
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Thus
limsupd ™" [ Is(a,b)|(a,b)|**" da(a,b)
6—0 A3
< 4esrg lim sup/ la|™™|(a, b)|"*"™ da(a, b)
6—0 A3
< climsup [ |(a,b)|”®da(a,b)
=0 A3
and the lemma follows by combining this with (3.3) and (3.4). O

Now we are ready to prove a modification of [24, Theorem 6.6].

Theorem 3.2. Let A be Radon measure on R™ x R™ with compact support such that
I,(\) < oo. Then

Sgos,sA L L
for 0, x L'-almost all (g,7) € O(n) x (0, 00).

Proof. Let v = S3(A x A), where S : (R")* = R xR", S(a,b,z,y) = (a —z,b—y).
Then

1o datu) = [[1@.0) - @b Na.b ay) <o

Let 0 <7 < ry < 0o. Using the methods of [23, Section 2.5] we can show that the
function

(z,9,71) — lign_jonf 0 " S 4004 A (B(2,9))

is Borel measurable. Thus applying Fatou’s lemma, Fubini’s theorem and Lemma 3.1
for a and s = n, we get

/ //11m1nf5 "Sgost N B(2,0)) dSyes.:M(2) d,(g) AL (1)

Sliminfé_”// 0.{9€ On):la—x—god.(b—y)| <o}

6—0

x dLY(r)d(\ x \)(a,b,z,y)

= liminfo™" // 0,{g € O(n) : |u—god,(v)| <6}dL () da(u,v)

6—0
< c/ |(u, v)| " da(u,v) < oo,

where ¢ depends on n, r; and rs.
Thus it follows that for 0,, x L'-almost all (g,7) € O(n) x (0,0)

lim inf 6" Syes.4A(B(2,6)) < 00

6—0
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for SyessA-almost all z € R™. Then [25, Theorem 2.12(3)| implies that for such
(g,7) € O(n) x (0,00) we have Syo54A <K L. O

By a simple approximation we only need to assume the following local energy
condition.

Corollary 3.3. Let A be a Radon measure on R™ x R™ with compact support such
that [ |(x,y) — (a,b)|"™dX(a,b) < oo for A\-almost all (z,y) € R x R". Then

Sgogrﬁ)\ <« L
for 0,, x L'-almost all (g,r) € O(n) x (0, 00).

Proof. For j =1,2,... define Borel sets A; by
A= (o) € R xR [ () = (@ b)] " da.b) < )
Now
In()\’A]) < o0
and so Theorem 3.2 implies that for 6, x L'-almost all (g,7) € O(n) x (0, c0)

Sgos,t(Aa;) < L.

Since
Jim MR xR\ = MR X R 4) =0
we get
Syos s\ (B) = i Sy s, ) (B)
for all B C R”, and the lemma follows. O

We also need the following modification of [24, Theorem 6.7|.

Lemma 3.4. Let \ be a Radon measure on R™ x R™ with compact support. Assume
I,(\) < oo for some s > n. Then for 0, x L'-almost all (g,7) € O(n) x (0,00)

[sfn(Rgoérﬂ)\)W,(z,fz)/Q) < o0
for H"™-almost all (z,—2)/2 € W+,

Proof. Let 0 < r; < ry < 0o. We denote by ¢; and ¢y constants which may depend
on 7y, re, s and n. Letting w = (z,—2)/2 and using (2.2), Fatou’s lemma and
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Fubini’s theorem we obtain

[ ] 1eatBaos s () i (9) a1 0
—s+n
<11%1551f26 / ////w (x,y) — (a,b)]

X dR905 ﬁ)\ a, b gog ﬁ)\) (33 y dH ’WL( )d9 ( )dﬁl( )

_hm1nf25 / /// /]xy (a,b)|~=™
{(a,b):d((a,b),W )<}

X d(Rg05 ﬂ)\ Ww xz,Yy dR905 ﬁ)\(a b) d%n’WL )d9 ( )dﬁl( )

= liminf(24)~ / /// /]:cy (a,b)|~="
=0 {weW L:d((a,b), W) <6}

< d(Ryot, s\ w2 y) dH s (1) dRyos A, 5) dB, (g) AL (1)

The measurability of a function (w,g,7) + Is_n(RgossA)ww can be shown in a
similar way as in [23, Lemma 4.2].

If B={we W :d((a,b),W,) <4}, then

Py (B) = {(z,y) €R" xR" : |Py+((a,b) — (2,y))| < &}
={(z,y) eR" X R": l[a —x — (b—1)| < V26}.

So by Theorem 3.2 and (3.2)

/Tm //[Sn(RgogTu)\)mw AH [y (w) db,,(g) dL ()
< lim inf(20)~ / ///xy Yo (b y|<ﬂ}\(x Ly) — (a,b)| 75"

X ng05 ﬁ/\ €,y ngo§ ﬁ)\(a b) d9 ( )d/:l( )

~ lim nf(20)" / /// (2,90 6,(1)) — (a9 0 6,(B))| >+
{(z,y):|a—z—god, (b— y)|<\f6}
x d\(z,y) d\(a,b) db,(g) dL (7).

Thus using the fact

[(a,g00,(b))| > c1|(a,b)|, if r € [r1, 9]
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and Fubini s theorem, and then applying Lemma 3.1 for the measure o = Sy(A x A),
where S : (R")* — R" is as in the proof of Theorem 3.2, we get

/// (Bt s\ ae) dH s (w) b (g) AL (1)

<t hm mf 26)” / /// ((z,y) — (a,b)]**"
{(z,y):la—z—godr (b—y)|<v/25}

x d\(x,y) d\(a,b) db,(g) dL(r)

= ¢ T(V2) "11m1nf5 /// 0,{g € On):|la—x—god.(b—y)| <5}
x |(a—z,b—y)| 5T dL (r) d\(z, y) d\(a, )
<y / |(a,b) — (z,y)|"* dA(z,y) d\(a, b) < .
Thus for 6,, x L'-almost all (g,7) € O(n) X [ry, o]
Lsn((Rgos s w) < 00
for H"™|yy1-almost all w € W, and the result follows. U

3.2. Local dimensions of intersection measures. In this section we consider
local dimensions of intersection measures. We need a lemma whose proof is a mod-
ification of the proof of [18, Lemma 5.4|.

Lemma 3.5. Let A be a Radon measure on R™ x R™ with compact support. Fix
0<r <ry<oo. If (z,y) € R" x R" is such that [ |(z,y) — (a,b)]"™ d\(a,b) < oo,
then

/ / e[ (Rgos, t VWi (e gos, (), 906, (v)—a) 2)) (B (2, 7)) A0, (g) AL ()
/ (@,y) — (a,B)| " dA(a.b),
B((z,y),¢h)

where ¢ and ¢ are constants depending only on n, r1 and rs.

Proof. We denote by ¢y, ..., ¢4 constants which may depend on n, r; and ry. Let ¢ be
the characteristic function of the open ball with centre z and radius 2h. Using (3.1)
for ¢ o 7, Fatou’s lemma and Fubini’s theorem we have

/ / 72l (Raosn e\ o080 01006, (02| (B 1)) d(g) AL (1)

/ / lim nf(v/25)" / o(a) dA(a, b) db,(q) AL (r)
{(a,b):la—z—god, (b—y)|<6}

< liminf 5_”/ Is(a,b) d\(a,b),
B(x,2h) xR"

6—0
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where

[5((Z,b) = / en{g € O(”) : |(Z —r—ge° 57“(6 - y)‘ < 5} dﬁl(r)
{relrralilla—z|—rlb—y||<é}

As in the proof of Lemma 3.1 we get

/ / 7l Raos, s Wi g0t (o aois)-a1y2)) (B, 1)) d, () AL (r)

< liminf 5" / Iy(a,b) dA\(a, b).
6—0 (B(x,2h) xR™)NB3
where
Bs ={(a,b) e R" xR" : r1|b—y| = < |a — x| < ro]b—y| + 6}
and

Bj = {(a,b) € Bs : |a — x| > 25, r|b—y| > 25}.
Since for (a,b) € B we have by [25, Lemma 3.§]
Is(a,b) < deprgd™a — x|
and

|a = x| = ¢af(a,0) = (2,9)]

we get

| [ s it )08, 0122 (Bl 1) dlg) a1 )

< lim sup 4e¢qry / la — x| d\(a,b)
50 (B(,2h) xR™)NB3

< lim sup 03/ (a,b) — (z,y)| 7" d\(a, b)
5—0 B(z,2h)xR"NB3

<o [ ) (@b aa)
B((a:,y),qh)
The last inequality follows from the fact that (B(z,2h) x R") N B C B(z,2h) X
B(ya 4h/T1) U
Now we can prove an analogue of |7, Proposition 4.1].

Theorem 3.6. Let \ be a Radon measure on R™ x R™ with compact support such
that [ |(z,y) — (a,b)]7™ d\(a,b) < oo for A\-almost all (z,y) € R™ x R™. Then for
0,, x L'-almost all (g,r) € O(n) x (0, 00)

dimy, 74 [(Ryos, s A W (2—gos, (v),906, (y)—a)/2) () > dimy Az, y) —n = dy(2,y) —n
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and

ooy [( Rgos, s\ ) (a—gos (v).g00, (v)—2)/2) () = dy(@,y) = n
for A-almost all (z,y) € R™ x R™.

Proof. Let ¢ and ¢ be as in Lemma 3.5. Using Lemma 3.5 we get for M\-almost all
(x,y) € R" x R™ and for all ¢ > 0

O x L{(g,7) € O(n) X [r1,72] : W[ (Rgos,s W (a—gosr (v).g00, (v)—x) /2] (B(, )
> ™" w g (2, y)} < B
Defining Borel sets
A ={(g.7) € O(n) x [r1, 72] : 74| (Rygos, t )W (g0 (1),g08: () -2 (B2, 27F))
> 27N TN (7))

and then applying the Borel-Cantelli lemma to A; we get for A x 8,, x £'-almost all
(Jf,y,gﬂ") € R" x R™ x O(n) X [7“1,7'2] that

78 (Rgos, s MW (g0, (v),g06. () —2)/2) (B, 275)) < e(27F) " SN w0y (2, y)
for all sufficiently large k. Clearly this holds for sufficiently small h. Thus for
A X 0, x Ll-almost all (z,y,9,7) € R" x R" x O(n) x [ry, ro]

T4[(Rgos, s AW (x—gob, (4).goor (y)—a) /2 (B(x, b)) < ch ™ X % g, (2, )

for all sufficiently small h. Now the theorem follows from the definition of local
dimensions and from Remark 2.1(1). O

As a corollary we get a result for intersection measures.

Corollary 3.7. Let pn and v be Radon measures on R™ with compact supports such
that [ |(z,y) — (a,b)] ™™ d(p x v)(a,b) < oo for u x v-almost all (x,y) € R™ x R™.
Then for 6,, x L'-almost all (g,7) € O(n) x (0,0)

dimy, . (1 N (Tagos, () © g © 0r)g) () > dimy, (0 X v)(2,y) —n = d,,(z,y) —n

and

dimioe (11 0 (Ta—gos, ) © 9 © 0, )5v) () > dyyse, (,y) — 7
for pu x v-almost all (xz,y) € R™ x R".
Next we show that Theorem 3.6 holds without assuming the local energy condi-

tion. A decomposition of a Radon measure into absolutely continuous and singular
parts from [15] is used for this purpose. For all g € O(n) and r € (0, 00), define

Eyr = {(2,y) € R" X R : (Ryos, s\ ) Wi(—gos, (4).g00, () ~a)/2 15 defined}.

Remark 3.8. If [ |(z,y) — (a,b)] ™ d\(a,b) < oo for M-almost all (z,y) € R® x R,
then the measures (Rgos, s\ W, (z—gos, (4),g00, (y)—2)/2 are defined for X x 6,, x L£!-almost
all (z,y,9,r) € R" xR" x O(n) x (0,00). This follows from Corollary 3.3 as in [24,
Lemma 4.6].
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Theorem 3.9. Let A be a Radon measure on R™ x R™ with compact support. Then
for 6,, x L'-almost all (g,7) € O(n) x (0,0)

dimy, 75 [(Ryos, s A W (2 —gos, (y),908, () —a)/2) () = dimy Az, y) —n > dy(2,y) —n

and

Elocﬂﬂ[(Rgoérﬁ)‘)Wv(w—gw?r(y),goér(y)—@/?](37) 2 ET\L(J% y)—n
for A\-almost all (x,y) € E,, and moreover dy(z,y) = —oo for A\-almost all (x,y) €
(R* x R")\E, ...

Proof. Since the map 7 : W, _.)» = R", w(x,y) = x is bi-Lipschitz, it’s enough
to consider local dimensions of sliced measures (Rgos,s\)w,(z—gos, (y),go0, (y)—z)/2- W
prove the second inequality. The proof of the first one is similar: one has to use
the first inequality in Theorem 3.6 instead of the second one, and the fact that
dimy A(z,y) —n > dy(z,y) —n for all (z,y) € R™ x R".

Defining a Borel set

B={(z,y) €R" xR": /|(:c,y) — (a,b)| " d)(a,b) < oo}

we have by Theorem 3.6 and Remark 2.1(2) for 6,, x £'-almost all (g,7) € O(n) x
(0,00) and for M-almost all (x,y) € B

dimioe ((Rgos, (Al B))Wi(—gos, (4,06, (5)—2)/2) (2, g © 00 (y))
= dimyoems[(Ryos, s (A B)) Wi (w—g06, (4).g06, (y)—2) /2] (T)

(3.5) —n
> d)\‘B(I,y) -n
= E;\L(xa y) - n.
Moreover,
(3.6) Ryos.4(AlB) = (Rgos.4M) By,

where B,, = Ryos.(B). Corollary 3.3 gives for 6,, x £'-almost all (g,7) € O(n) x
(0,00) that Syes,4(A|p) < L™, which implies
(37) PWJ‘ﬁ<<RgO6Tﬁ)\>|Bg,T) << Hn

for 0,, x L1-almost all (g,7) € O(n) x (0, 00). i
Fix (g,r) € O(n) x (0,00) such that (3.5) and (3.7) hold and decompose \ :=
Rgogrﬁ)\ into

s

A=Y 4+ nglg,
where
PWLﬁ(A;Vng) L H"we,
(3.8) Pyiy(ANb) < H'|w:  and
A(A) = M, (A) + AT (A)
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for all Borel sets A C R™ x R", see [15, Lemma 2.4]. Now by (3.8) and (3.7)
(3.9) Ahe(Bor) = ((Ryos i) By Jing( Boor) = 0.

sing

Moreover, (S\Zgg)w7(z7,z)/2 = 0 for £"-almost all z € R™ by [15, Proposition 2.5(1)].
Thus using also (2.4) we get

(5\|Bg,7‘)W: ( abS‘Bg ’!‘) Z Z)/2
N4
(310) ( smg) (=, Z)/2|qu + (/\abs)W,(Z7—Z)/2|Bg,r
( abs+)\51ng) (%, Z/Q‘Bgr
= /\W,(z,—z)/2|Bg,T
for £"-almost all z € R". Combining this with (3.5), (3.6) and (3.7) we get
EIOC((RQMS s AW, (5—go, (4),906, (1) )/2}Bw)<xag °d,(y)) = C_Z;l@ay) -n

for A-almost all (x,y) € B.
Remark 2.1(2) gives for £"-almost all z € R™

(3.11)  dimioc((Rgos, tMwiz,—2)2] 5, ) (%, y) = dimioc((Rgos, :M)wi(z,—2)/2) (. )
for (Rgos,4\)w,(z,—2)/2-almost all (z,y) € By ,. Moreover, using (3.7), (3.2) and (3.10)
we get for all Borel sets F C By,

(3.12 Ryss MF) = [ (R i (F) dH - @)
Now defining Borel sets
Fy = {(2,y) € B : dimioe((Rgos, s\ W, (2—gos (4).g06, (v) ) /2] B, ) (X, g © 0:(y))
# dimioc((Ryos, s\, (o gos,(y).900 () —2)/2) (£5 9 © 0,(y)) }

and

By ={(z,y) € By :di_mIOC((Rgo& ﬂ)‘) (z—y,y—z) /2|Bgr)(x Y)
7’£dimIOC((Rz]OlS ﬂ)‘) (x—y,y— m)/2>( 73/)}

we have by (3.11) for £"-almost all z € R”
(Rgos s \)w,(z—2)/2(F2) = 0.
Then (3.12) gives
)‘(F1> = RgoérﬂA(Fz) = 0.

Thus
(3.13) di_mIOC((RgOtS AW, (=906, (),906 () =) /2) (T, § © 6 (y)) = E;L(xay) -n
for A-almost all (z,y) € B. By Remark 2.1(3) we have dy(z,y) = —oo for all

(x,y) ¢ B. Thus the inequality (3.13) holds for M-almost all (z,y) € E,,.
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For the last claim define
E1 = {(Z‘, y) e R" x R": (Rgo&«ﬁ)\)W,(x—go&n(y),go&-(y)—a:)/Q is not defined
and d, (z,y) > —oo}
and
Ey ={(z,y) € R" X R" : (Ryos,4A\)W,(2—y,y—a)/2 is not defined
and c_l;;goéru)\(x,y) > —o0}
Then by Lemma 2.2(2)
dy(x,y) = dg, \(2,(906,)(y))

and

—n

dp, .5 o \(2,9) = d\(2, (g0 6,) 7 (1))
and so Remark 2.1(3) gives

A(Er) = Rgos,tA(E2) = Rgos. s A(E2 N By.,).
Now applying [15, Corollary 2.6] to Ry.s4A and using (3.9) yields
Ryos,4A(E2 N By,) = 0.

As an immediate consequence we get:

Corollary 3.10. Let p and v be Radon measures on R™ with compact supports.
Then for 6,, x L'-almost all (g,7) € O(n) x (0,0)

dimy. (1 N (Te—gos, (y) © g © 0 )g) () > dimy, (u x v)(z,y) —n > d},,(z,y) —n

and

Tt (110 (e got ) © 9.0 6,))(x) = Dy (1,) —

for px v-almost all (x,y) € E,, and szy(x,y) = —00 for pu x v-almost all (x,y) €
R™ x R"\ E, ., where

g,m

Eyr ={(z,y) € R" X R" : 1N (To—gos, (y) © g © 0y )z is defined}.

Next we consider the validity of the opposite inequalities in Theorem 3.6. The
proof is based on results concerning dimensions of sliced measures. For the proof
of the lower local dimension we will show that the upper bound of lower local
dimensions of sliced measures py, (see [15, Theorem 2.11]) holds for all planes for
which Py < H™. The idea of the proof is from [20, Theorem 2.8] where the
same question for the average dimension was considered.
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Lemma 3.11. Let i be a Radon measure on R™ with compact support such that
dimyg g > m. If V€ G(n,n —m) is such that Py, < H™, then

di—mlomuv@(x) < di—mlomu(x) -m
for p-almost all x € R™.

Proof. Let Dy, k = 1,2,... be the standard half open disjoint dyadic cubes @ of
side-lengths () = 27". Denote by D = [J;=, Di. Let € > 0 and n > 0. For each
Q@ € D define

Ag ={r €2Q : 1(2Q) < nu(2Q) (Q)* ™},

where 2(Q) is the cube centred at the same point as ) and with side-length 2I(Q).
Denote A = [Jyep Ag- Then by (2.3)

<3 u(dg) <Z/ | a(2Q) 1" (o)

QeD Q€eD
(3.14) <D Q) UQ)TH™M(Pyi(Ag)) < ey 27 Y u(2Q)
OeD k=1 Q€Dy,
<nec M(RH)QS —1 @

where ¢y, co and c3 are constants which may depend on m,n and e.
Let z € R"\A and 0 < r < 1. Now there exist @) € D and a constant 0 < ¢4 < 1
depending only on n such that

B(x,cyr) C 2Q C B(z, 7).
Hence,
wva(B(z, 1)) 2 pve(2Q) 2 1 p(2Q) Q)™ = nes p(B(x, car)) 7™,
where c5 depends on n, m and €. Thus
dimyeprye () < dimyo pu(z) —m +e

for all x € R"\A. Since in (3.14) we may choose 7 as small as we wish, the claim
follows. O

The following modification of [19, Lemma 2.4] and of [18, Lemma 5.6] is needed
to make sure that results for upper packing dimensions of sliced measures can be
used.

Lemma 3.12. Let A be a Radon measure on R™ x R™ with compact support. If
I,(\) < oo for some s > n, then for 6, x L'-almost all (g,7) € O(n) x (0,00) there
exists for any € > 0 a compact set C. C R™ x R™ with Rgos s A\((R" x R")\C:) < ¢
and H. such that for H"-almost all (z,—z)/2 € W+ we have

((Rgos.4M) }C (2,—2) /Q(B((x,y)7h)) < chls—m)/2
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for all (x,y) € Wi, _.y;2 and 0 < h < H.. Here ¢ is a constant depending only on s
and n.

Proof. Lemma 3.4 implies that for 6,, x £'-almost all (g,7) € O(n) x (0, 00) we have
(315) [an(Rgofsru)\)W:(zv_z)/2) <00

for H"-almost all (z,—2)/2 € W+. Consider (g,7) € O(n) x (0,00) such that
(3.15) holds and Syes.4A < L™ (by Theorem 3.2 this is true for 6, x £'-almost all
(g,7) € O(n) x (0,00)). Then using (3.2) and ( 3.15) we have for Ry 4A-almost all
(z,y) € R" x R"

/ (7, y) — (@, 0)" " d(Ryos s N w(z—y,y—2)/2(@, b) < 0.

Let € > 0. For every ¢ = 1,2,... define a Borel set

Bi= {(e.) € R X B [ [(2.9) = (@D dlRyps N o yoya(ah) < 1)
Since
zli>I£lo Ryos tA(R" x R")\B;) =0
we find a compact set C. C R™ x R" such that R,54A((R" x R")\C:) < ¢ and

C. C B;_ for some i..

;2
Let H, =i /9. Consider (z, —z)/2 € W+ such that both (Rgos,sA)w,(z,—2)/2 and
(Rgoﬁrﬁ)‘|CE>W,(z,—z)/2 are defined. If (Z, —Z)/2 ¢ PWJ_ (Os), then

(Rgos, s M| e )wi(z,—2)2(B((z,y), h)) =0

for all (z,y) € W, _.)/2 and h > 0. This follows from (2.1) and from the fact that
Wiz—2)2(0)NC. = O for all small 6 > 0, since C is compact. If (z, —2)/2 € Py.(C:)
and (x,y) € Wi, _.)2 N C;, then for any 0 < h < 3H,, we have

(Rgos s M )wiz,—2)/2(B((z,9), h))
< (Rgos s M)W (a—yy—a)/2(B((7,9), 1))

<hT / [(2,9) = (a, )"~ d(Ryos, e W a-yy-2)2(0: D)
(B((z,y),h))

< hsfn,l»E < 3(nfs)/2h(sfn)/2.

(3.16)

If (2,—2)/2 € Py (C:) and (z,y) ¢ W, —.)2 N C;, then there exists h,, > 0 such
that B((z,y),h) NC. N Wi, _.yp = 0 for all 0 < h < hyy and B((x,y),h) N C. N
Wie—zy2 # 0 for all h > hg,,. If 0 < h < hy,, then by (2.1)

(RgO(srﬁ)\‘Ca)W(Z,—z)/?(B((x7 y)7 h‘)) =0.

If hy, < h < H,, then B((z,y),h) C B((a,b),3h) for some (a,b) € W, _.)2 NCx,
and (3.16) gives the claim. O
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Theorem 3.13. Let A be a Radon measure on R™ x R"™ with compact support.
Assume that dimg A > n. Then for 6,, x L'-almost all (g,7) € O(n) x (0, 00)

(1) dimyo 75 [(Ryos, s AW (x—gos, (y),906, () —a)/2) () = dimy A(z,y) — n = dy(z,y) —n

and

(2) ﬁlocﬂﬁ[(ﬁ)goé AW, (—gos. (y), 06, () —=)/2) (T) = EK(% y) —
for A-almost all (z,y) € R" x R™.

Proof. The lower bounds for local dimensions follow in both cases from Theorem
3.6. In order to prove the upper bounds, it is enough to consider sliced measures
(Rgos, 8\ W, (5—g06, (4),g08, (y)—=)/2- Moreover, in both (1) and (2) we have

(3.17) PWJ_ﬁ(RgogTﬁ)\) < ,Hn|Wl
for 6,, x L'-almost all (g,7) € O(n) x (0,00) by Remark 2.1(3) and Corollary 3.3.
First we prove the upper bound in (1). Since dimy(Ryos,4A) = dimyg A we may by

(3.17) for 6,, x L'-almost all (g,r) € O(n) x (0,00) apply Lemma 3.11 to Ryos s\
and . Thus by Lemma 2.2 and Remark 2.1(1)

0= Rgos, s M (7,y) € R" x R™ = dimy,.((Rgos, ﬁ)‘) (z—yy— r)/2)<x,?/)
> m_mloc(RgoaM)(x y) —n}
= M(z,y) € R" x R" : dimyoc ((Rygos, s AW (o—gos, (y),905, (1)) /2) (T5 9 © 67(y))
> dimy, (Rgos, M)(w god(y)) —n}
= M(z,y) € R" x R" : dimyoc ((Ryos, s )W (2—gos, (y) 905, (1)) /2) (T3 9 © 67(y))
> dl_lmoc)\(l"a ?J) —n}.

Now we prove the upper bound in (2). Assume first that I;(\) < oo for some
s > n. Then we can use results for packing dimension of sliced measures. It
follows from (3.17) that measures 74 [(Rgos, 4 A) W, (z—gos, (y),g00, (v)—=)/2)] are defined for
A X 0, x L'almost all (x,y,g,7) € R" x R" x O(n) x (0,00) (see Remark 3.8).
Assume to the contrary that there are t1,1, € R so that

0<Ax0,xLY(z,y,9,7) €ER" x R" x O(n) x (0,00) :
m100((3905 AW, (5—go, (9),906, (y)—=)/2) (T,  © 0r(y)) > t1 > 1o > 32(%3/) —n}.
By Fubini’s theorem there exists a Borel set B such that
BC {(z,y) € R" xR" : d,(z,y) —n <t}
with A(B) > 0 and for all (z,y) € B we have
0<8,xLY(gr) € On) x (0,0):
dimioe ((Rgos s AW (a—gos, (v).go8. () —a)/2) () > t1}
For every (g,r) € O(n) x (0,00) define
Agr = Ryos,(A|B) = (Ryos,:M)| By

(3.18)
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where B, , = Ry, (B).
Consider (g,7) € O(n) x (0,00) such that both (3.17) and Lemma 3.12 hold. In
the proof of [19, Theorem 6.4] it is proved that if £ and p are integers with 0 < p < k

and A is a Radon measure on R¥ with compact support and I, 4(\) < oo for some
d > 0, then

(3.19) HP- esssupdlm Ava < A-esssupds (z) — p
acV+ TERF

provided that V' € G(k,k — p) is such that [19, Lemma 2.4] holds and Py.i;\ <
H”’V .. Now Ay, and W satisfy these assumptions. In other words, we have for
0,, x L'-almost all (g,7) € O(n) x (0,00)

(3.20) L ess sup dim’, oAgr)wi(z,—2y2 < Agm  eSSSUD d/\ (z,y) —
zER" (z,y)ER™ XR™

On the other hand, using Remark 2.1(2) and Lemma 2.2 and the definition of set
B we get for 0,, x L'-almost all (g,7) € O(n) x (0, 00)

Agr{(z,y) € R X R" : c_lzg,r(x,y) —n >t}

3.21) = M(e.) € By, (@0.900,0) =1 > 12}
= M(z,y) € B:dy(z,y) —n >t} = 0.

Thus Ay ;- essSup(, ) crn e EZH’T(J;, y) —n < ts.

Moreover, by (3.18), Remark 2.1(2) and (2.4) we have for 6,, x £!-positively many
(9,7) € O(n) x (0,00)

0 < M(2,y) € B : dimioc((Ryos, tA)W,(w—gos,(3).906 () —2)/2) (T, 9 © 6, () > 1}
= M(2,) € B : ditioc((Rgos, s\ )W (o—go5, (4).go6. () -2)/2| B, ) (. 9 © 6, (y)) > t1}
= N {(7,y) € R" x R™ : dimioe(( Ay )W, (zmyy—a)/2) (T, y) > t1}
This implies by Corollary 3.3 and (3.2)
(3.22) 0< LzeR": ()\gﬂ«)_w,(z,_z)/g{(x, y) € R" x R":
dimyoe((Agr)w,(z,—2)/2) (@, y) > t1} > 0}.

Therefore

L"-ess sup dim | pAgr)Wiemzy2 2t > tg > Ag - esssup d/\ Az, y) —
z€ER™ (z,y)ER™ xR"

for 6, x L1-positively many (g,7) € O(n) x (0, 00) giving a contradiction with (3.20).
Thus the claim holds, if we assume that I,(\) < oo for some s > n.
Now assume that dimg A > n. Let n < s < dimy A and define for every: = 1,2, ...

B; ={(z,y) e R" x R": /\(:c,y) — (a,b)|"*dX(a,b) < i}.
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Then
(3.23) lim A((R" x R")\B;) = A(R" x R")\| | B;) = 0.

1—00

Since I,(\|,) < oo we get for 6, x L'-almost all (g,7) € O(n) x (0, 00)
0=X(z,y) € B; :

dimioey[(Rgos,s (A

Bi))W,(x—goér(y)7go5r(y)—x)/2](x) £ E;L\Bi (z,y) —n}.
Moreover
Rgos,s(AlB;) = (BgossM)| Ryos, (8-
Using these with (2.4) and Remark 2.1(2) gives
0= M(2,y) € Bi : dimiocmy[(Ryos, :\)w(o—gos, (v).ge6. (n)-a)/2] () 7 dy (2, y) = n}
for 6,, x L'-almost all (g,7) € O(n) x (0,00). Now the claim follows by (3.23). O

Remark 3.14. (1) The upper bound for lower local dimensions holds for all (g,r) €
O(n) x (0,00) for which Py 1y(Ryos M) < H”|WL.

(2) In [15] it is shown, that if I, () < oo for some £ > 0, then for 7, ,_n,-almost
all (n —m)-planes V' and for p-almost all x € R”

dimyeefty . () = ET(m) —m.

Using the methods of the proof of Theorem 3.13 it is possible to show that the
equality also holds under the assumption dimy p > m.

Theorem 3.13 implies the following results for intersection measures.

Corollary 3.15. Let o and v be Radon measures on R™ with compact supports.
Assume that dimg(pu x v) > n. Then for 0, x L'-almost all (g,7) € O(n) x (0, 0)

(1) di_mloc(u' N (Tx*go&(y) ©ge 57”)ﬁl/)<x) = di—rnloc(:u X I/)(Z‘, y) -—n= C_inu('x? y) -n

and

(2) EIOC(M N (Tx—gO&-(y) ©go 51“)11’/) (z) = EZX;;(L y) —n
for p x v-almost all (xz,y) € R™ x R".
Corollary 3.16. Let o and v be Radon measures on R™ with compact supports.
Assume that dimyg(pu x v) > n. Then for L™ x 0, x L'-almost all (z,g,7) €
R™ x O(n) x (0,00)
(1) dimye(uN (7. 0 g0 6,)yw)(x) = dimy, (1 x v)(z, (0 g0 6,) 7 (2)) —n
= dy, (2, (T20g06,)  (2)) —n

2uxv

and

(2) m100(:u N(rzo0go ()})ﬁl/)(l’) =d, (z,(rz0g0 5r>_1(x)) -n

uxv

for pN (0 go0d,)w-almost all x € R™.
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Proof. We will prove (1). The proof of (2) is similar. By Corollary 3.15(1) and
Lemma 2.2 we have for 6,, x £L'-almost all (g,7) € O(n) x (0, 0)
0=pxv{(r,y) € R" x R": dimy,. (1 N (To—gos, (y) © g © 0r)sv) (@) # iy, (2, y) — 0}
= x (g o0 )w{(r,y) € R" x R" : dimy, (1 N (Ta—y © g © 0)3v)(2)
7 dyusc(gos,),o(,9) — 1}
Now (1 % (g ©0,)s)w,(z,—2)/2 IS @ measure on
We—zse =1{(z,y) e R" xR" : 2 —y = z}.
Thus (3.2) and Lemma 2.2 imply that for 6,, x £L!-almost all (g,7) € O(n) x (0, c0)
and for £"-almost all z € R" we have
0= (1 x (900 )s)w (.22 (2, y) € R" X R™ : dimye (N (Ta—y © g 0 6r)50) ()
# Qi (gos, ), (T y) — n}
= (1 x (900 )W )w . —zp{(r,r —2) € R X R" - dimy, (p 0 (72 0 g 0 0,);v) (x)
# d, Q)ix(god,) ﬁu( —2) —n}
= (1 x (900 )W)wz—zp{(r,r—2) € R" X R" : dimy, (1N (72 0 g 0 6,);v) ()
# dus (2, (120 g 06,) 7 (2)) — n}
and the claim follows by Remark 2.1(1). O
Remark 3.17. In Corollary 3.15(2) it is not sufficient to assume that dim,(uxv) > n.
Thus the upper local dimensions and packing dimensions of intersection measures
depend on dimy p x v. Consider example from [20, Remark 3.6]. For 0 < o < f < 1
there are Radon measures p and v on [0, 1] such that
dimyee(p X V) (2,y) > B+ 8 > a+ > dimyep(r) + dimy, v(y)

for u x v-almost all (z,y) € [0,1] x [0,1]. Choosing a and [ properly we have
dim, (g xv) > 1, but dim,,.(uxv)(x,y) < 1 in a set of positive X v -measure. Thus
Remark 2.1(3) implies that for any such (z,y) € [0,1] x [0, 1] we have Ziixy(x, y) =
—00, which means that g N (7,—gos,(y) © g © 6, )3 is not defined in a set of positive
[ X V-measure.

3.3. Hausdorff and packing dimensions of intersection measures. Results in
Sections 3.1 and 3.2 imply that results concerning Hausdorff and packing dimensions
in [18] hold with fewer assumptions. In the case of Hausdorff and upper Hausdorff
dimensions we get the following improved versions of [18, Theorem 3.7 and Theorem

4.5

Theorem 3.18. Let i and v be Radon measures on R™ with compact supports.
Assume that dimg(pu x v) > n. Then for 0, x L'-almost all (g,7) € O(n) x (0,0)

L"-essinf{ dimy (N (7, 0 g0 0,)4v) : 2 € R™ with pN (7, 0 g 0 6, )y (R") > 0}
= dimy(pu X v) — n.
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Proof. The proof of [19, Lemma 3.1] shows that for any plane V' € G(n,n—m) such
that Pyoiyu < H™|yo we have
H™- essinf{dimy p1y,, : @ € V with py(R™) > 0} < dimg g — m.
Since
dimg(p X (g 0 6,)gv) = dimp(p X v) > n

we may by Corollary 3.3 apply this for 6,, x £'-almost all (g,7) € O(n) x (0,00) to
px (god, ) and W to get the upper bound.
For the lower bound define for all (g,7) € O(n) x (0, c0)

Cor={2€R": uN(r,0g00,)w(R") > 0}.
It is enough to show that for all n < ¢ < dimg(p x v)
Lz € Cy, dimg(pN(r,0g00,)v) <t—n} =0
for 6, x L'-almost all (g,7) € O(n) x (0,00). Then
L"-essinf{ dimy(p N (17, 0900, )4v) : z € R" with N (7, 0 g 0§, )3 (R") > 0}
>t—n

for 6,, x L'-almost all (g,7) € O(n) x (0,00), and the result follows by taking a
sequence t; / dimg(p X v).

Fix (g,7) € O(n) x (0, 00) such that Syes.4(1 X v) < L™ and Corollary 3.15 holds.
If we have L"(E,,) > 0, where

E,, ={z€Cy, :dimg(pN(r,0g006,)yv) <t—n},
then
puN(r,o0god,)w{reR":
ditm,, (11 (7. 0 g 0.8,))(zx) < t —n} > 0
for z € E,,, and it follows by using (3.2) that
px (god){(zr,y) € R" x R" : dimy (N (Tp—y 0 g 0 6, )3v)(x) <t —n} > 0.
Then Corollary 3.15 implies that
px v{(z,y) € R" x R" : dimy . (u x v)(z,y) < t}
X P{(2,9) € R X R ity (1) (e goty(9) 0 9.0 8,)g¥) (&) < £ — )}
— i (908, )ev{(2,9) € R X RY : ditmype (1) (ay 0 9108, )p)(x) < £ — 1}
> 0.
Thus ¢ > dimy(px x v) which is a contradiction. O

Theorem 3.19. Let o and v be Radon measures on R™ with compact supports.
Assume that dimg(p X v) > n. Then for 0,, x L'-almost all (g,7) € O(n) x (0, 00)

L"-esssup dimy (1N (7, 0 g 0 §,)4v) = dimy(p x v) — n.
zeR™
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Proof. The proof of [19, Lemma 4.1] shows that for any plane V' € G(n,n—m) such
that Pyoiyu < H™|yo we have

.k .k
H"-esssup dimy py,, < dimy o — m.
acV+

Since
dimg (g X (g 0 9, )gv) = dimp(p x v) > n
and
dimg (1 x (g 0 8,);v) = dimg (0 X v)

we may by Corollary 3.3 apply this for 6,, x £L!-almost all (g,7) € O(n) x (0,0) to
px (god, ) and W to get the upper bound.

For the lower bound let 0 < ¢ < dimg(p x v) —n. Fix (g,7) € O(n) x (0, 00) such
that Syos,4(p x v) < L™ and Corollary 3.15 holds. Then

% (90 6.)vA (2, 5) € R X R : dimy (11 (7,_y 0 g 0 8,)0)(2) > 1}

— X v{(@y) € RY X R : dimy, (11 (Ta-got ) © 9.0 ))(x) > 1)

=uxv{(z,y) € R" xR" : dim . (u X v)(z,y) >t +n} > 0.
Thus Corollary 3.3 and (3.2) imply that

L'z € R": (11 x (g 00,)s)w(z,—2) 28 (, 0 — 2) € R" x R" :
dimy, (1N (72 0 g 0 0y )gv)(x) >t} > 0} >0
which gives
LYzeR":uN(r,0g006, )w{reR":
dimyo (1 N (72 0 g 0 6r)gv)() > 1} > 0} > 0.

So we have

L"-esssup dimg (N (7, 0 g0 8, )yv) >t

z€R™
for 6,, x L'-almost all (g,7) € O(n) x (0,00), and the theorem follows by taking a
sequence t; 7 dimy (i X v) — n. O

Remark 3.20. In previous theorems it is necessary to consider dimension of product
measure instead of dimensions of u and v separately. That is, there does not exist
a function of dimyg p and dimy v that could replace the right hand side in Theorem
3.18 and Theorem 3.19. In [20, Example 3.5| there is an example of measures pu
and v on R such that dimy(p x v) > dimyg g + dimy v. Let ft and 7 be measures

on self-similar Cantor sets in R such that dimy i = dimy 4 and dimy 7 = dimyg v.
Then

dimy fi x 7 = dimg i + dimg 7 < dimg(p X v).

For packing and upper packing dimension we get that [18, Theorem 5.9 and
Theorem 6.3| hold under assumption dimg(p X v) > n.



LOCAL DIMENSIONS OF INTERSECTION MEASURES 35

Theorem 3.21. Let pw and v be Radon measures on R™ with compact supports such
that dimy(pu x v) > n. Then for 0, x L'-almost all (g,7) € O(n) x (0,00) we have

L"-essinf{ dim, (N (1, 0900, )yv) : 2 € R" with pN (1,0 g06,);w(R") >0}

—pxue essinl dulny) = n

Proof. The proof of the lower bound goes as in the proof of Theorem 3.18.
For the upper bound let ¢ > p x v-essinf(, )ernxrr dzxy(x,y). Fix (g,7) €
O(n) x (0,00) such that Syes.4(pt x v) < L and Corollary 3.15 holds. Then

px (god,)yw{(r,y) € R" x R : dimyoe(pp N (T4y 0 g0 8, )3v)(x) <t —n}
X (2 9) € R X R Tl 1 (ot © 9 061 )ev)(x) < £ — 7}
=pxv{(z,y) ER*xR": d,,,

Thus (3.2) implies that
0<LzeR": (1 x (906 )s)w(z—2)2{(z, 2 —2) € R" x R":
dimyee (N (1.0 g0 8,)gv)(z) <t —n} >0}

(x,y) <t} >0.

and further
Lz eR": pN(1,0g006,)yv(R") >0 and dim,(pN (1, 0900, )w) <t—n}>0.
So we have for 6,, x L'-almost all (g,7) € O(n) x (0,0)
L"-essinf{ dim,(uN (1, 09046, )w): 2z € R" with uN (7, 09046, )w(R") >0}
<t—n,
and the claim follows. U

Theorem 3.22. Let pn and v be Radon measures on R™ with compact supports such
that dimg(pu x v) > n. Then for 0, x L'-almost all (g,7) € O(n) x (0,00) we have

L"-esssup dim:(,u N(T,0g00,)3v) = p X V- esssup EZXV(I7 y) —n.
z€R™ (z,y)€ER™ xR"

Proof. The lower bound can be proven as in the proof of Theorem 3.19.
For the upper bound let

t < L"-esssup dim;(u N (7, 0900, )3v).
z€R™

Fix (g,7) € O(n) x (0,00) such that Syes.4(pt x v) < L™ and Corollary 3.15 holds.
Then

L'{z€eR": pN(r,0g06 )w{z: dime.(uN (r.0g08)w)(x) >t} >0} >0,
which means that
L'z € R": (1% (g0 06)40)wy(z,—2)21(T, @ — 2)
dimyee (N (1.0 g 0 8,)3v)(z) >t} > 0} > 0.
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Thus (3.2) gives
0<pux(god)w{(z,y) € R" x R" : dimye(pt N (To—y 0 g 0 6, )3v/) () > t}
= px v{(z,y) € R" x R" : ditioe (12 N (To—gos, () © 9 © 0, )3v)(x) > t}
=puxv{(zr,y) e R" xR": c_izxy(x,y) —n >t}
So we have for 6,, x £!-almost all (g,7) € O(n) x (0,0)

E<pxv- esssup dy, (@,y) —n,
(z,y)ER™ XR™

and thus by taking a sequence t; /* L7~ esssup, g dimy (1N (7, 0g00d,);v) the claim
follows. O

3.4. Average dimensions. Next we will show that the average dimension of in-
tersection measures behaves like the lower local dimension. This improves a result
by Llorente |20, Theorem 4.7 and Theorem 4.10].

Theorem 3.23. Let j1 and v be Radon measures on R™ with compact supports and
let dimyg(p X v) > n. Then for 0,, x L'-almost all (g,7) € O(n) x (0, 00)

dima (1 N (To—gos, () © g © 6 )gv)(x) = dima (1 x v)(2,y) — n
for p x v-almost all (x,y) € R™ x R".

Proof. First we prove the upper bound. The proof of |20, Theorem 2.8| shows that
for any plane V' € G(n,n —m) such that Py iy < H™|,1 we have

dimp py,(z) < dimp p(z) —m
for p-almost all x € R™. Since
dimg(p % (g 0 d,)4v) = dimp(p x v)

we may by Corollary 3.3 apply this for 6,, x £Ll-almost all (g,7) € O(n) x (0,0) to
px (god,)svand W. Thus

px (godn){(z,y) € R" x R™ : dima (1 X (900, )52/ )w,(o—y,y—)/2(7, )
> dimp p X (g o6, )gv(z,y) —n} =0
and further
px v{(z,y) € R" x R : dima (1 X (900,)s0)w,(2—gos, (4),906 (y)—)/2(Z, g © 6,(y))
> dimp p X (g o6, )sv(x,g006,(y)) —n} =0,
which gives by Lemma 2.2(3)
X p{(2,9) € R X B™ : dima (11 (7a_gos, ) 0 9.0 6, )gv) (1)
> dimp (pu X v)(z,y)—n} = 0.
For the lower bound let

(3.24) 0<s<dimp(p xv)(z,y) —n.
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We want to show that for u x v x 6, x L-almost all (x,y,g,7) € R" x R" x O(n) x
(0, 00)

s —_—
Dﬂﬂ(Tx—goaT(y)OgOér)ﬁz/(x) - 0
Let 0 <7y <719 <00 and let ¢q,...,c; be constants which may depend on 7,79, s

and n. Now using Lemma 3.5, Fubini’s theorem and a change of variable we get for
p x v-almost all (z,y) € R" x R”

/ : / 1 (oo () © 9.0 6,)s(B(z, 1)) dB,(g) AL (+)

< x,y) — (a,b)|7"d v)(a,b

< /B((w)m)u y) — (@,B) " (s x v)(a,b)

- / wx v{(ab) € B((z,y), exh) - () — (@ B)] ™ > u} AL (u)

coh
— e1(eah) " x v(B((2, 1), ch) + 01 / 1 x w(B((x, y), 1) AL (1)
0
Since

c1(coh) ™" u x v(B((x,y), coh)

= cun g x (Bl 0)sea)| [

coh

2coh e

T hact (t) + / T ac(t)]

2coh

22k
= cm/ px v(B((z,y), coh))t "L ALY (t) + c1(2e2h) " x v(B((w,y), cah))

oh

we get

2coh

cr(cxh) ™" x v(B((7,y), c2h) < %/h px v(B((w,y), )" dLN (D),

and thus

/ : / 1O (Tagoiniy) © 9 0 8) (B, b)) db,(g) L (r)
(3.25) "
<

22k
04/0 " x v(B((2,y), 1) dLH(2).
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Then, since dimy(p X v) > n, by using Fatou’s lemma, Fubini’s theorem,(3.24),
(3.25) and |20, Lemma 2.7] we get for u x v-almost all (z,y) € R™ x R™

/ /D T gosr<y)°goér)uu(x) db,(g)dL (r)

< Tim

_111;;n_>151f|10g5|/ / /,uﬂ To— 906, ( 0905%]}( (fp))
x db,(g) dL (r)dL (p

2cop
< ¢y liminf m/ PSl/ 7" x v(B((2,y), 1)) L (t) AL (p)

6—0

=y hm 1nf

o7 /// T w(B(a,9), ) AL (p) AL (1)

—i—/o c2 /6 p,sflt*nfllu > V(B((x,y),t)) dﬁl(p) dﬁl(t)

< ¢ liminf — [/1 px v(BUy) D) o1y

i—0 | logd| gstntl

cod

o[BI B0 )

ts+n+1 tn+1

[/1 px V(B((,9).1) iy

= ¢ lim inf

5—0 | logd| tstntl

c20

+ 5—5 /2026 /IJ X V(B((xvy)at)) dﬁl(t)]

tn—i—l

=0
U

Corollary 3.24. Let pn and v be Radon measures on R™ with compact supports such
that dimg(uxv) > n. Then for L x 0, x L -almost all (z, g,7) € R"xO(n) x (0, c0)
dima (N (1, 0 g o6, )yv)(x) = dima(p x v)(z, (1.0 god,) H(x)) —n

for pN (7, 0 g0, )w-almost all x € R™.
Proof. As the proof of Corollary 3.16. U

4. LINEAR MAPS AND CONTINUOUSLY DIFFERENTIABLE FUNCTIONS

We study intersection measures in the case where similarities are replaced by
linear mappings. We only need to consider invertible linear mappings, since almost
all linear mappings L : R®™ — R" are invertible.

We denote by GL(n) the group of invertible linear mappings L : R — R". Now
every L € GL(n) has a unique representation, the QR-decomposition, as

L=goT,
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where g € O(n) and T' € T'(n);, which is the group of upper triangular matrices
with strictly positive diagonal entries, see for example [8, Theorem 1.6.1]. Thus we
consider intersection measures

pN(r.ogoT)w =m (1t X (g0 T)s)w,(s—2)/2]-

Denote the singular values of L, that is, the lengths of the semiaxes of the image
of the unit ball, by ol ..., oL Let o > ... > of and define

GL(n)""™ ={L € GL(n) : r; < o~ and of < 1y}
and
T(n)}"™ ={T € T(n); :m < g, and gf <7y}.

By [8, Proposition 5.3.2| there exists a measure o on GL(n) such that for every
integrable Borel function f : GL(n)"™" — R we have

[twaainy = | / o, JlgeT) o) 50 (T

Moreover, this measure is mutually absolutely continuous with the Haar measure
on GL(n) (and with £).

We also consider the case where similarities are replaced by continuously differ-
entiable functions, that is, we consider intersection measures

pN (7o flyw = m[(p X fir)w-22);

where f : R™ — R"” is continuously differentiable. Now it is not clear what we mean
by ’almost every continuously differentiable function’, since there is no analogue
for Lebesgue measure or Haar measure in the infinite-dimensional space C'(R", R™)
of continuously differentiable functions. We use a notion of prevalence from [14]
instead.

Definition 4.1. Let V be a complete metric linear space. A Borel measure y on V'
is transverse to a Borel set S C V' if

(1) there exists a compact set U C V for which 0 < u(U) < oo and
(2) u(S+v) =0 for every v € V.

A Borel set P C V is prevalent if there exist a measure transverse to the complement
of P.

In our application we take p to be the measure 6,, x £2 (™Y We begin by proving
results for continuously differentiable functions. Then as a corollary we get results
for almost all linear maps by choosing f = 0. Proofs in this chapter are often just
slight modifications of those in Chapter 3 and in these cases the details of the proofs
are omitted.
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4.1. Properties of intersection measures. As before we need to consider mea-
sures (Ryort 2 A)w,(z,—z)/2 instead of product measures. Here A is a Radon measure
on R™ x R™ with compact support. The following analogue of Lemma 3.1 is impor-
tant in proving properties of these measures.

Lemma 4.2. Let A be a Radon measure on R"xR™ and let f € C*(R™, R"™). Assume
that I;(\) < oo for some s > n. Then for all 0 <1 <19 < 00

6—0

imewps™[[ | 6ula€Om) o= a—goTl0—y) - (1) - S <0}

x ALEC(T)|(a,b) = (2,9)[ 7 d(A x A)(a,b, 2, )
< CIS()‘)>

where ¢ is a constant depending only on n, s, r1 and ry.

In the proof of the lemma we need to integrate in polar coordinates. We denote
by S™~! the surface of the unit ball, that is,

St ={z eR": |z| =1},
and for x € R™\{0} we define
r=|z|and & = Tegnt,
r

Then there is a unique Borel measure o on S"~! such that for every integrable Borel
function f : R™ — [0, 00)

(4.1) / Fa) dLm(z) = /S /0 T Fra) AL () do ().

For the proof see for example |9, Theorem 2.49].

Proof of Lemma 4.2. Denote by ¢y, ..., cy constants which may depend on n, s,
and ry. Define for all (a,b,z,y) € (R")*

L;(a,b,x,y):/T( )Tl,m@n{g € O(n) :
ja —a—goT(b—y) — (f(b) = f(y)| <6} dLEHI(T).

As is the proof of Lemma 3.1 we get

Is(a,b,z,y) :/ 0,{g €O(n) :
{TeT(n) "2 la—z—(f(b)—F ()|~ IT(b-y)| ’ <s}

ja—x—goT(b—y)— (f(b) — f(y))| < 6}dL"(T),
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and further,

/Amwwwmmw—@um*MﬂAxwmwwy>

= /A LS(aa bal'?y)‘(a? b) - (xvy)‘is+n d(>‘ X )‘)<a7 b,x,y),

where
A5 ={(a,b,z,y) € R*) :rifb—y| =0 <|a—x — (f(b) = f(y))] < 7ralb—y|+ 0},
Let

A5 ={(a,b,2,y) € As :Ja—x — (f(b) = f(y))] < 26},

Af = {(a,b,z,y) € A5 1 r1|b — y| < 26}

and

Af={(a,b,z,y) € As : Ja—x — (f(b) — f(y))] > 20, rib—y| > 20},

in which case As = A% U Ag U Ag’.

If (a,b,z,y) € A}, then |[a—z—(f(b)— f(y))| < 26 and r1|b—y| < 35. Moreover, if
(a,b,z,y) € spt Axspt A, the facts that A has a compact support and f € C'(R", R")
imply |f(b) — f(y)| < M|b— y|, where M is independent of b and y. Thus we have
for (a,b,z,y) € A} Nspt A X spt A

la — x| <20+ [f(b) — f(y)] < o
So

[(a,0) = (z,9))] = V]a — 22 + [b - y[? < a0,

and using finiteness of the s-energy, we get

fimsupd " [ Ia(a b,y (0.8) = (o) dOX N(a,bo,y)
(4 2) 6—0 Al
< L2 (T(n) ) limsup [ |
0—0 Al
Similarly, if (a,b,z,y) € A2, then r1|b —y| < 2§ and |a —x — (f(b) — f(y))] <
(1+ %)(5 So

(a,b) — (z,y)|° d(X x A)(a,b,z,y) = 0.

(43) lim sup o / L;(CL, b7 €, y)|(a7 b) - (ZL’, y)|_s+n d<>\ X )‘) (CL, b7 x, y) = 0.
A

0—0 2
Finally, let (a,b,z,y) € A}. Then
1
(4.4) Srlb =yl <la—2—(f) = f(y))] < 2ra2fb — ]
and thus for (a,b,z,y) € A3 Nspt A X spt A
o — x| < 2rafb =yl + [ f(b) = f(y)| < esb—yl,
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which implies
(4.5) [(a,b) = (z,9)| = V]a =22+ b —y]> < calb —y].

We write every T' € T(n)}"""* in polar coordinates, that is 7' = rT, where r =
> 1 Tij]? and T= L. Then of = r=1oT for every i = 1,...,n. We also have the

following relation
of < D ITi? < Vol
i?j

For the proof of this, see for example [10, (2.2-9) and (2.3-6)]. Thus we get that, if
T €T then T € Tf”rz/“, where c5 = —2

Vnra’
Now by (4.1), binomial formula and (4.4) we have
LT € T(n)" : |la — 2 — (f(b) = ()| = 1T (b —y)l| < 8}

la—z—=(f(®)=fy)|+d

ITO—v)] n .
< P31 gL do (T)
S%(nJrl)*lﬂTi&TQ/Tl la—z—(f(b)—f(y))|—8

1T (b—y)|
n

=(§(n+1))_1[(|a—$—(f(b) FDI+ 020 —(Ja—x — (f(b) = £())]

gy [ 76— )50 do()
S%(n+1)71mTi5ﬁr2/T1

< (5(n+ 1) adla =2 = (£0) = F) 0 [ S5
x |b—y|"2 ) do(T)
< crdlb—y| "
Using this with [25, Lemma 3.8] gives
Is(a,b,z,y)
< 0" Ha—x = (f(b) = f()|" "erdlb -yl
< egerd" b —y| "

%(nﬁ-l)—lmvaTz/ﬁ

Thus, using also (4.5), we get

fimsupd " [ Ia(a b,y (0.8) = (2. dOX N(asbo,y)
A3

6—0 3

< creglimsup [ [b—y[™"[(a,b) — (z,y)| " d(A x A)(a, b, 2,y)
A3

6—0

< cylimsup [ [(a,b) = (2,9)| " d(A x A)(a, bz, )
6—0 A§

and the lemma follows by (4.2) and (4.3). O
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Now we can prove an analogue of Theorem 3.2.

Theorem 4.3. Let \ be a Radon measure on R™ x R™ with compact support such
that I,(\) < oo and let f € CY(R™,R™). Then for 6, x L2V almost all (9,T) €
O(n) x T(n),

S(goT.i_f)ﬁ/\ < L'
Proof. As the proof of Theorem 3.2 using Lemma 4.2 instead of Lemma 3.1. O

As in the case of similarities we only need to assume the following local energy
condition.

Corollary 4.4. Let \ be a Radon measure on R™ x R™ with compact support such
that [ |(z,y) — (a,b)| " dX(a,b) < oo for A\-almost all (z,y) € R™ x R"™ and let
f € CHR™,R"™). Then

S(gor+pph < L"
for 0, x L2V _almost all (g, T) € O(n) x T(n)..
Proof. As the proof of Corollary 3.3. O

4.2. Local dimensions of intersection measures. We prove results analogous
to results in Section 3.2. The following analogue of Lemma 3.5 is needed for this.

Lemma 4.5. Let A be a Radon measure on R™ x R™ with compact support. Fix
0<r <ry<ooand f € CYR"R"). If (z,y) € R" x R" is such that [ |(z,y) —
(a,b)]7™dA(a,b) < oo, then

/T( 2 / Ty [(R(go+ MW (o (00T 1) (). (goT+ ) () —)/2) A0 (9) ALE D (T)
™t

< / (2, y) — (a, )] dA(a, b),
B((,y),ch)

where ¢ and ¢ are constants depending on n, r1 and rs.

Proof. As the proof of Lemma 3.5 using similar modifications as was used in the
proof of Lemma 4.2. 0

Now we can prove a result for intersection measures.

Theorem 4.6. Let p and v be Radon measures on R™ with compact supports such
that [ |(z,y) — (a,b)|7"d(p X v)(a,b) < oo for u x v-almost all (x,y) € R" x R"
and let f € CY(R™ R"). Then for 0, x L2+ almost all (g,T) € O(n) x T(n),

dimyo (1 N (Ta(gor+ ) © (g 0 T+ f))ev) () = dimyo (X v)(2,y) —n
=d. (z,y) —n

Suxv

and

Ttoe (101 (om0 © (90 T + F)g) (@) > T () — 1
for p x v-almost all (xz,y) € R™ x R".
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Proof. As the proof of Theorem 3.6 using Lemma 4.5 instead of Lemma 3.5. O

In order to prove that Theorem 4.6 holds without assuming the local energy
condition we have to make an extra assumption that goT'+ f is injective. We also
need the following analogue of Lemma 2.2 for the proof.

Lemma 4.7. Let A be a Radon measure on R™ x R™ with compact support and let
f € CYR™ R"). Then for 0, x L2+ almost all (9,T) € O(n) x T(n),

(V) di (@ (90T + D)) < (e, y),
@) Ty (@ (g0 T+ HE) < Bi(w,y)

and

(3)  dima(Rgorsp:A)(2, (g0 T + f)(y)) < dimy Az, y)

for A-almost all (z,y) € R*xR". Equalities hold in (1), (2) and (3) for 6, x Lz M™+1).
almost all (g,T) € O(n) x T'(n)4 for which go T + f is injective.

Proof. The proof of the upper bounds in both (1) and (2) goes as in the proof of
Lemma 2.2, since for fixed (¢,7) € O(n) x T'(n);+ we have

[z, (go T+ f)(y) — (a,(go T + £)(b)| < c1|(z,y) — (a,b)]

for all (z,y), (a,b) € spt \. Here ¢; is a constant which does not depend on (z,y) or
(a,b). This also implies

)\(B((J], y)? h/cl)) < R(90T+f)ﬂ)‘(B((x7 (g ol + f)(y))7 h))

which gives the upper bound in (3).

For the opposite inequalities fix (x,y) € spt A and let (¢,7) € O(n) x T'(n)1 be
such that g o7+ f is injective and [(Df(y) +goT)(b)| > co|b] for all b € R™, where
co 1s a constant. Now

f) = f(y) =Df(y)(b—y) +|b—yle(d—y),

where ¢ is a function such that (b —y) — 0 as |b —y| — 0.
Let |b — y| be so small that |e(b—y)| < ¢2/2. Then

[(go T+ f)(b) = (go T+ )| = 1£(b) — fly) + (goT)(b—y)|
=|(Df(y) + goT)(b—y) +|b—yle(b—y)|
> [[(Df(y) +goT)(b—y)| —[b—ylle(b—y)|

1
> Z¢olb—
202| y|7

which implies

(4.6) (2, 9) — (a,0)| < es|(z, (g0 T+ f)(y)) — (a, (g o T + £)(b))]
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for all (a,b) € R™ x R"™ such that |(a,b) — (z,y)| is small enough. Further, since
goT + f is injective, we get

/ (a,b) — (2, (g0 T + )W) ™ dRigors M (a,b)
B((I7(90T+f)(y))’h)

=< ((a,(go T+ f)(b) — (z,(go T + f)(y) " d\(a,b)

~ JB((zy).esh)

S e - @y,
B((x,y),c3h)

IN

if h is small enough. The equalities (1) and (2) follow then by using Fubini’s theorem,
since

0, x L2FD(O(n) x T(n)y)
=0, x L2 J{(g,T) : (Df(y) + g0 T)(b)] > 27[b| for all b € R"}).

i

Combining this with (4.6) also implies that if h is small enough, then for 6, x £2 (1)
almost all (¢, T) € O(n) x T(n), for which g o T' + f is injective

Rgor1 psA(B((z, (g0 T+ f)(y)), h)) < MB((x,y), h/cs))
for A\-almost all (z,y) € R" x R™. Thus the equality in (3) follows. O

Corollary 4.8. Let A be a Radon measure on R™ x R™ with compact support and
let f € CYR™ R"). If dimyg A > n, then

dimp (R (gor+f)3A) = dimp A
and

dimy (Rgors ppA) = dimy A
for 0, x Lz _almost all (g, T) € O(n) x T(n)y for which goT + f is injective.
Proof. Follows from Lemma 4.7(1) and Remark 2.1(1). O

Now we can prove the theorem. As before we define for all g € O(n), T € T'(n)4
and f € C*(R",R")

Eg,T,f = {(.T, y) c R™ x R™ : 12 N (Tx—(goT+f)(y) e} (g ol + f))ﬁV is deﬁned}.
Remark 4.9. If [|(x,y) — (a,b)| " d(p x v)(a,b) < oo for u x v-almost all (z,y) €
R™ x R", then intersection measures p N (T,—(gor+ 1)) © (g 0T + f))sv are defined

for all f € CY(R™,R") and for p x v x 6, x L2 D-almost all (z,y,9,T) € R* x
R™ x O(n) x T(n),. Again, this follows from Corollary 4.4 as in [24, Lemma 4.6].
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Theorem 4.10. Let y1 and v be Radon measures on R™ with compact supports and
let f € CY(R",R"). Then for 6, x L2 _almost all (9,T) € O(n) x T(n), for
which g o T + f 1is injective

di—nlloc(:u M (Tﬂ?—(QOT-Ff)(?/) ° (g ol + f))ﬂl/)(l’) Z dimloc(u X V)<I7y) -n
Z dey(aja y) -n

and

Boe (11 (7ot 1) © (90 T+ F)st)(@) = Ao, (,9) = 7

for p x v-almost all (x,y) € Eyr and szy(x,y) = —o0 for p X v-almost all
(z,y) € (R" X R*)\Ey 7.

Proof. As the proof of Theorem 3.9 using Corollary 4.4, Theorem 4.6 and Lemma
4.7. 0

In order to prove upper bounds for local dimensions of intersection measures
we again have to make an assumption that g o T 4+ f is injective. In the case of
the lower local dimension we can replace this assumption by the assumption that
dimy(p x v) = dimyg p + dimyg v. We need the next lemma for that.

Lemma 4.11. Let p and v be Radon measures on R™ with compact supports. If
dimg (p x v) = dimg p+dimyg v, then in a prevalent set of functions f € C1(R" R")

dimpy(p x fiv) = dimg(p X v)
and
dimg (u x fyv) = dimg(p x v).

Proof. Since (z,y) — (z, f(y)) is Lipschitz on the compact set spt(u x v), we have
dimg(p % fyr) < dimpy(p x v). It is proved in [13] that if v is a Radon measure on
R"™ with compact support, then in a prevalent set of functions f € C'(R",R")

dimy(fyv) = dimy v.
Thus by (2.7) in a prevalent set of functions f € C1(R",R")
dimpy(p x fyrv) > dimg p + dimy(fyr) = dimyg g+ dimp v = dimg (e x v).
The same proof works for dimy;. O

For the upper bound of upper local dimensions of intersection measures we need
the following lemma, which is an analogue of Lemma 3.12.

Lemma 4.12. Let A\ be a Radon measure on R™ x R™ with compact support such
that dimg A = s > n and let f € C*(R*,R"). Then for 0, x L2V almost all
(9,T) € O(n) x T(n)y there exists for any € > 0 a compact set C. C R™ x R™ with
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Rigor+ A ((R™ x R")\C.) < € and H. such that for H"-almost all (z,—z)/2 € W=

we have
((R(90T+f)li)\) CS)W,(Z7—Z)/2<B((:E,y),h)) S Ch(s—n)/Q

for all (x,y) € Wi.._.))2 and 0 < h < H.. Here c is a constant depending only on s
and n.

Proof. Theorem 4.6 implies that for ,, x £2™+Y-almost all (g,T) € O(n) x T(n),
we can find for Ryory pzA-almost all (x,y) € R" x R™ a constant H depending on
(x,y) such that for all h < H

(R(90T+f)ﬁ)‘>Wv(ac—%y—ﬂc)/?<B(x7 y),h) < hemm/2,
Let € > 0. For every i = 1,2,... define a Borel set
B ={(zy) e R" x R":
(Rgors s MW (e—yy—zy2(B(@,9), h) < W72 for all h < 277,
Since
I Rgory ppA(R" x R*\B;) = 0

we find a compact set C. C R™ x R™ such that Rz s A((R” x R")\C;) < ¢ and
C. C B, for some i..

Let H, = 27 /3. Consider (z, —z)/2 € W+ such that both (Rgort s A)w,(z,—2)/2
and (Rgort f)tA|c.)w(z,—2)/2 are defined. If (2, —2)/2 ¢ Py.(C;), then

(Rigor+ ppMlc)wiz—2)2(B((x, ), h)) = 0
for all (z,y) € W, _.);» and h > 0. This follows from (2.1) and from the fact that
Wiz—2)2(0)NC. = @ for all small 6 > 0, since C is compact. If (2, —2)/2 € Py1(C-)
and (x,y) € Wi, _.)2 N C;, then for any 0 < h < 3H,, we have

(Rigor+ pyeXl o )w (-2 2(B((2,9), 1))
(4.7) < (Rigort s wi@—yy—a)2(B((2, ), 1))

< pls—m)/2.

If (2,—2)/2 € Py (C;) and (z,y) &€ Wi, —.)2 N Cs, then there exists h,, > 0 such

that B((z,y),h) NCo.N W, _.y2 =0 for all 0 < h < hyy and B((z,y),h) N C. N

Wi—zy2 # 0 for all h > hy,,. If 0 < h < hy,, then by (2.1)
(Rigor+ppAlc.)w,z—/2(B((2,y), 1)) = 0.

If hyyy < h < He, then B((z,y),h) C B((a,b),3h) for some (a,b) € W, _.)2 N C.,
and (4.7) gives the claim. O

Now we are ready to prove the theorem.

Theorem 4.13. Let i and v be Radon measures on R™ with compact supports.
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(1) If dimg(p x v) > n, then for all f € C*(R™,R") and for 6,, x L3+ _almost
all (g, T) € O(n) x T'(n)y for which go T + f is injective

di—mloc(u N (TI*(!]OT*Ff)(y) © (g ol + f))ﬁl/)(ﬂf) = di—rnloc(lu X V)(I, y) -n

Z2puxv

and

dimige (12 N (To—(gor4n)) © (90 T + ) (@) = diypo (2, ) —

for u x v-almost all (x,y) € R™ x R".
(2) If dimpg(p X v) = dimy g + dimyg v > n, then in a prevalent set of functions
f € CHR",R")
di—mloc(:u N (Tx—f(y) © f)ﬁV>(fE) = di—mloc(:u X V)(ZL', y) -—n= C_ZZXV(x’y) -n

for u x v-almost all (x,y) € R™ x R™.
Proof. The lower bounds in both cases follow from Theorem 4.6. In order to get the
upper bound for the lower local dimensions in both cases we apply Lemma 3.11 to
px (goT + f)v (or to u x fyr ) as in the proof Theorem 3.13. This can be done
by Corollary 4.4, Lemma 4.7, Remark 2.1(1) and Corollary 4.8 (or Lemma 4.11).
Note, that from Lemma 4.7 we only need the part which holds in a prevalent set.

The upper bound for the upper local dimension can be proven as in the proof of
Theorem 3.13 using Lemma 4.4, Lemma 4.7, Corollary 4.8 and Lemma 4.12. U

Corollary 4.14. Let 1 and v be Radon measures on R™ with compact supports. If
dimy (1 x v) > n, then for all f € CY(R™,R") and for L x 6, x L2"+Y_almost all
(2,9, T) € R" x O(n) x T'(n)y for which goT + [ is injective

(1) dimy,e(p N (70 (g0 T+ f))gw)(x) = dimye (X (g0 T+ flev)(z, 2 — z) —n

= C—iZX(gOT+f)ull(x7 T — Z) -n

and

—n

(2) di—mlOC(/“l’ N (TZ ©go T)ﬁV)(.I’) = dux(goT—i—f)uy(:B? T — Z) -n
forun(r,0(goT + f))sv-almost all x € R™.
Proof. As the proof of Corollary 3.16. U

4.3. Hausdorff, packing and average dimensions. Using Theorem 4.13 we get
results for Hausdorff and packing dimensions. We also consider average dimensions
of intersection measures. All these results are analogous to the similarity case in
Sections 3.3 and 3.4.

Theorem 4.15. Let p and v be Radon measures on R™ with compact supports.
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(1) If dimg(p x v) > n, then for all f € C*(R™,R") and for 6,, x L3+ _almost
all (9,T7) € O(n) x T'(n)+
L"-essinf{dimyg(pN (1,0 (goT + f))v) :
z€R" with uN(rz0(go T+ f))w(R™) >0}
> dimg(p X v) — n.
The equality holds for all f € CY(R™,R™) and for 6, x L2V almost all
(9,T) € O(n) x T'(n)y for which goT + f is injective.
(2) If dimyg(p X v) = dimy p + dimy v > n, then in a prevalent set of functions
f e CYR" R")
L"-essinf{dimy(pu N (7, 0 fgv) :
z € R™ with pN (1, 0 f)w(R") > 0}
= dimg(u x v) — n.
Proof. As the proof of Theorem 3.18 using Corollary 4.4, Corollary 4.8, Lemma 4.11
and Theorem 4.13. U
Theorem 4.16. Let p and v be Radon measures on R™ with compact supports.
(1) If dimg(pu x v) > n, then for all f € C*(R™,R") and for 6,, x Lz _almost
all (9,T) € O(n) x T'(n)+

L"-esssup dimg (N (7. 0 (g o T+ f))yv) > dimg(p x v) — n.
z€R”™
The equality holds for all f € CY(R™,R") and for 0, x £z _almost all
(9,T) € O(n) x T(n)y for which goT + f is injective.
(2) If dimyg(p X v) = dimpg p + dimg v > n, then in a prevalent set of functions
f e CYR",R")
L"-esssup dimg (N (7, 0 f)yr) = dimg(u x v) —n.
z€R"™
Proof. As the proof of Theorem 3.19 using Corollary 4.4, Corollary 4.8, Lemma 4.11
and Theorem 4.13. U

Theorem 4.17. Let i and v be Radon measures on R™ with compact supports.
If dimy(p x v) > n, then for all f € CY(R™,R™) and for 6, x L2 _almost all
(9:T) € O(n) x T(n)+
L"-essinf{dim, (N (1,0 (goT + f))sv) :
z€R" with uN(ro0(go T+ f))w(R") >0}

. —-an
zpxve essinf ool y) —n

The equality holds for all f € CY(R™,R") and for 6, x Lz _almost all (g,T) €
O(n) x T'(n)y for which go T + [ is injective.

Proof. As the proof of Theorem 3.21 using Corollary 4.4 and Theorem 4.13. O
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Theorem 4.18. Let i and v be Radon measures on R™ with compact supports.
If dimy(p x v) > n, then for all f € CY(R™,R™) and for 0, x £z _almost all
(9.T) € O(n) x T'(n)+

L"-ess sup dim;(u N(r,o0(goT + f))sv) > X v- esssup dZXV(L y) —n.
z€R® (z,y)ER™ xR™
The equality holds for all f € C*(R™,R") and for 6, x L2V almost all (9,T) €
O(n) x T(n)y for which goT + f is injective.

Proof. As the proof of Theorem 3.22 using Corollary 4.4 and Theorem 4.13. U
For the average dimension of intersection measures we get the following results.

Theorem 4.19. Let i and v be Radon measures on R™ with compact supports.
(1) If dimg(p x v) > n, then for all f € C*(R™,R") and for 6,, x Lz -almost
all (9,7) € O(n) x T'(n)+

dima (4 N (To—(gor+ ) © (g0 T+ f))yv) () = dima(p x v)(z,y) —n

for w x v-almost all (z,y) € R™ x R". The equality holds for all f €
CYR™ R") and for 6,, x L2+ almost all (3, T) € O(n) x T'(n), for which
goT + f is injective.
(2) If dimyg(p X v) = dimpg p + dimg v > n, then in a prevalent set of functions
f e CHR",R")
dimy (1 1 (7, ) © Flgv) (@) = dima (1 X 1) )
for p x v-almost all (x,y) € R™ x R™.
Proof. For the upper bounds we may apply [20, Theorem 2.8 to 1 x (g o T + f)sv
(or to u x fyv ) as in the proof of Theorem 3.23. This can be done by Corollary
4.4, Lemma 4.7 and Corollary 4.8 (or Lemma 4.11). Note, that from Lemma 4.7 we

only need the part which holds in a prevalent set.
The lower bounds can be proven as in the proof of Theorem 3.23 using Lemma 4.5.

0

Corollary 4.20. Let v and v be Radon measures on R™ with compact supports. If
dimg(p x v) > n, then for all f € CY(R™,R™) and for L™ x 0, x L2V _almost all
(2,9, T) € R" x O(n) x T'(n)4 for which goT + f is injective

dima(u (- (g0 T+ f))(@) = dimalu x (g0 T+ fl)(w,z — =) —n
for un(r,0(goT + f))sv-almost all x € R™.
Proof. As the proof of Corollary 3.16. O

Remark 4.21. It remains an open question whether equalities in results for upper
local dimension and packing dimension (i.e. in Theorem 4.14(2), Theorem 4.17 and
Theorem 4.18) hold in a prevalent set of functions f € C'(R", R").
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