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1. Introduction

In the past two decades, the interest in nonlinear analytic difference equations
has increased, especially in response to the programme of finding some kind of an
analogue of the Painlevé property of differential equations (see for instance [12])
for difference equations. Despite – and in part, due to – several suggestions, it has
become rather clear that such an analogue will not have the clean, short formulation
of its model in the field of differential equations.

A great number of difference versions of the well-known six Painlevé equations
have been identified, and they have been found to share various integrability prop-
erties. One large open problem is to construct a more systematic framework that
would enable easier recognition and classification of such equations.

There is no clear agreement in the literature on the notion of ‘integrability’, but
instead a number of different approaches leading to slightly different classifications
of equations. Some classical properties are, however, quite generally accepted to
indicate integrability, such as the existence of related linear problems, Bäcklund
transformations, special solutions, and relations to lattice soliton equations [7, 8, 18].

The working hypothesis in this thesis is that the existence of sufficiently many
meromorphic solutions of sufficiently slow growth for a given difference equation is
an indicator of that equation being integrable. We will specify the exact meaning
of “sufficiently slow” later. This is a well-defined complex analytic property, much
like the original Painlevé property of differential equations.

A paper by Ablowitz, Halburd, and Herbst [1] can be considered a landmark in the
application of value distribution theory in the study of difference equations. They
observed that all of the relevant discrete difference equations have obvious analytic
versions, and hence can be studied using the methods of complex analysis, and in
particular those of Nevanlinna’s theory of value distribution. More precisely, we
can, instead of a sequence yn where n ∈ N, consider a meromorphic function y(z),
understanding that y(z + 1) corresponds to yn+1. There are few results actually
ensuring the existence of meromorphic solutions for a given nonlinear difference
equation of order two or higher, but nonetheless such solutions generally seem to
exist, which is in stark contrast to the case of differential equations.
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The approach in [1] has been developed further and successfully applied to identify
certain integrable difference equations [16]. The idea is to consider a certain family
of equations, assume that there exists a solution that has sufficiently slow growth,
and use Nevanlinna theory with some additional reasoning to reduce the family into
a list of special equations that can have such solutions. In practice, some additional
assumptions, which we will describe later, must be made.

In [16], the family of equations containing what are traditionally called the dif-
ference Painlevé I and II equations was considered. Our aim is to study in a similar
fashion two other families: the ones of the difference Painlevé III and V. Our results
are given in Chapter 3, where we also give an exact statement of the result of [16]
for comparison.

A rather strong formal similarity between Nevanlinna theory and Diophantine
approximation was observed independently by Osgood [34, 35] and Vojta [48], and
through this analogy, another property, Diophantine integrability, that possibly
indicates integrability in a purely discrete setting, has been found by Halburd [13].
This and other methods related to the use of value distribution theory and similar
considerations in the study of integrability will be discussed in the final chapter.

The aim of the present discourse is not only to give the aforementioned results
and thus strenghten and expand on the hypothesis first introduced in [1], but also
to demonstrate the important role that value distribution theory can play in the
study of integrable discrete systems. This role, although widely recognised, seems
often to be greatly underestimated.

This thesis consists of essentially four parts. In Chapter 3 we shortly review the
development of the theory of difference Painlevé equations and in particular the
application of Nevanlinna theory to the study of these equations. We state our
main results and several lemmas that will be used in proving them. We also discuss
some of the difficulties arising in these proofs, and so it is strongly advised that the
reader is familiar with Chapter 3 before proceeding to the proofs. Chapter 3 also
introduces much notation that will be used throughout the rest of the thesis.

In Chapters 4 and 5 we prove our main results, treating the families of difference
Painlevé III and V, respectively. Finally, in Chapter 6, we review our results, give
some examples, and consider some of the open questions.

A very short introduction to Nevanlinna theory, for those readers not familiar, is
given in the following chapter.

2. A Brief Outline of Nevanlinna Theory

Nevanlinna theory can be used to study the density of points in the complex
plane at which a meromorphic function takes a prescribed value. It also provides
a natural way to measure the growth of the function. Formulations of Nevanlinna
theory exist in specialised as well as more general settings, but we only present here
the traditional theory.



MEROMORPHIC SOLUTIONS OF DIFFERENCE PAINLEVÉ EQUATIONS 7

In this short introduction no proofs will be provided, and examples will be kept
to a minimum. For a thorough representation of the theory, see for instance [4] or
[21].

Given a function f meromorphic in the whole complex plane C, we define the
following three real functions: the proximity function

m(r, f) :=
1

2π

∫ 2π

0

log+ |f(reiθ)|dθ,

where log+ x := max{0, log x}; the (integrated) counting function

N(r, f) :=

∫ r

0

n(t, f) − n(0, f)

t
dt + n(0, f) log r,

where n(r, f), the unintegrated counting function simply counts the poles (counting
multiplicities) of f in a disc of radius r, centred at the origin; and finally the
characteristic function

T (r, f) := m(r, f) + N(r, f).

The proximity function describes in some sense how close on average the values of
f are to infinity on the circle {z ∈ C | |z| = r}. The characteristic function provides
a good representation of the complexity of f . The order of a meromorphic function
f is defined as

ρ(f) := lim sup
r→∞

log T (r, f)

log r
,

and this quantity is the same as the classical order (defined in terms of the maximum
modulus) in the case that f is entire. We will, however, be dealing with functions
that potentially have infinite order, and for them the notion of hyper-order (or first
iterated order) is needed. The hyper-order of f is defined as

ρ2(f) := lim sup
r→∞

log+ log+ T (r, f)

log r
.

We will be interested in functions of hyper-order strictly less than one, as for them
the Nevanlinna functions satisfy some useful inequalities (to be introduced later).
The simplest example of a function that has hyper-order exactly one is exp(exp(z)).

As the definitions of the order and hyper-order suggest, we are often interested
in the asymptotic behaviour of the Nevanlinna functions of a given meromorphic
function. Many of the results of Nevanlinna theory hold only for most values of
r. The set of all those values r where some property does not hold, is called an
exceptional set. We will mostly deal with exceptional sets E of finite logarithmic
measure, i.e. such that

∫

E
1
t
dt < ∞.

Let g be another meromorphic function. In what follows, we will always assume
functions to be meromorphic in C. If T (r, g) = o(T (r, f)) as r → ∞ outside an
exceptional set of finite logarithmic measure, we say that g is small with respect
to f . Any such small error term is denoted by S(r, f), so that in this case we
have T (r, g) = S(r, f). Intuitively, this simply means that the characteristic of g is
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smaller than that of f for most values r. The family of all meromorphic functions
that are small with respect to f is denoted by S(f).

We collect the most important basic properties of the characteristic function in
the following:

(1) T (r, f) = T (r, 1
f−a

) + O(1) for any a ∈ C (the first main theorem).

(2) T (r, f) = O(log r) if and only if f is rational.
(3) T (r, f) is a convex increasing function of log r.
(4) T (r, f + g) ≤ T (r, f) + T (r, g) + O(1) for any two functions f and g, as well

as
(5) T (r, fg) ≤ T (r, f) + T (r, g).

The error terms in 1 and 4 can be expressed much more accurately (see e.g. [4]), but
these rough bounds suffice for our purposes. The function N(r, f) is also increasing,
but the same cannot be guaranteed for m(r, f). Inequalities 4 and 5 hold for m(r, f)
and N(r, f) separately as well, and they can obviously be extended for a sum or a
product of finitely many functions.

More properties of the characteristic function, especially those useful in the study
of difference equations, will be introduced in the next chapter.

We have completely dismissed some of the most important results of Nevanlinna
theory, like the logarithmic derivative lemma and the second main theorem, simply
because they are not needed in the course of this thesis.

3. Difference Equations and Meromorphic Solutions

3.1. Equations with constant coefficients. We will see that we get much “nicer”
results when we restrict the coefficients of the difference equations to be rational,
in which case they are forced to be constants in almost all cases. Another extra
restriction we will apply is to require certain coefficients to be periodic with period 1.
In the completely discrete setting, when considering sequences instead of functions,
a periodic coefficient with period 1 is just a constant, but in our analytic setting
such a coefficient can quite well be a transcendental function.

Equations with constant coefficients have been studied widely, and they have
many applications in several areas of applied mathematics, e.g. in the study of
quantum gravity [6]. The equations that are now traditionally called the discrete
Painlevé equations with constant coefficients are special cases of the QRT (Quispel-
Robert-Thompson) difference equations. The QRT family was also a starting point
in the discovery of the discrete Painlevé equations in [38]. The symmetric QRT
family is

(3.1) w(z + 1) =
f1(w(z)) − w(z − 1)f2(w(z))

f2(w(z)) − w(z − 1)f3(w(z))
,
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where the fj, defined by




f1(w)
f2(w)
f3(w)



 =





α0 β0 γ0

β0 δ0 ε0

γ0 ε0 ζ0









w2

w
1



 ×





α1 β1 γ1

β1 δ1 ε1

γ1 ε1 ζ1









w2

w
1





are, in general, quartic polynomials. Equation (3.1) possesses generically a two-
parameter family of finite-order meromorphic solutions, expressed in terms of elliptic
functions (see for instance [18]).

3.2. Earlier results involving Nevanlinna theory. First order analytic differ-
ence equations have been studied by several authors. We mention in particular
Yanagihara, who proved the following two results [50]. First, for any nonconstant
rational function R(w), the difference equation

w(z + 1) = R(w)

has a nontrivial meromorphic solution. Second, if the equation

w(z + 1) = R(z, w),

where R is rational in both z and w admits a transcendental meromorphic solution
of finite order, then degw R = 1; in other words the equation is a difference Riccati
equation. Several other results exist in the first order case, which can be said to be
well studied by now. Our focus will be on second order difference equations. Higher
order equations have also been studied by Yanagihara, who introduced Nevanlinna
theory for half-strip domains for this purpose (see [51] and references therein).

Definition 3.1. A meromorphic solution w of a difference equation is called ad-
missible if all the coefficients of the equation are in S(w).

Remark. In particular, if the coefficients are rational, an admissible solution must be
transcendental, and if the admissible solution itself is rational, then the coefficients
must be constants.

The term “admissible” comes from the theory of complex differential equations,
and should not be interpreted to mean that inadmissible solutions would somehow
be unacceptable. What is meant is that the solution is admissible for the application
of Nevanlinna theory.

It has been proposed that the existence of sufficiently many meromorphic solutions
of finite order would be a strong indicator of integrability of an equation (see [1,
15, 16, 18]). In this claim, originally given by Ablowitz, Halburd, and Herbst in
[1], no distinction is made between admissible and inadmissible solutions. In the
actual theorems that have been proved, the additional requirement of admissibility
is introduced, but solely due to the fact that existing tools in Nevanlinna theory are
insufficient to handle the situation where solutions grow roughly at the same rate
as the coefficients.

The existing results applying Nevanlinna theory to difference equations, as well as
new results given in this thesis, do not consider the case where a difference equation



10 ONNI RONKAINEN

has a large number of inadmissible solutions and no admissible ones of finite order.
This should not be intepreted to mean that inadmissible solutions are not impor-
tant. Some arguments (but no rigorous proofs) concerning inadmissible solutions
were given in [11]. In the case of constant coefficients, it is possible to show that
certain nonintegrable equations have only a finite number of constant (inadmissible)
solutions, while all other solutions are of infinite order. Then, allowing nonconstant
coefficients will transform the formerly constant solutions into inadmissible solu-
tions which are still too few in number to call the equation integrable. In this light,
the need to consider faster-growing (admissible) solutions is related to the too small
number of very slow growing ones, not to any intrinsic “unacceptability” of the
latter. This kind of argumentation also suggests that one might try to prove that
there are, also in the general case, only a relatively small number of inadmissible
solutions. This seems, however, to be a difficult task.

More recent results, including those in this thesis, would suggest that it might be
reasonable to replace “finite order” with “hyper-order less than one”. The essential
point, that the solutions must not grow too fast, of course remains valid. Given a
solution w(z) for an autonomous complex difference equation, it is in a very general
sense possible to construct a solution of arbitrarily high order by replacing the
argument z by a suitable periodic entire function.

Equations of the form

w(z + 1) ⋆ w(z − 1) = R(z, w),

where R is rational in both of its arguments and ⋆ stands for either the addition
or the multiplication, were studied in [1], where it was shown that the existence
of a nonrational meromorphic solution of finite order implies degw R ≤ 2. This
class of equations contains many equations considered to be integrable, including
the equations often called difference Painlevé I–III.

Notation. For convenience, we usually suppress the z-dependence by writing f(z) =
f , f(z + 1) = f and f(z − 1) = f for any function f . For higher shifts we use

f = f(z + 2), f
[3]

= f(z + 3), f
[3]

= f(z − 3), etc.

For brevity, a periodic function with period k (k ∈ C, k 6= 0) will be called a
period-k function, or just period-k.

The following theorem was originally proven in [16]. We present it here in a
slightly generalised form, with the requirement “finite order” replaced by “hyper-
order less than one”:

Theorem 3.2 ([19]). Assume that the equation

(3.2) w + w = R(z, w),

where R(z, w) is rational in w and meromorphic in z, has a meromorphic solution
w which is admissible in the sense of Definition 3.1 and has hyper-order less than
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one. Then either w satisfies a difference Riccati equation

w =
αw + β

w + α
,

where α, β ∈ S(w), or equation (3.2) can be transformed by a linear change in w to
one of the following equations:

w + w + w =
p1z + p2

w
+ q1,(3.3a)

w − w + w =
p1z + p2

w
+ (−1)zq1,(3.3b)

w + w =
p1z + q1

w
+

p2

w2
,(3.3c)

w + w =
p1z + p3

w
+ p2,(3.3d)

w + w =
(p1z + q1)w + p2

(−1)−z − w2
,(3.3e)

w + w =
(p1z + q1)w + p2

1 − w2
,(3.3f)

ww + ww = α,(3.3g)

w + w = αw + β,(3.3h)

where pk, qk ∈ S(w) are arbitrary period-k functions.

All of the equations (3.3a)–(3.3h) are widely considered to be integrable, and the
list includes all equations of Painlevé type in the class (3.2). See [16] for further de-
tails and references. Equation (3.3a) is historically known as the difference Painlevé
I equation; equation (3.3f) as difference Painlevé II. A difference Riccati equation is
explicitly solvable in the case of constant coefficients and can be transformed into
a second order linear difference equation in the general case.

The work on the family w(z + 1)w(z − 1) = R(z, w), which includes the so-called
difference Painlevé III, was initiated in [18], where a certain subcase of this family
of equations was considered with an additional assumption that the order of the
poles of w is bounded.

Nevanlinna theory can be applied in a similar way to study q-difference equations,
i.e. equations where the shift f(z + c) is replaced with f(qz), q ∈ C \ {0}. See [2]
for more details. Methods closely related to the Nevanlinna approach are discussed
in the final chapter.

3.3. The main results. We will be studying equations of the form

(3.4) L(w) = R(z, w),
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where R is rational in w and meromorphic in z, and L(w) is one of the following
products:

ww (the family of difference Painlevé III),

(ww − 1)(ww − 1) (the family of difference Painlevé V).

We will also denote

R(z, w) =
P (z, w)

Q(z, w)
,

where P and Q are polynomials in w with degrees p and q, respectively. It is always
assumed that P and Q have no common factors. Our results for these equation
families, which will be proven in later chapters, are introduced next.

Definition 3.3. An algebroid function is an n-valued function f defined by an
irreducible relation

Anf
n + An−1f

n−1 + . . . + A1f + A0 = 0,

where Aj are entire functions.

Theorem 3.4. Assume that the equation

(3.5) ww = R(z, w)

has a meromorphic solution w which is admissible in the sense of Definition 3.1 and
has hyper-order less than one. Then either w satisfies a difference Riccati equation

(3.6) w =
αw + β

w + γ
,

where α, β and γ are algebroid functions small with respect to w, or equation (3.5)
can be transformed by w → αw or w → α/w, where α is a small algebroid function,
to one of the following equations:

ww =
ηw2 − λw + µ

(w − 1)(w − ν)
,(3.7a)

ww =
ηw2 − λw

w − 1
,(3.7b)

ww =
η(w − λ)

w − 1
,(3.7c)

ww = hwm.(3.7d)

In (3.7a), the coefficients satisfy κ2µµ = µ2, λµ = κλµ, κλλ = κλλ, and one of the
following:

(1) η ≡ 1, νν = 1, κ = ν; (2) η = η = ν, κ ≡ 1.

In (3.7b), ηη = 1 and λλ = λλ. In (3.7c), the coefficients satisfy one of the
following:

(1) η ≡ 1 and either λ = λλ or λ
[3]

λ[3] = λλ;
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(2) λλ = λλ, ηλ = λη, ηη = ηη
[3]

;

(3) ηη = ηη, λ = η;

(4) λ
[3]

λ[3] = λλλ, ηλ = ηη.

In (3.7d), h ∈ S(w) and m ∈ Z, |m| ≤ 2.

Remark. Equivalently vanishing coefficients are allowed in all equations (3.7a)–
(3.7c), as long as the required relations are satisfied. In principle it is also possible
that the numerator of the right hand side of equation (3.7a) has (w−ν) as a factor.
We have attempted to give for the coefficients such relations that make the above

presentation as brief as possible. Observe that when µ 6≡ 0, the equation κλλ = κλλ
given for λ in (3.7a) is redundant since it follows from the other two equations. A
similar redundancy appears in option (2) for (3.7c).

In contrast to Theorem 3.2, we are unable to give explicit coefficients, and have
instead only listed the conditions that the coefficients must satisfy. Most of the
“small equations” appearing in the theorem have a large number of solutions, and
even when a general solution could perhaps be obtained, it would be very difficult
to express briefly; see Section 3.3.1 below. More accessible formulations of the equa-
tions (3.7a)–(3.7c) can be obtained if we restrict the coefficients; see Section 3.3.2.
The connections of the equations in Theorem 3.4 to known integrable equations in
the family (3.5) are discussed there, as well.

In our considerations the algebroid functions generally have square root type
branch points. These algebroid functions arise from the factorisation of the poly-
nomials P and Q as will be seen in the proof in Chapter 4. Section 3.4.2 below
explains how we can deal with them in Nevanlinna theory.

Our treatment on the family of difference Painlevé V is much more complicated
result-wise. There are so many different possible variations that it seems pointless
to formulate a theorem in the same manner as we have done with the family of
difference Painlevé III in Theorem 3.4. Instead, we state the results here only
roughly, and refer the reader to the actual treatment in Chapter 5 for further details.

Let w be an admissible meromorphic solution of the equation

(3.8) (ww − 1)(ww − 1) =
P (z, w)

Q(z, w)
.

If ρ2(w) < 1, then either w satisfies a difference Riccati equation (3.6), or equation
(3.8) simplifies to an equation where, on the right hand side, p ≤ 4 and q ≤ 2, and
if q = 2, then p = 4, and if q = 1, then p ≥ 2. We also find several restrictions on
the coefficients in the polynomials P and Q. For precise restrictions on all of the
coefficients, see the proof in Chapter 5 (in particular, pages 47–51).

Our results are greatly simplified if we assume that the roots of P are period-
1, which corresponds to the case of them being constant in the completely discrete
setting. In the existing literature on the family of the difference Painlevé V equation,
these coefficients indeed are always constant.



14 ONNI RONKAINEN

3.3.1. On solving nonlinear equations. The purpose of this section is to give some
solutions to the various “small equations” that appear in Theorem 3.4. We are
interested in meromorphic solutions with hyper-order less than one.

We start by considering

(3.9) ff = f 2.

Now it immediately follows that p := f/f is period-1. Whittaker has shown in [49,
Theorem 5] that the first-order linear difference equation

(3.10) F = pF,

where p is any meromorphic function with order ρ(p) < ∞, has a meromorphic
solution F such that ρ(F ) ≤ ρ(p) + 1, i.e. also of finite order. Using this one can
solve (3.9) as follows [22]: Fix one such solution and denote it by F (z, p). Then
q := f/F (z, p) is period-1. Conversely, given two period-1 functions p and q, fix a
solution F (z, p) of (3.10), and then f = qF (z, p) solves (3.9).

Hence the finite order solutions of (3.9) can be written in the form f = qF (z, p),
where q and p are period-1 functions and F (z, p) satisfies (3.10). However, to
obtain full generality, one would have to extend Whittaker’s result to the case that
ρ2(p) < 1.

In what follows, let pk and qk be arbitrary period-k functions, c ∈ C, and uk an
arbitrary kth root of unity. One concrete solution of (3.9) is f = p1c

zuz2

2 , which
corresponds to p in (3.10) being the exponential function, and can also be obtained
by taking logarithms in (3.9) and formally solving the obtained linear equation (on
these methods, see for instance [32]). A generalisation to this is provided with the
hyperbolic G-function of Ruijsenaars [42], which solves (3.10) when p is trigonomet-
ric.

The following equations can be treated in a similar way:

ff = ff,(3.11a)

f
[3]

f
[3]

= ff,(3.11b)

ff = ff,(3.11c)

ff = ff
[3]

.(3.11d)

A general solution of finite order to (3.11a) is given by f = q2F (z, p1), where

F = p1F . This can be seen as above; we skip the details. A concrete example
solution is f = p2c

zuz2

4 . For equation (3.11b), the method using Whittaker’s result

gives f = q5F (z, p1), where F
[5]

= p1F , and one concrete family of solutions is

f = p5c
zuz2

10. Equation (3.11c) has the general finite-order solution f = q3F (z, p1),

where F
[3]

= p1F , and an example solution is f = p3c
zuz2

6 . Finally, for equation

(3.11d) we have in general f = q3F (z, p2), where F
[3]

= p2F , and for example

f = p2p3c
zuz2

12.



MEROMORPHIC SOLUTIONS OF DIFFERENCE PAINLEVÉ EQUATIONS 15

The example solutions we have given are of the type that often appears in the
literature on the discrete Painlevé equations. Usually the coefficients given in the
discrete setting are of the form acn, where a, c are constants. We have replaced the
constant a by a periodic function, and the exponent n by our independent variable
z. The roots of unity in the coefficients are something that only arise from the

complex analytic reasoning. For example (−1)n2

, n ∈ N, is a period-2 function,

while cz2

, c 6= 0, 1, is never periodic with any period.
Next we look at a couple of equations that we have been unable to solve generally:

ff = ff,(3.12a)

f
[3]

f
[3]

= fff.(3.12b)

Any period-1 function satisfies (3.12a), but this is hardly a general solution. It
might be that the constants 1 and 0 are the only solutions with hyper-order less
than one for (3.12b). If this would be true, option (4) for equation (3.7c) in Theorem
3.4 could be removed.

We also encounter on several occasions the following two equations:

ff = 1,(3.13)

ff = f.(3.14)

All solutions of (3.13) are period-2, since (3.13) implies ff = 1 and thus f = fff =

f , while all solutions of (3.14) are period-6: (3.14) implies f = ff = fff and thus

ff = 1, or f
[3]

f = 1. As with (3.13), this implies f = f
[6]

.
Equation (3.13) is solved by f = p2/p2, and this is at least a general solution of

finite order. Namely, suppose that f is a finite-order meromorphic solution to (3.13).
Then, by Whittaker’s result, there exists a finite-order meromorphic function g such
that f = g/g, and substituting this into (3.13) implies that g is period-2.

Analogously, given a period-6 function p6, the function p6p6/
(

p
[3]
6 p

[4]
6

)

satisfies

(3.14), but the general solution is unknown. Equation (3.14) also has the trivial
solution f ≡ 0, but in the occasions when we encounter (3.14) we cannot accept
zero as a solution. In particular, the only period-1 (or rational) solutions to (3.13)
and (3.14) are the constants ±1, and 0, 1, respectively.

We point out that choosing, for instance, p2 = sin(πz) results in p2/p2 ≡ −1. On
the other hand, choosing p2 to be for example an elliptic function gives genuinely
transcendental solutions.

Theorem 3.4 also contains a rescaled version of (3.13), namely ff = 1, or ff = 1.

Generically, the equation ff
[k]

= 1 is solved by f = p2k/p
[k]
2k .

Solving all the aforementioned equations for f is not enough, however. As we saw
in the statement of Theorem 3.4, we often have another function, call it now g, that
satisfies some equation together with f . Consider first

(3.15) gf = gf,
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where f satisfies (3.9). We suppose that the functions are not identically zero, and
thus g satisfies equation (3.11a). Substituting the general solutions (of finite order)
of (3.9) and (3.11a) into (3.15), it can be seen that f = q1F (z, p1), g = q2G(z, p1)

(with F = p1F and G = p1G), i.e. instead of four arbitrary periodic functions we

have just three. If f is in the special family of solutions, f = p1c
2zuz2

2 , we can

directly solve g from (3.15), and obtain g = p2c
zu

z(z+1)/2
2 .

Next we look at

(3.16) gf = fg,

where f satisfies (3.11c), which implies that g satisfies (3.11d). If f = p3c
2zuz2

6 , we

can solve g from (3.16): g = p2

p3
czu

z(z+3)/2
6 .

While working with the family (3.8) in Chapter 5, we also find some difference
equations with two or more unknowns that we are unable to solve generally. Some
solutions can be found, and clearly at least constant solutions exist, so that these
equations are indeed reasonable restrictions on the coefficients of R.

3.3.2. Extra restrictions on the coefficients. Suppose now that we restrict the coeffi-
cients in (3.5) and (3.8) to be of the form pkc

z, where pk is period-k and c ∈ C. Such
coefficients, often further simplified so that pk is constant, are commonly given in
the existing literature on discrete Painlevé equations, and so this restriction, which
seems rather arbitrary from a theoretical point of view, is understandable from the
point of view of applications.

In the following, we list a few previously known equations that are included in
the results of Theorem 3.4:

ww =
p2w

2 + q2c
zw + p1c

2z

(w − 1)(w − p2)
,(3.17a)

ww =
w2 + p2e

iπz/2czw + p1c
2z

w2 − 1
,(3.17b)

ww =
p1c

z

w(w − 1)
,(3.17c)

ww =
w(w + p2c

z)

w2 − 1
.(3.17d)

Equation (3.17a), contained in option (2) for equation (3.7a), is often referred to
as the difference Painlevé III equation. Its discrete version was first derived using the
method of singularity confinement in [38]. Singularity confinement will be discussed
later in Chapter 6. The difference Painlevé III equation is known to possess several
properties suggesting integrability: Schlesinger transforms [24], a Lax pair [36], and
special discrete Riccati solutions [25]. Some special solutions in terms of rational
and discrete Bessel functions were presented in [9], and a Bäcklund transformation
was given in [44].

Equation (3.17b), contained in option (1) for equation (3.7a) with ν ≡ −1, was
already obtained by Halburd and Korhonen in [18], using similar methods as in this
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thesis. Equation (3.17c), contained in option (2), is related to the equation

(3.18) ww =
dw + 1

w2
,

where d satisfies dd = d2. This equation was found in [39]. Changing w → −1/(dw)
in (3.18) results in

ww =
f

w(w − 1)
,

where f = (ddd2)
−1

, and this f satisfies (3.9), just like the respective coefficient in
(3.17c) must.

Equation (3.17d) is related to the equation

(3.19) ww =
w2 − t2

w − 1

by the transformation w → p2c
z/w. Equation (3.19) was linked to the discrete

Painlevé equations in [27].
For the family (3.8) of difference Painlevé V, we force another rather arbitrary

requirement that, in the factorised form of P , all but the leading coefficient must
be period-1. With these restrictions, we find for instance the following equations:

L(w) =
g1f1c

2z(w − p1)(w − 1/p1)(w − q1)(w − 1/q1)

(w − g1cz)(w − f1cz)
,(3.20a)

L(w) =
q1c

z(w − p1)(w − 1/p1)(w
2 − 1)

w2 − q1cz
.(3.20b)

Here L(w) denotes (ww − 1)(ww − 1), and g1, f1 are arbitrary period-1 functions.
Otherwise we have used the same notation as above.

Equation (3.20a) is traditionally called the difference Painlevé V equation. To
get the form first introduced in [38], one can use the change y = (w + 1)/2. A
Bäcklund transformation as well as a special solution for the discrete Painlevé V
equation were given in [44]. In [45], Schlesinger transformations and some particular
solutions were found. See also [37]. The autonomous version of equation (3.20b)
was discovered in [27].

We also wish to point out that should we restrict the coefficients to be of order
less than one (analogously, in some sense, with the requirement that the solution
has hyper-order less than one), they would almost invariably reduce to constants.
In fact only the arbitrary coefficients, not restricted by any equation (for example
h in equation (3.7d)), could be nonconstant.

3.4. Nevanlinna theory and difference equations. A key tool in practically
all recent papers applying Nevanlinna theory to the study of difference equations
is the difference analogue of the logarithmic derivative lemma. Slightly different
formulations of this result were obtained independently by Halburd and Korhonen
[14, 17], and by Chiang and Feng [5]. Originally valid for functions of finite order, the
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result was recently generalised to hold for meromorphic functions with hyper-order
less than one:

Theorem 3.5 ([19]). Let w be a nonconstant meromorphic function with ρ2(w) =
ρ2 < 1, c ∈ C and δ ∈ (0, 1 − ρ2). Then

m

(

r,
w(z + c)

w(z)

)

= o

(
T (r, w)

rδ

)

,

for all r outside a set of finite logarithmic measure.

All the various results obtained using the finite-order version, many of which
will be needed in this thesis, generalise to the case of hyper-order less than one as
well. The error terms will look slightly different, but their exact form is of little
relevance to us. It is clear that Theorem 3.5 cannot hold in general for functions
with hyper-order one or more, since for example f(z) = exp(2z) satisfies f/f = f .

In the rest of this section, we list several results that will be applied frequently
in the next two chapters.

Theorem 3.6 (Valiron-Mohon’ko identity [46, 33]). Let w be a meromorphic func-
tion and R(z, w) a function which is rational in w and meromorphic in z. If all the
coefficients of R(z, w) are small compared to w, then

T (r, R(z, w)) = (degw R)T (r, w) + S(r, w).

The Valiron-Mohon’ko identity plays an important role in the study of differential
equations, as well. The proof can be found in [29, Theorem 2.2.5].

Definition 3.7. A difference polynomial of order n is an expression of the form

U(z, w) =
∑

{J}

αJ(z)

(
∏

j∈J

w(z + cj)

)

,

where {J} is a collection of subsets of {1, . . . , n}, αJ ∈ S(w), αJ 6≡ 0, n ∈ J for at
least one J , and cj ∈ C. For each J , we call the number of elements in J the degree
of that term. The degree of a difference polynomial, degw H, is the maximum of the
degrees of its terms.

Next, we introduce a generalisation of the difference version of the Clunie lemma
(see [14]) by Laine and Yang [31, Theorem 2.3]. The proof in [31] uses only the finite-
order version of the difference analogue of the lemma on the logarithmic derivative,
but by using Theorem 3.5 instead we get the following formulation. Another result
of the same type (but for a different class of equations) is given in [28].

Theorem 3.8. Let w, ρ2(w) = ρ2 < 1, be a transcendental meromorphic solution
of a difference equation

H(z, w)A(z, w) = B(z, w),
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where H, A, and B are difference polynomials, and suppose that H has only one
term of maximal degree. If degw B ≤ degw H, then

m(r, A(z, w)) = o

(
T (r, w)

r1−ρ2−ǫ

)

+ S(r, w),

where ǫ > 0, and the exceptional set related to S(r, w) is of finite logarithmic mea-
sure.

The following result on the Nevanlinna characteristic is essential in the study of
the family (3.8):

Theorem 3.9 ([11]). For three meromorphic functions f , g and h the Nevanlinna
characteristic satisfies

T (r, fg + gh + hf) ≤ T (r, f) + T (r, g) + T (r, h) + O(1).

Notation. We adopt, for brevity, the following unconventional notations. The sym-
bol ⋗S(r, w) means for more than S(r, w) points, and the symbol ⋖S(r, w) means
for at most S(r, w) points.

For example, if we say that a condition C(zj) holds ⋖S(r, w) zj, it means that
the integrated counting function counting the points zj for which C(zj) holds is of
growth S(r, w).

Furthermore, if a meromorphic function f has a pole of order n at z0 ∈ C, that
is,

f(z) = β(z − z0)
−n + O

(
(z − z0)

−n+1) , β 6= 0,

for all z in an open disc of some positive radius centred at z0, we denote this by
f(z0) = ∞n. Analogously, an a-point of order n is denoted by f(z0) = a + 0n. The
latter is a short notation for

f(z) = a + β(z − z0)
n + O

(
(z − z0)

n+1) , β 6= 0,

for all z in an open disc of some positive radius centred at z0.

3.4.1. Detection of hyper-order at least one. In this section we give the basic tools
for telling when the solution w must have hyper-order at least one. First, we have
a result from real analysis characterising the concept of “hyper-order less than one”
in a very practical way.

Theorem 3.10 ([19]). Let T : [0,∞) → [0,∞) be a nondecreasing continuous
function, and s ∈ (0,∞). If

lim sup
r→∞

log log T (r)

log r
= ρ2 < 1,

and δ ∈ (0, 1 − ρ2), then

T (r + s) = T (r) + o

(
T (r)

rδ

)

,

where r goes to infinity outside a set of finite logarithmic measure.
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Lemma 3.11. Let w be an admissible meromorphic solution of L(z, w) = R(z, w),
where L is a difference polynomial in w, while R is rational in w and meromorphic
in z. Suppose that m(r, w) = S(r, w). If there exists k > 0 and α < degw R such
that

N(r, L(z, w)) ≤ αN(r + k, w) + S(r, w),

then ρ2(w) ≥ 1.

Proof. First, observe that m(r, w) = S(r, w) implies that also m(r, L(z, w)) =
S(r, w). Now, by Theorem 3.6,

(degw R)T (r, w) = T (r, L(z, w)) + S(r, w) = N(r, L(z, w)) + S(r, w)

≤ αN(r + k, w) + S(r, w) ≤ αT (r + k, w) + S(r, w),

and so by Theorem 3.10, ρ2(w) ≥ 1. ¤

In practice Lemma 3.11 means, roughly speaking, that if we can group most poles
of L(w) in (3.4) with nearby poles of w so that the number of poles of L(w) divided
by the number of poles of w, both counting multiplicities, is less than degw R, then
w will have hyper-order at least one.

If R has the highest possible degree (the meaning of this will become apparent
once we start proving Theorem 3.4), we get a stronger result. Let ℓ denote the
degree of L(w) as a difference polynomial in w, i.e. ℓ = 2 for (3.5) and ℓ = 4 for
(3.8). Denote by N ′(r, w) the counting function of a certain subset of all the poles of
w. What exactly this subset is will be defined separately whenever the next lemma
is used. To say that N ′(r, w) > cT (r, w) for some c > 0 outside an exceptional set
is the same as to say that there are more than S(r, w) poles of this type.

Lemma 3.12. Let ℓ and N ′(r, w) be as above. Assume that m(r, w) = S(r, w)
in (3.4), degw R = ℓ, N ′(r, w) > cT (r, w) for some c > 0 outside a set of finite
logarithmic measure, and that N ′(r, L(w)) < αN ′(r + k, w) for some α < degw R
and k ≥ 1. Then ρ2(w) ≥ 1.

Proof. As in the previous lemma, we have m(r, L(w)) = S(r, w). Again by Theorem
3.6, and the assumption that degw R = ℓ,

(degw R)T (r, w) =
(
N(r, L(w)) − N ′(r, L(w))

)
+ N ′(r, L(w)) + S(r, w)

≤ ℓ
(
N(r + 1, w) − N ′(r + 1, w)

)
+ αN ′(r + k, w) + S(r, w)

< ℓN(r + 1, w) + (α − ℓ)cT (r + max{1, k}, w) + S(r, w)

≤ (ℓ + (α − ℓ)c)T (r + k, w) + S(r, w),

and so by Theorem 3.10, ρ2(w) ≥ 1. ¤

The difference between Lemmas 3.11 and 3.12 is that in the latter, all except at
most S(r, w) poles of w must be grouped with degw R nearby poles of L(w) to avoid
a contradiction, while in the former the contradiction is avoided if there are more
than S(r, w) poles that can be grouped this way. The difficulty when the degree
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of R is too low (less than ℓ) is that the estimate N(r, L(w)) ≤ ℓN(r + 1, w) is too
rough.

On the other hand, Lemma 3.11 is very generic and by no means limited to the
two special equations we are studying here, while in the proof of Lemma 3.12 we
used the special form of L(w). The idea in Lemma 3.11 is similar to a lemma
used in [16] to prove Theorem 3.2, but we have included the extra assumption
m(r, w) = S(r, w), knowing that we can satisfy this requirement in all the relevant
cases. Various results of the same type, but without this extra assumption, are
given in [30].

3.4.2. On the coefficients.

Lemma 3.13 ([16]). Let w be a meromorphic function with more than S(r, w) poles
(or c-points, c ∈ C) counting multiplicities, and let a1, a2, . . . , an ∈ S(w). Assume
moreover that none of the functions ai is identically zero. Denote by zj the poles
and zeros of the functions ai (where j is in some index set), and let

mj := max
1≤i≤n

{li ∈ N | ai(zj) = ∞li or ai(zj) = 0li}

be the maximal order of zeros and poles of the functions ai at zj. Then for any ǫ > 0
there are at most S(r, w) points zj such that w(zj) = ∞kj (or w(zj) = c+0kj), where
mj ≥ ǫkj.

Because Lemma 3.13 is rather essential, and because its proof is quite short, we
repeat the proof here:

Proof. We prove the claim in the case when w has more than S(r, w) poles; for
c-points a similar proof works. Suppose that w(zj) = ∞kj with mj ≥ ǫkj, ⋗S(r, w)
zj. Denote by Nzj

(r, w) the counting function of those poles of w which are in the
set {zj}, and by NΣ(r, ai) the counting function of the poles of all ai. Then, by
assumption

lim sup
r→∞

NΣ(r, ai)

T (r, w)
≥ lim sup

r→∞

ǫNzj
(r, w)

T (r, w)
> 0,

where r stays outside a set with finite logarithmic measure. This implies that at least
one of the functions ai has more than S(r, w) poles, contradicting the assumption
that ai ∈ S(w). ¤

We will only be using Lemma 3.13 in the case when w has more than S(r, w) poles.
The lemma is often needed in the following considerations, because in principle it
could happen that the coefficients in (3.4) have poles or zeros always when w has a
pole. However, as the lemma implies, at most points the order of the pole of w is
much greater than those of the coefficients, and this is enough for our purposes.

As an example of a situation where the lemma would be needed (this example
is given in [16], as well), consider the gamma function Γ, which has a simple pole
at −n + 1 for all n ∈ N. The order of Γ is one. We can construct a meromorphic
function G which has a pole of order n2 at the points −n2 [21]. Then ρ(G) ≥ 3, and
so Γ ∈ S(G). Observe that there are no points where G has a pole and Γ does not.
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If the multiplicities of the poles of w have a uniform upper bound, or if the
coefficients of (3.4) have only finitely many zeros and poles, then each ǫ in the
reasonings of the following chapters can be replaced by zero.

While we only consider meromorphic solutions of equations with meromorphic
coefficients, in the course of the reasoning we must also handle equations with co-
efficients that might have some branch points, i.e. finite-valued algebroid functions.
The results of the classical Nevanlinna theory cannot be applied to such functions,
but instead we can, when needed, rely on the Selberg-Ullrich theory, the algebroid
version of Nevanlinna theory (see for instance [26]), which studies meromorphic
functions on a finitely sheeted Riemann surface. Thus, whenever the coefficients
are such that branch points exist, T (r, ·) and N(r, ·) will denote the corresponding
characteristic and counting functions of a finite-sheeted algebroid function. All al-
gebroid functions we need to consider are small functions with respect to w and
so the change of the underlying theory actually only affects the error term S(r, ·).
It needs to be redefined in terms of the algebroid characteristic, but since it will
remain small with respect to T (r, w), we can still denote it by S(r, w).

Actually, since the estimates we make on the small coefficients do not in fact
require the strong results of Nevanlinna theory in most cases, the instances where
we really need to rely on the algebroid theory are quite few. Often, either the branch
points do not really cause any problems, or the problems could be avoided by using
some auxiliary meromorphic function. We have, however, chosen to simply rely on
algebroid theory, since this greatly simplifies the required reasoning.

4. The Family of Difference Painlevé III

The purpose of this section is to prove Theorem 3.4. The proof is rather involved
with numerous subcases. We have attempted to organise the proof so that subcases
that are treated using similar methods are together as far as is convenient. This
hopefully makes following the proof a little bit easier, while unfortunately mak-
ing it somewhat difficult to trace exactly where we obtain each possible equation
mentioned in Theorem 3.4.

4.1. Preliminaries. Applying first Theorems 3.6 and 3.10 to (3.5), we get

(degw R)T (r, w) = T (r, ww) + S(r, w) ≤ 2T (r, w) + S(r, w),

so that degw R ≤ 2. The zero case being just a subcase of (3.7d), we suppose from
now on that degw R = 1, 2. The next lemma gives a sufficient condition that the
function w should have a large number of poles. Recall that p and q denote the
degrees of the polynomials P and Q in (3.5), respectively.

Lemma 4.1. Assume that the hypotheses of Theorem 3.4 hold. If q ≥ 1, then
m(r, w) = S(r, w).

Proof. By the above reasoning, max{p, q} ≤ 2. Whenever the assumption holds, we
can write (3.5) as

wqww = Φ(z, w),
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where q ∈ {1, 2} and Φ(z, w) is a difference polynomial in w with degree at most
q + 1. If w is transcendental, we can use Theorem 3.8 with H(z, w) = wqw to
conclude that m(r, w) = S(r, w).

If w is rational, then by its admissibility the coefficients must be constants (and w
itself cannot be constant). If w has deg(w) poles, then it follows from the definitions
of the Nevanlinna functions that m(r, w) = O(1), so we may suppose that w(∞) =
∞. Thus w(z) ∼ czm, m ∈ N, as |z| → ∞. Then w(z + 1)w(z − 1) ∼ c2z2m,
and R(z, w) ∼ Az(p−q)m, A 6= 0, so that we have 2 = p − q ≤ p − 1 ≤ 1, a
contradiction. ¤

Lemma 4.2. Let bj be any of the roots of the polynomials P and Q. Then

N

(

r,
1

w − bj

)

= T (r, w) + S(r, w).

Proof. Note that if the respective order p or q is equal to two, the roots bj can
be algebroid. Equation (3.5) can be written in the form Ψ(z, w) = 0, where Ψ
is a difference polynomial in w. Because P and Q have no common factors the
function bj cannot be a solution of this equation. We will apply [14, Corollary
3.4] (the difference analogue of the Mohon’ko lemma), reformulating it to hold for
functions of hyper-order less than one and with algebroid coefficients (the proof in
[14] needs to be re-written to use Theorem 3.5, but this can be done with just few
adjustments), and obtain that

m

(

r,
1

w − bj

)

= S(r, w). ¤

We will next consider separately the cases q = 0, 1, 2.

4.2. Equations with q = 2. We consider the cases where (3.5) is of one of the
following forms:

ww =
c(w − h1)(w − h2)

(w − a1)(w − a2)
,(4.1a)

ww =
c(w − h1)

(w − a1)(w − a2)
,(4.1b)

ww =
c

(w − a1)(w − a2)
,(4.1c)

where c ∈ S(w) and the small functions h1, h2, a1, a2 are assumed algebroid, because
they can in principle, due to factorisation, have square root type branch points. We
assume, for now, that these rational expressions are square free and that neither of
the functions a1, a2 vanishes identically. The cases where we allow a1 = a2, h1 = h2,
or identically vanishing roots in Q are treated later in this section.

We will follow to some extent the reasoning in [18], where equation (4.1a) with
meromorphic coefficients was considered with an additional assumption concerning
the order of the poles of w. All the cases (4.1a)–(4.1c) will be considered simul-
taneously as far as that is possible. This means that all following statements that



24 ONNI RONKAINEN

do not refer to a specific case indeed can be applied equally to any of the cases
(4.1a)–(4.1c).

By Lemma 4.2, w−am and w−hm, m = 1, 2, have a large number of zeros, loosely
speaking. In addition, Lemma 4.1 implies that w has a large number of poles, and
this implies that so does ww, since by Theorem 3.5

m(r, ww) = m

(

r, w2ww

w2

)

≤ m(r, w2) + m

(

r,
w

w

)

+ m
(

r,
w

w

)

≤ 2m(r, w) + S(r, w) = S(r, w),

and by Theorem 3.6 and (4.1a)–(4.1c), T (r, ww) = 2T (r, w) + S(r, w) 6= S(r, w).
By Lemma 3.13, given ǫ > 0, there are at most S(r, w) points zj where Q(zj, w) =

0kj , but where ww has a pole of order greater than (1 + ǫ)kj or less than (1 − ǫ)kj

due to poles or zeros of P (zj, w). The combined effect of all such points can be
included in the error term, and so we only consider the rest of the zeros of Q in
what follows.

For a point zj where w(zj) = am(zj), define

L(zj, w) = (. . . , zj − 1, zj, zj + 1, . . .)

to be the longest possible list of points such that each zj + 2n ∈ L(zj, w) is a zero
of w − am, m = 1, 2, and each zj + 2n + 1 ∈ L(zj, w) is a pole of w.

Suppose that w has more than S(r, w) poles that are not contained in any sequence
L(zj, w). Let N∗(r, w) be the integrated counting function counting only such poles;
by assumption we have N∗(r, w) ≥ CT (r, w) for some C > 0 in a set of infinite
logarithmic measure. By equations (4.1a)–(4.1c), N∗(r, ww) = S(r, w), and so we
get

2T (r, w) =
(
N(r, ww) − N∗(r, ww)

)
+ N∗(r, ww) + S(r, w)

≤ 2
(
N(r + 1, w) − N∗(r + 1, w)

)
+ N∗(r + 1, w) + S(r, w)

≤ (2 − C)T (r + 1, w) + S(r, w),

which implies that ρ2(w) ≥ 1 by Theorem 3.10. Therefore all except at most S(r, w)
poles of w are in some sequence L(zj, w).

We will call the total number of zeros of w − am in L(zj, w) divided by the
total number of poles of w (both counting multiplicities) the am/pole ratio of the
sequence. By Lemma 3.12, this ratio can be less than some α < 2 only for at
most S(r, w) sequences. (Otherwise we would consider a counting function N ′(r, w)
counting only the poles in sequences with a ratio less than α, and the lemma would
yield a contradiction.)

Consider a sequence L(zj, w) that contains only one zero of w−am. Then there are
one or two poles in that sequence. With one pole we would have w(zj) = am(zj)+0kj

and w(zj + 1) = ∞mj or w(zj − 1) = ∞mj , where (1 − ǫ)kj < mj. If there are two
poles, the situation is the same except that now we have w(zj +1)w(zj −1) = ∞mj .
In any case, in such a sequence the am/pole ratio is at most 1/(1 − ǫ). Hence all
except at most S(r, w) sequences L(zj, w) contain at least two zeros of w−am. This
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means that there must be at least T (r, w)+S(r, w) points zj such that w(zj+1) = ∞
and one of the following holds:

w(zj) = a2(zj) and w(zj + 2) = a1(zj + 2),(4.2)

w(zj) = a1(zj) and w(zj + 2) = a2(zj + 2),(4.3)

w(zj) = a1(zj) and w(zj + 2) = a1(zj + 2),(4.4)

w(zj) = a2(zj) and w(zj + 2) = a2(zj + 2).(4.5)

Since N
(
r, 1/(w − am)

)
= T (r, w) + S(r, w) holds for both choices of m = 1, 2,

exactly one of the following is true:

(i) Both (4.4) and (4.5) hold ⋗S(r, w).
(ii) Both (4.2) and (4.3) hold ⋗S(r, w); (4.4) and (4.5) hold ⋖S(r, w).
(iii) Relation (4.3) holds ⋗S(r, w); (4.2), (4.4), and (4.5) hold ⋖S(r, w).
(iv) Relation (4.2) holds ⋗S(r, w); (4.3)–(4.5) hold ⋖S(r, w).

In what follows, we will derive some consequences separately for the conditions
(i)–(iv).

4.2.1. Cases (i) and (ii). We first assume that (i) is true, and consider equation
(4.1a). Now (4.4) holds ⋗S(r, w), and starting from the assumption that w(zj) =
a1(zj), we get by (4.1a) that

w(zj)w(zj + 2) = a1(zj)a1(zj + 2) =

(
c(w − h1)(w − h2)

(w − a1)(w − a2)

)

(zj + 1) = c(zj + 1)

⋗S(r, w). We find that c(zj) = a1(zj − 1)a1(zj + 1) at more than S(r, w) points zj,
and so in fact c = a1a1, since the coefficients are small with respect to w. Similarly,
by starting from w(zj) = a2(zj), we get that c = a2a2, which implies a2 = νa1 for
some ν 6≡ 1 that satisfies νν = 1.

When we consider equation (4.1b), we find that

w(zj)w(zj + 2) = a1(zj)a1(zj + 2) =

(
c(w − h1)

(w − a1)(w − a2)

)

(zj + 1).

Since w(zj + 1) = ∞, the right hand side is equal to 0, and so a1(zj) = 0, ⋗S(r, w).
This implies that a1 ≡ 0, contradicting our assumption. The same result is obtained
similarly for (4.1c).

Case (ii) works exactly in the same way as the above detailed considerations, and
we get the results listed later in Table 1 on page 27.

4.2.2. Cases (iii) and (iv). Assume that (iii) holds. All except at most S(r, w) zeros
of w−am are in sequences L(zj, w) containing at least two such zeros. By condition
(iii), there has to be, in fact, exactly one zero of w−a1 and one zero of w−a2, since
otherwise (4.2), (4.4), or (4.5) would hold ⋗S(r, w). On the other hand, we already
saw that w has at most S(r, w) poles outside these sequences. Therefore all except
at most S(r, w) poles of w must be contained in sequences of the form

(∞lj− , a1 + 0kj− ,∞mj , a2 + 0kj+ ,∞lj+).
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Here we understand that if lj± < 0, the corresponding endpoint of the sequence is
a zero of order |lj±|, and if lj± = 0, it is some nonzero finite value. As before, by
Lemma 3.13, we have the restrictions

(4.6) (1 − ǫ)kj± < lj± + mj < (1 + ǫ)kj±,

for both choices of the ± sign. Denote

(4.7) U := (w − a1)(w − a2).

We will show that U is a small function with respect to w. Because m(r, w) = S(r, w)
by Lemma 4.1, also m(r, U) = S(r, w). From the definition of U and the fact that
all but at most S(r, w) poles of w are in sequences of the above form, it follows that
if U has more than S(r, w) poles, then there are more than S(r, w) sequences where
lj± 6= 0.

Consider first only those sequences (or those indices j) where lj− > 0. We may
assume that lj−/mj ≥ s > 0 for all such sequences, because otherwise the lj−:s
are bounded while the mj:s are not, in which case these poles will only have a
small effect (at most S(r, w)) on N(r, U). The am/pole ratio for the sequences in
consideration is

kj− + kj+

mj + lj− + max{0, lj+}
<

2mj + lj− + lj+
(1 − ǫ)(mj + lj− + max{0, lj+})

,

where we have used (4.6). Take d such that

1 + s/2

1 + s
< d < 1.

Then d ∈ (1/2, 1). We can choose ǫ small enough, so that the am/pole ratio is at
most 2d. From the estimate for the ratio, an obvious bound for a fixed j is

ǫj < 1 − 2mj + lj− + lj+
2d(mj + lj− + max{0, lj+})

.

We choose ǫ = infj ǫj. To check that this infimum is not zero it suffices to consider

2d(mj + lj− + max{0, lj+}) − 2mj − lj− − lj+ ≥ (2d − 2)mj + (2d − 1)lj−

≥ mj(2d − 2 + (2d − 1)s) > 0,

with our choice of d (note that mj ≥ 1 for all j). Because the infimum cannot be
zero, our ǫ is well defined. Thus we conclude that if lj− > 0, then in such sequences
the am/pole ratio is at most some 2d < 2, whenever ǫ is small enough. Now, if there
were more than S(r, w) sequences such that lj− > 0, Lemma 3.11 would imply that
ρ2(w) ≥ 1.

Next, consider in a similar fashion only those sequences where lj− < 0. This time
we choose s > 0 such that |lj−|/mj ≥ s for all such indices j. If such s does not
exist, these zeros again have only a small effect on N(r, U), and we are done. We
also change our choice of d into one satisfying

max

{
1

2
,
2 − s

2

}

< d < 1,
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and again d ∈ (1/2, 1). Now the am/pole ratio is

kj− + kj+

mj + max{0, lj+}
<

2mj + lj− + lj+
(1 − ǫ)(mj + max{0, lj+})

,

and we find a bound

ǫj < 1 − 2mj + lj− + lj+
2d(mj + max{0, lj+})

.

To show that ǫ = infj ǫj is positive, we write

2d(mj + max{0, lj+}) − 2mj − lj− − lj+ ≥ (2d − 2)mj − lj− ≥ mj(2d − 2 + s) > 0.

Similarly as above, we conclude that if there were more than S(r, w) sequences such
that lj− < 0, then w would be of hyper-order at least one.

We can obviously repeat the above reasoning for the sequences where lj+ 6= 0.
Therefore, we have shown that in the only noncontradictory cases U ∈ S(w), and
so (4.7) becomes the Riccati difference equation (3.6).

The same reasoning works for case (iv) when we just change the roles of a1 and
a2.

All the results obtained above are collected in Table 1. We found three kinds
of results: restrictions on the coefficient functions (written down in the table); a
contradiction; or that w satisfies a Riccati difference equation (3.6), which is denoted
by (R) in the table.

Table 1. results obtained in the cases (i)–(iv)

Eq. (i) (ii) (iii) (iv)
(4.1a) c = a1a1 = a2a2, c = a1a2 = a2a1 (R) (R)
(4.1b) contradiction contradiction (R) (R)
(4.1c) contradiction contradiction (R) (R)

By the results in Table 1, the forms (4.1b) and (4.1c) with a1 6= a2 and both
am not identically zero are now clear: they both lead to w satisfying a Riccati
difference equation (3.6), or to a contradiction. For equation (4.1a) we still need
some additional considerations.

To this end, we write w = 1/y, and assuming that h1, h2 are not identically zero,
we can then write equation (4.1a) in the form

(4.8) yy =
a1a2

ch1h2
(y − 1/a1)(y − 1/a2)

(y − 1/h1)(y − 1/h2)
.

This is still of the form (4.1a), only with different coefficients. We can repeat
the preceeding reasoning with the new coefficients, formulate an analogous set of
conditions (i’)–(iv’), and obtain the results in Table 2. The conditions (i’)–(iv’)
read exactly as the conditions (i)–(iv) above, except that in equations (4.2)–(4.5)
we must replace a1, a2 with 1/h1, 1/h2.
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Table 2. results obtained in the cases (i’)–(iv’)

Eq. (i’) (ii’) (iii’) (iv’)

(4.8) ch1h2

a1a2
= h1h1 = h2h2

ch1h2

a1a2
= h1h2 = h2h1 (R) (R)

In what follows, we apply the results of Tables 1 and 2 to equation (4.1a). We
begin by making the transformation w → wa1, which gives

(4.9) ww =

c
a1a1

(

w2 − h1+h2

a1
w + h1h2

a2
1

)

(w − 1)
(

w − a2

a1

) .

Now we will go through all possible combinations of the conditions (i)–(iv) and
(i’)–(iv’). Observe that (iii), (iv), (iii’), and (iv’) all lead to w satisfying a Riccati
difference equation (if y satisfies a Riccati equation, then w = 1/y satisfies one, too,
only with different coefficients), so we only need to consider the combinations of the
rest of the cases.

Assume that (i) and (i’) hold. Then, a2 = νa1 with νν = 1 and h1 = σh2 with
σσ = 1. Applying the results in the tables, equation (4.9) becomes

ww =
w2 − h2(σ+1)

a1
w +

σh2
2

a2
1

(w − 1)(w − ν)
.

On the other hand,

h2h2 =
ch1h2

a1a2

=
σa1a1h

2
2

νa2
1

,

and so the function f = h2/a1 satisfies νff = σf 2. Using this, one can verify that

µ = σf2 and λ = f(σ + 1) satisfy ν2µµ = µ2 and νλµ = λµ. This means that we
have found equation (3.7a) in Theorem 3.4 with the option (1) and ν 6≡ 1.

Assume that (i) and (ii’) hold. Combining the relations c = a1a1 = a2a2 and
ch1h2

a1a2
= h1h2 = h2h1 given in Tables 1 and 2 yields

(4.10)

(
h1h2

a1a2

)2

=
h1h2

a1a2

· h1h2

a1a2

,

Denote µ := h1h2/a
2
1. Then (4.10) can be written as ν2µµ = µ2.

The following three equations hold ⋗S(r, w):

y(zj + 1)y(zj − 1) =
a1(zj)a2(zj)

c(zj)h1(zj)h2(zj)
,(4.11)

(

y(zj + 1) − 1

h1(zj + 1)

)(

y(zj + 1) − 1

h2(zj + 1)

)

= 0,(4.12)

(

y(zj − 1) − 1

h1(zj − 1)

)(

y(zj − 1) − 1

h2(zj − 1)

)

= 0.(4.13)
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To see that the first one holds, recall that condition (ii’) says that the following two
relations hold ⋗S(r, w):

y(zj − 1) = 1/h2(zj − 1) and y(zj + 1) = 1/h1(zj + 1),

y(zj − 1) = 1/h1(zj − 1) and y(zj + 1) = 1/h2(zj + 1).

Combining these with the result for (ii’) in Table 2 gives (4.11). The other two
equations, (4.12) and (4.13), are obtained directly from equation (4.8). From (4.11)–
(4.13) and the result for (ii’) in Table 2 we can deduce, after some manipulation,
that ⋗S(r, w)

(4.14)

(

(h1(zj + 1) + h2(zj + 1))
c(zj)h1(zj)h2(zj)

a1(zj)a2(zj)

− (h1(zj − 1) + h2(zj − 1))h1(zj + 1)h2(zj + 1)

)

y(zj − 1) = 0.

The coefficient of y(zj −1) must then vanish identically. Using the relations implied
by (i), we get

(4.15)
h1 + h2

a1

· h1h2

νa2
1

=
h1 + h2

a1

· h1h2

a2
1

,

If we denote λ := (h1 + h2)/a
2
1, this reads λµ = νλµ, and we have again equation

(3.7a), option (1), ν 6≡ 1.
Assume that (ii) and (i’) hold. Then by Table 1, c = a1a2 = a2a1, which implies

that ν := a2/a1 is a period-2 function. The function f = h2/a1 satisfies now
νff = σνf 2, where σ is as above: h2 = σh1 and σσ = 1. It is straightforward to

check that the functions λ = νf(σ + 1) and µ = νσf 2 satisfy the relations λµ = λµ
and µµ = µ2. This is option (2) for equation (3.7a) with the additional demand
that ν 6≡ 0, 1.

Assume that (ii) and (ii’) hold. Combining the relations given in Tables 1 and
2 for (ii) and (ii’) we again obtain equation (4.10): the function g = h1h2/(a1a2)
satisfies gg = g2. The reasoning above which yields (4.14) is only dependent on the
condition (ii’), and therefore it can be repeated here without any change. When we
equate the coefficient of y(zj − 1) in (4.14) to zero and apply the fact that c = a2a1,
given by (ii) in Table 1, we get, instead of (4.15), the following:

h1 + h2

a1

· h1h2

a1a2

=
h1 + h2

a1

· h1h2

a1a2

.

Denoting again (h1 + h2)/a1 by λ we have λg = λg.
Since a2 = νa1 for a period-2 function ν, µ = νh1h2/a

2
1 is equal to ννg. By the

result for g, µ again satisfies µµ = µ2. We also obtain the relation λµ = λµ by

combining µ = ννg and λ/λ = g/g. Thus we have again obtained option (2) for
equation (3.7a) with ν 6≡ 0, 1.
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We have now finished treating equations (4.1a)–(4.1c) with the assumptions that
a1 6= a2, am 6≡ 0, and in (4.1a), h1 6= h2 and hm 6≡ 0.

4.2.3. Vanishing coefficients. Next we consider the cases where one of the coeffi-
cients in R(z, w) vanishes identically. We still suppose that a1 6= a2 and h1 6= h2.

Suppose that a1 ≡ 0 (the reasoning is the same if a2 ≡ 0). If p = 0, we write the
equation as

(4.16) ww =
c

w(w − a)
.

Starting from the assumptions that w(zj) = a(zj) + 0kj and w(zj + 1) = ∞mj , we
find that w(zj + 2) = 02mj and w(zj + 3) = ∞mj , where the order is given modulo
a small error from the poles and zeros of the coefficients. The next iterate is

w(zj + 4) =
a(zj + 2)2c(zj + 3)c(zj + 1)

a(zj)c(zj + 2)2
.

If this is equal to a(zj +4) with a sufficiently large order, and this holds for ⋗S(r, w)
points zj, we conclude that aac2 = a2cc. Otherwise, w(zj +5) = 0mj and w(zj +6) =
∞mj , so that the am/pole ratio is less than one (observe that zeros of w are now
zeros of w − am), leading to a contradiction. Note that this follows regardless of
the iterates w(zj − n) in the negative direction, since the sum of the orders of the
poles of w at zj + 1 and zj − 1 must be roughly equal to kj (allowing also “poles of
negative order”, i.e. zeros).

Change w → aw in (4.16) and denote µ := c/(aaa2). The relation obtained above
can be written as µ2 = µµ, and thus this case yields option (2) for equation (3.7a),
with η, ν, λ ≡ 0.

Let then p = 1, and write the equation as

(4.17) ww =
c(w − h)

w(w − a)
.

Starting from the same assumptions as above, we find that w(zj + 3) = 0mj , and

w(zj + 4) =
h(zj + 2)a(zj)c(zj + 2)

a(zj + 2)c(zj + 1)
.

If this equals h(zj +4) sufficiently often, we obtain hac = hac. If not, a contradiction
is obtained as above. Changing w → 1/y in (4.17) gives an equation of the same
form, but with different coefficients. Repeating the reasoning for this equation yields
another condition, ahc = ach. Denote λ := −c/(aaa) and µ := λh/a. Then we can

deduce, using the obtained relations, that µµ = µ2 and λµ = λµ. This results in
option (2) for equation (3.7a), with η, ν ≡ 0.

Lastly, if p = 2, we change w → 1/y, which gives an equation of the form (4.1b)
with non-zero coefficients. This case has been treated above, and it lead to either
w satisfying a Riccati difference equation or to a contradiction.
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If h1 ≡ 0 (or similarly h2 ≡ 0) in (4.1a), we do the change w → 1/y. It gives the
equation

(4.18) yy =
−a1a2

ch2
(y − 1/a1)(y − 1/a2)

y − 1/h2

,

which is of the form where q = 1. The consideration of this case will be finished in
Section 4.4.

The case that h1 ≡ 0 in (4.1b) needs no separate consideration; a zero root in
the numerator of R(z, w) does not affect the reasoning leading to the conditions
(i)–(iv), and from any of these it follows that am ≡ 0 for at least one value of m,
contradicting the fact that P and Q have no common factors.

4.2.4. The reduced cases. We still have to see what happens if a1 = a2 or h1 = h2

or both in (4.1a)–(4.1c). First, we assume that a1, a2, h1, h2 are all not identically
zero.

Assume that a1 = a2. This means that (4.4) holds for all the equations. (The
reasoning needed to obtain (4.4) is only a slight modification of the original one.)
Since we assume for now that a1, a2 6≡ 0, the only changing points in the above
reasoning are in the consideration of equation (4.1a). Making the transformation
w → wa1 gives (4.9) with a2/a1 = 1.

Changing w → 1/y gives an equation of the form (4.1a) with h1 = h2. This
means that either of the following is true (compare to Table 2):

(i’):
ch1h2

a2
1

= h1h1 = h2h2, (ii’):
ch1h2

a2
1

= h1h2 = h2h1.

Suppose that (i’) is true, so that ff = σf2 for f = h2/a1 and σσ = 1 (recall that

σ is such that h1 = σh2; cf. Subsection 4.2.1). Then λ = f(σ + 1) and µ = σf2

again satisfy µµ = µ2 and λµ = λµ. This is option (2) for equation (3.7a) with

η, ν ≡ 1. The same result is obtained in case (ii’), in which we have p2ff = p2f
2

for a period-2 function p2 and λ = f(p2 + 1), µ = p2f
2.

The case h1 = h2 needs no separate consideration, as the result can be transformed
to the one obtained above with w → 1/y.

The case that both a1 = a2 and h1 = h2 are true works in the same way, except
for the simplification that σ ≡ 1.

Suppose then that a1, a2 ≡ 0. Changing w to 1/y in (4.1a) gives an equation of
the form (4.1c), so that by Table 1 either y (and thus w as well) satisfies a Riccati
difference equation, or we get a contradiction. The same change in (4.1b) also gives
the form (4.1c), but with one root of Q identically zero; this case has been treated
above. From equation (4.1c) we directly obtain (3.7d).

Finally, if h1, h2 ≡ 0, we transform w → wa1 in (4.1a) and obtain in case (i)

(4.19) ww =
w2

(w − 1)(w − ν)
, νν = 1,
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a special case of option (1) for equation (3.7a), and in case (ii)

ww =
νw2

(w − 1)(w − ν)
, ν = ν,

a special case of option (2). If a1 = a2, we get (4.19) with ν ≡ 1.

The equations with q = 2 have now been handled, except for the case of (4.1a) with
one root of P identically zero, which lead to (4.18). The results we found were of
the form (3.7a), with option (1) or (2) in Theorem 3.4.

4.3. Equations with q = 0. We have two equations to consider, namely,

(4.20) ww = c(w − h1)(w − h2), ww = c(w − h1).

If we allow the possibility h1 = h2, then these equations cover all the possible forms
where q = 0. In the first equation h1 and h2 may be algebroid.

Assuming h1, h2 6≡ 0 and changing w into 1/y, equations (4.20) are changed into

(4.21) yy =
1

ch1h2
y2

(y − 1/h1)(y − 1/h2)
, yy =

− 1
ch1

y

y − 1/h1

.

The first one is of the form (4.1a) with h1, h2 ≡ 0; this was treated at the end of
the previous section. The second equation in (4.21) has q = 1, so it will be treated
in the next section.

If h2 (or similarly h1) vanishes, the first equation in (4.20) gives

(4.22) yy =
− 1

ch1
y2

y − 1/h1

,

when we apply the change of w into 1/y. This equation is of the form where p = 2,
q = 1, and will be dealt with in the next section. If h1 vanishes in the second
equation in (4.20), or if both h1 and h2 vanish in the first one, we just get (3.7d).

4.4. Equations with q = 1. The powerful method of considering the am/pole ratio
does not work in the case that degw R = 1. Here we need a more careful inspection of
the iterates of equation (3.5), and will use Lemma 3.11 to obtain contradictions. The
considerations get rather lengthy, and we will not repeat needlessly any reasoning
that has already been done above.

The equation we consider is

ww =
P (z, w)

w − a
,

using our previous notation, but with a now definitely meromorphic. We still know
that w−a has a large number of zeros (Lemma 4.2), and that w has a large number
of poles (Lemma 4.1). We will iterate the various forms of the equation starting
from the assumptions that w(zj) = a(zj) + 0kj and w(zj ± 1) = ∞mj± . Recall that,
discarding at most S(r, w) points, we have

(1 − ǫ)kj < mj− + mj+ < (1 + ǫ)kj.
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The iteration must be done separately for the cases when some of the coefficients
vanish identically. Moreover, the results of the iteration are essentially different in
the three different scenarios that mj± > 0, mj± = 0, and mj± < 0. When consider-
ing the points where mj± is nonzero, we can assume that |mj±|/kj is bounded from
below by some positive constant, because otherwise the combined effect of all such
points on the counting function can be included in the error term.

Case p = 1. The equation in consideration is now

(4.23) ww =
c(w − h)

w − a
.

Suppose for now that neither a nor h is identically zero. We will next derive all the
various forms of equation (3.7c) in Theorem 3.4.

Let mj+ > 0, ⋗S(r, w). Then,

w(zj + 2) =
c(zj + 1)

a(zj)
.

If this is not a zero of w−a with a sufficiently high order, the next iterate w(zj +3)
will be zero, and

w(zj + 4) =
c(zj + 3)h(zj + 3)a(zj)

a(zj + 3)c(zj + 1)
.

If this is not a zero of w−h with a sufficiently high order, the next iterate w(zj +5) is
infinite, and

w(zj + 6) =
a(zj + 3)c(zj + 5)c(zj + 1)

h(zj + 3)a(zj)c(zj + 3)
.

The poles at zj + 1 and zj + 5 have the same order mj+ modulo a small error from
the coefficients, so that we have so far kj zeros of w−a and roughly 2mj+ poles per
sequence, unless one of the following is true:

(A): c = aa,

(B): cha = hac,

(C): acc = a[3]a[3]hc.

The five iterates in the other direction can give at most (roughly) mj− more zeros of
w−a, but at the expense of yielding also (roughly) mj− poles of w. In the case that
mj− = 0, we might, at worst, also have to look at the seventh iterates (if zj − 6 is
a zero of w − a), but this does not change our conclusion: unless one of (A)–(C) is
true, the ratio of the zeros of w − a and the poles of w in these sequences is strictly
less than one, which yields a contradiction by Lemma 3.11.
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We can consider y = 1/w in a similar fashion, and find the conditions

(A’):
a

ch
=

1

hh
,

(B’): ach = ach,

(C’): aah
[3]

h[3]c = chch.

One of (A)–(C), and one of (A’)–(C’) must be true. Here we assumed that mj+ > 0,
but we need not consider separately the other, symmetrical possibility. Namely,
conditions (A) and (A’), (C) and (C’) are already symmetrical, and option (B)
translated to the negative direction is just (B’), and vice versa.

Now we change w → wa in (4.23), obtaining

ww =

c
aa

(w − h/a)

w − 1
.

Denote λ := h/a and η := c/(aa). By simple manipulation, we can rewrite (A) as

η ≡ 1, (B) as ηλ = λη, (C) as ηη = λη, (A’) as ηλ = λλ, (B’) as ηλ = ηλ, and (C’)

as λληη = λ
[3]

λ[3]η.

Combining (A) and (A’) yields for λ the equation λλ = λ. This is option (1) for
equation (3.7c). If (B’) holds together with (A), we find that λ is period-1 (this
case falls into either of the options (1) and (2)), while the combination of (A) and
(C’) results in

λ
[3]

λ[3] = λλ,

the other possibility in option (1).
An equation that satisfies (B) and (A’) satisfies (A) and (B’) after the change

w → 1/y, and thus needs no separate consideration. Combining (B) and (B’) gives

for λ the relation λλ = λλ, which can be further combined with (B) to obtain

ηη = ηη
[3]

and thus option (2). An equation satisfying (B) and (C’) can be changed

into one satisfying (C) and (B’) by w → 1/y.
The combination of (C) and (A’) gives the same result as (A) and (C’) above

after the change w → 1/y. When (C) and (B’) are both true, we find after a trivial
manipulation option (3). Finally, (C) and (C’) give option (4).

We still need to see what happens if either a ≡ 0 or h ≡ 0, because these facts
affect the results of the iteration and the consideration of y. First, let a ≡ 0. We
may assume that mj+ is positive. If mj− 6= 0, it suffices to iterate the equation to
the positive direction. Namely, we obtain an infinite sequence of poles and zeros
the orders of which appear periodically, and comparing these orders we obtain a
contradiction by Lemma 3.11. Observe that this iteration is done separately when
mj+ > kj and when mj+ < kj.

If, however, zj − 1 is a zero of w − h, it is possible to avoid the contradiction.
Namely, let w(zj − 1) = h(zj − 1)+0nj , nj < kj, and w(zj − 3) = h(zj − 3)+0Nj . If
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these orders are large enough ⋗S(r, w), we do not get a contradiction from Lemma
3.11. Since now w(zj − 3) = c(zj − 2)/h(zj − 1), this would mean that c = hh. Now
transforming w → h/w we find the equation

(4.24) ww =
−1

w − 1
,

which is a degenerate special case of (3.7a), option (2).
Suppose then that h ≡ 0. This reasoning is very similar to the foregoing, so we

will skip most of the details. Iteration with mj+ > 0 gives an sequence where w
takes the consecutive values

a(zj),∞, ϕ, 0, 0, ϕ,∞, ϕ, 0, 0, . . . ,

where ϕ denotes a nonzero finite value (possibly different at every occurence) or a
zero or pole with an insignificant order compared to mj+, and the zeros and poles
all have the same order mj+ modulo a small effect from the coefficients. Now there
are two ways to escape a contradiction: first, if w(zj + 2) = a(zj + 2), ⋗S(r, w),
which again means that c = aa, then making the transformation w → wa we find
the equation

ww =
w

w − 1
,

which is included in options (1) and (2) for (3.7c). The second possibility is that
w(zj +7) = a(zj +7), ⋗S(r, w), in which case the sequence is (a,∞, ϕ, 0, 0, ϕ,∞, a).
By the result of the iteration for w(zj + 7) this means

ac[3]ac = ca[4]ca
[3],

which implies that η = c/(aa) satisfies ηη
[3]

= ηη. This is included in option (2) for

equation (3.7c).

Case p = 0. If a ≡ 0, we have just equation (3.7d). If not, we can change w
into y = 1/w, which gives us a form where p = q = 1 and the coefficient in the
denominator is identically zero:

yy =
−a

c
(y − 1/a)

y
.

Equations of this form were considered above, and equation (4.24) was found.

Case p = 2. If no root is identically zero, we find that w(zj +3) is finite. If it is not
equal to a(zj + 3), continuing the iteration gives a sequence of the form

0mj+ , ϕ,∞mj+ ,∞mj+ , ϕ, 0mj+ , ϕ,∞mj+ , . . . ,

from which a contradiction follows by Lemma 3.11 (again, the orders of the poles
and zeros are given only modulo the small error). In fact, the stronger Lemma 3.12
also applies, since degw R = 2, but the result is the same. By the form of the second
iterate w(zj + 3) we then have

(4.25) aa = cc.
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From this point on we must follow three separate routes. Recall that when we were
considering the case of vanishing coefficients in equation (4.1a), we found, after the
change to y = 1/w, equation (4.18), and promised to deal with it later. Now, if
we are working with (4.18), then we have the results in Table 1 on page 27 at our
disposal, as well. Equation (4.25) translates into the notation of (4.18) as

1

h2h2

=
a1a2a1a2

ch2ch2

.

Combining this with case (i) in Table 1 lets us write

ννλλ = λλ

for λ := h2/a1 and νν = 1, ν 6≡ 1 (recall that ν, obtained in Subsection 4.2.1, is
such that a2 = νa1). Then doing the transformation w → a1w in the original (4.1a)
with h1 = 0 results in

ww =
w2 − λw

(w − 1)(w − ν)
.

This is contained in option (1) for equation (3.7a) with µ ≡ 0.
If (ii) is true, instead, we get

(4.26) λλ = λλ,

and the transformation w → a1w gives

ww =
ηw2 − λw

(w − 1)(w − ν)
.

Here η is period-2 and η = ν, so this result is contained in option (2) for equation
(3.7a).

Finally, if a1 = a2, we find similarly the equation

ww =
w2 − λw

(w − 1)2 ,

where λ satisfies (4.26). This closes the consideration of equation (4.18).
When considering equation (4.20) similarly with a vanishing coefficient, we found

equation (4.22). In this case (4.25) translates into

1

h1h1

=
1

ch1ch1

,

which implies that the function h1h1/ch
2
1 satisfies (3.13). Changing w → h1/w in

the first equation in (4.20) with h2 ≡ 0 results in a special case of equation (3.7b)
with λ ≡ 0.

Now, having dealt with equations (4.18) and (4.22), we look at the case which is
of the form p = 2, q = 1 to begin with. In it, we have not yet changed w into 1/y,
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and we will do that now, obtaining

yy =
− a

ch1h2
y(y − 1/a)

(y − 1/h1)(y − 1/h2)
.

The reasoning in Section 4.2 can now be applied to this equation in order to gain
information on 1/h1, 1/h2. Suppose h1 6= h2. Either y (and thus w) satisfies a
Riccati difference equation, or one of the following holds (compare to Table 1):

(i) − a

νch2
1

=
1

h1h1

, νν = 1, ν 6≡ 1

(ii) − a

ch1h2

=
1

h1h2

=
1

h2h1

.

Combining (i) with (4.25) one can deduce that the relation νλλ = νλλ, where
λ = h1/a, holds. Thus changing y → y/h1, we have the equation

yy =
y2 − λy

(y − 1)(y − ν)
,

which falls into option (1) for equation (3.7a) with µ ≡ 0. Similarly, combining (ii)
with (4.25), we find the equation

yy =
νy2 − λy

(y − 1)(y − ν)
,

where ν = ν, ν 6≡ 1, and λ satisfies (4.26). This is option (2) for equation (3.7a)
with µ ≡ 0. The case h1 = h2 yields the same equation with ν ≡ 1.

If a ≡ 0, the change to y = 1/w gives an equation of the form (4.1b), which has
been treated in Section 4.2, and was seen to lead either to w satisfying a Riccati
difference equation or to a contradiction.

Now, consider the case that h2 ≡ 0 (the case h1 ≡ 0 is obviously identical), and
denote for simplicity h = h1. The iteration now yields an infinite sequence of the
form

0mj+ , ϕ,∞mj+ ,∞mj+ , ϕ, 0mj+ , 0mj+ , ϕ,∞mj+ , . . . ,

and from this we obtain a contradiction as before unless w(zj + 3) = a(zj + 3),
⋗S(r, w). Changing w to 1/y gives an equation of the same form, only with different
coefficients, and so repeating the same reasoning for it we find the conditions

aa = cc,
1

hh
=

aa

cchh
.

Combining these gives us (4.26) for λ := h/a. From the first equation we get that
η := ca/(aa) satisfies ηη = 1. If we replace λ with λη, it still satisfies (4.26). Making
the transformation w → wa, we have equation (3.7b).

The case when both h1, h2 are identically zero is simpler. Similarly as above, we
see that more than S(r, w) sequences must be of the form

(ϕ, a + 0mj− ,∞mj− ,∞mj− , a + 0kj ,∞mj+ ,∞mj+ , a + 0mj+ , ϕ),
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which implies again that η, defined as above, solves ηη = 1. The transformation
w → wa gives

ww =
ηw2

w − 1
,

a special case of (3.7b).

We have now treated all the possible degrees of P and Q in equation (3.5) with all
the possible subcases, and so the proof of Theorem 3.4 is completed.

5. The Family of Difference Painlevé V

Throughout this chapter we assume that w is an admissible meromorphic solution
of equation (3.8), and ρ2(w) < 1. The treatment here is very similar to the proof of
Theorem 3.4. Because of this, we will not repeat many of the identical reasonings
explicitly. It is recommended that the reader is familiar with Chapter 4 before
continuing.

5.1. Preliminaries. We will first restrict the degrees p and q of the polynomials
in (3.8). This reasoning is essentially due to Grammaticos, Tamizhmani, Ramani,
and Tamizhmani in [11], who considered equations with constant coefficients.

When the coefficients are nonconstant, Lemma 3.13 needs to be applied similarly
as in the previous chapter. Given ǫ > 0, there are at most S(r, w) points zj where
Q(zj, w) = 0kj , but where L(w) has a pole of order greater than (1 + ǫ)kj or less
than (1 − ǫ)kj due to poles or zeros of P (zj, w). The combined effect of all such
points can be included in the error term, and so we only consider the rest of the
zeros of Q(z, w) in all what follows.

Equation (3.8) can be written as

(5.1) ww − w/w − w/w =
P (z, w) − Q(z, w)

w2Q(z, w)
=: K(z, w).

Applying the fact that T (r, w) ≤ (1 + ǫ)T (r + 1, w) + S(r, w) [1, Lemma 1], and
Theorems 3.10 and 3.9 with f = w, h = 1/w and g = w gives

(degw K)T (r, w) ≤ T (r, w) + T

(

r,
1

w

)

+ T (r, w) + S(r, w)

≤ (3 + 2ε)T (r, w) + S(r, w),

so that degw K ≤ 3. It might happen that P − Q has w as a factor, although P
and Q share no factors by assumption. Obviously q < 4 in any case. If q ≤ 2 and
P − Q = wT , where T is at most cubic, then p ≤ 4.

We show that q = 3 is impossible. First, observe that w does not divide Q, since
otherwise w would also divide P = Q + w2S, where S is at most quadratic, but P
and Q have no common factors. Thus, when w = 0, Q can have a zero only due
to the coefficients, and there are at most S(r, w) such zeros. The right hand side of
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(5.1), S/Q, has poles essentially only in the zeros of Q (again, the coefficients might
give a small amount of additional poles). This implies that

N

(

r,
S

Q

)

≤ N(r, ww) + S(r, w).

By Theorem 3.5 and (5.1),

m

(

r,
S

Q

)

= m(r, ww) + S(r, w),

and so T (r, S/Q) ≤ T (r, ww) + S(r, w). Thus we have

3T (r, w) = T

(

r,
S

Q

)

+ S(r, w) ≤ T (r, ww) + S(r, w)

≤ T (r, w) + T (r, w) + S(r, w) ≤ 2(1 + ǫ)T (r, w) + S(r, w),

a contradiction. To summarise, we have the limitations

q ≤ 2, p ≤ 4,

and if p = 4 or q = 2, then Q and P must have the same zero-order term.
Next, we prove an analogue of Lemma 4.1:

Lemma 5.1. Whenever q ≥ 1 in (3.8), m(r, w) = S(r, w).

Proof. Suppose w is transcendental. We can rearrange (3.8) into

wq−1L(w)
︸ ︷︷ ︸

=:H(z,w)

w = Ψ(z, w),

where Ψ is a difference polynomial in w of degree at most 4 + (q − 1). Applying
now Theorem 3.8 implies that m(r, w) = S(r, w).

Next, suppose w is rational, which implies that the coefficients in R are constants.
Denote d := deg w, and let N be the number of poles of w. We aim to prove that
N = d. The degree of L(w) is max{p, q} · d.

Suppose p < q. Then the number of zeros of L(w) is dq by its degree and
pd + (q − p)N by the form of the right hand side, which implies that N = d.

Next, let p = q. Then L(w) has the same amount of zeros and poles, dq, and thus
the same must be true for w, i.e. N = d.

Finally, if p > q, L(w) has degree pd, and exactly dq + (p − q)N poles. Suppose
that k terms are cancelled when we write out the factored rational expression for
L(w), so that the number of poles is 4N −k. Then 4d−k = dp so that k = d(4−p).
The number of poles is 4N−k = dq+(p−q)N , which again implies that N = d. ¤

Lemma 5.2. Suppose that q = 2 or p > 2. Then P and Q in (3.8) have the same
zero-order term.

Proof. We already know this fact when p = 4 or q = 2, so suppose that p = 3
and q < 2. If w ≡ 0 is a solution to (3.8), then either we will directly obtain the
desired result by substitution (if none of the roots vanishes identically), or find a
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contradiction (if zero is a root). If w ≡ 0 is not a solution, then we can again use
the modified version of [14, Corollary 3.4] as in the proof of Lemma 4.2 to conclude
that m(r, 1/w) = S(r, w), which means that w has a large number of zeros.

Consider points zj such that w(zj) = 0kj , and w(zj ± 1) = ∞mj± . If there are
more than S(r, w) points zj such that mj± < Ckj for both choices of ± and some
C < 1, we again find either a contradiction or the desired result. Hence we suppose
that mj+, say, is at least (1 − ǫ)kj for all except at most S(r, w) points.

When q = 0, both w(zj + 2) and w(zj + 3) are infinite with orders roughly 2mj+

and mj+, respectively. When q = 1, w takes at zj, zj + 1, . . . the consecutive values

0,∞,∞, 0,∞, . . . ,

and all these poles and zeros have roughly the same order. Hence we have that

N

(

r,
1

w

)

≤ 1

2
N(r + 2, w) + S(r, w),

which gives a contradiction by Theorem 3.10, since m(r, 1/w) = S(r, w). These
contradictions prove the claim. ¤

Corollary 5.3. Suppose q = 2 or p > 2. Then none of the roots of P or Q in (3.8)
vanish identically.

Proof. By Lemma 5.2, if one root of P is zero, one root of Q must also be zero, and
vice versa, contradicting the fact that P and Q have no common factors. ¤

We will not refer to Corollary 5.3 explicitly, but simply do not consider the cases
of vanishing coefficients whenever q = 2 or p > 2. In fact, we will shortly see that
q = 2 implies p = 4, so that the condition “q = 2 or p > 2” can be simplified into
p > 2.

The case of p = q = 0 has just a small function in the place of R(z, w), and
we will not consider it further. In the other cases we will factor P in (3.8) into
c(w−h1) · · · (w−hp), where hn are algebroid functions, and Q into (w−a1)(w−a2)
or w − a when q = 2 or q = 1, respectively.

We are not proving a pre-formulated theorem like we were in Chapter 4, but our
aim is similar: to find restrictions on the coefficients in R(z, w). In the following two
sections, we derive such restrictions, and all of our findings are then summarised in
Section 5.4. Even though we do not state a definite theorem, all possible subcases
are handled below, and in that sense the results given in Section 5.4 are just as
complete as those in Theorem 3.4.

5.2. Points where Q vanishes.

Equations with q = 2. We can prove, exactly as in Lemma 4.2, that w − am has a
large number of zeros in the sense that

N

(

r,
1

w − am

)

= T (r, w) + S(r, w).



MEROMORPHIC SOLUTIONS OF DIFFERENCE PAINLEVÉ EQUATIONS 41

First, let p < 4. We show that this case gives a contradiction. Assume a1 6= a2,
and consider the points zj where w(zj) = am(zj) + 0kj . Discarding at most S(r, w)
of these points if necessary, we can say that either or both of w(zj +1) and w(zj −1)
are infinite, and the sum of the orders of these poles is equal to the order kj modulo
a small error term. By (3.8), the next value of w following a pole at zj ± 2 will be
a zero, regardless of the value of p < 4. Thus, all except at most S(r, w) zeros of
w − am are contained in sequences of one of the three forms

(0,∞mj− , am + 0kj ,∞mj+ , 0),

(ϕ, am + 0kj ,∞kj , 0),

(0,∞kj , am + 0kj , ϕ),

where we do not care about the orders of the zeros and have only given the other
orders modulo the possible small error. Because this holds separately for both a1

and a2, and because N(r, 1/(w − am)) = T (r, w) + S(r, w) for both choices of m,
we have arrived to a situation where N(r + 1, w) ≥ 2T (r, w) + S(r, w), which is
obviously a contradiction. This reasoning easily extends to the case that a1 = a2,
as well (then the above sequences will contain roughly twice more poles compared
to the zeros of w − a1).

Hence we must have p = 4, so that degw R = 4. Recall the definition of a
sequence L(zj, w) from Section 4.2. We suppose that, ⋗S(r, w) zj, the sequence
L(zj, w) contains only one zero of w − am. Let this zero be of order kj. Then the
pole of L(w) at zj is of order mj, where mj > (1− ǫ)kj. Hence, there are more than
S(r, w) sequences L(zj, w) such that

N

(

r,
1

Q(z, w)

)

≤ βN(r + 1, w),

where β < 2 (compare to the reasoning in Section 4.2). Since p > q, R(z, w) has
poles both when Q(z, w) = 0 and when w itself has a pole. We have, in fact,

(5.2) N(r, R) = N(r, L(w)) = 2N(r, w) + N

(

r,
1

Q(z, w)

)

+ S(r, w).

Now Lemma 3.12 yields a contradiction. Thus, there must be at least two zeros of
w−am in all except at most S(r, w) sequences L(zj, w). Again, one of the possibilities
(i)–(iv) on page 25 is valid. This reasoning can be repeated with slight modifications
also in the case that a1 = a2, and then condition (i) is the only possibility.

The equation we are considering is now

(5.3) (ww − 1)(ww − 1) =
c(w − h1)(w − h2)(w − h3)(w − h4)

(w − a1)(w − a2)
.

We can show, very much like in Section 4.2, that w satisfies a Riccati equation in
the cases (iii) and (iv). The only difference is in showing that w has at most S(r, w)
poles outside of the sequences L(zj, w). Suppose, on the contrary, that the integrated
counting function counting only such poles is N∗(r, w) ≥ CT (r, w) for some C > 0 in
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a set of infinite logarithmic measure. By equation (5.3), N∗(r, L(w)) = 2N∗(r, w)+
S(r, w). By Theorem 3.6,

4T (r, w) = (N(r, L(w)) − N∗(r, L(w)) + N∗(r, L(w)) + S(r, w)

≤ 4(N(r + 1, w) − N∗(r + 1, w)) + 2N∗(r + 1, w) + S(r, w)

≤ (4 − 2C)T (r + 1, w) + S(r, w),

which implies that ρ2(w) ≥ 1 by Theorem 3.10. Hence w has only a small amount
of poles outside of the sequences L(zj, w). Now that this has been shown, we can
proceed exactly as on page 25, except that to finally get to the contradiction, we
must also use (5.2). By that reasoning, we conclude that whenever (iii) or (iv) is
true, w satisfies a Riccati difference equation (4.7).

Observe that the above reasoning about the poles of w is not dependent on (iii)
or (iv) being true, but only on the equation being of form (5.3). This means that
in any case w has at most S(r, w) poles that are not in sequences L(zj, w). This is
an important fact in the below treatment of another kind of singularities. Before
going into that, we briefly look at what happens in cases (i) and (ii).

Suppose that (i) holds and a1 6= a2. Then (4.4) holds ⋗S(r, w), and starting from
the assumption that w(zj) = a1(zj), we get by (5.3) that

w(zj + 2) = a1(zj + 2) =
c(zj + 1)

a1(zj)
, ⋗S(r, w).

This implies that c = a1a1. Similarly, by starting from w(zj) = a2(zj), we get
that c = a2a2. Compare this to the treatment of cases (i) and (ii) on page 25.
Although the considered equation is more complicated, we obtain the same results
as for equation (4.1a) in Section 4.2: in case (ii) we get

c = a1a2 = a2a1.

This result is obtained as above, using (5.3) together with the condition (ii). In the
case that a1 = a2 =: a we find c = aa.

Equations with q = 1. Now we write Q(z, w) = w − a. Suppose that w(zj) =
a(zj) + 0kj and w(zj + 1) = ∞mj . (Observe that the equation is symmetrical so
that iterating in the other direction gives eventually the same results; only with
shifts up changed to shifts down and vice versa.) We may suppose that mj/kj is
bounded from below by a positive constant. In what follows, we compute a few
of the following iterates for different values of p. Some of the more complicated
computations were performed by the aid of computer, and the details are largely
omitted.

Let first p = 4. Then,

N(r, L(w)) = 3N(r, w) + N

(

r,
1

Q(z, w)

)

+ S(r, w).
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Now w(zj + 2) is infinite, while

w(zj + 3) =
c(zj + 2)c(zj + 1)

a(zj)
.

Following the same reasoning as in Chapter 4, by Lemma 3.11 we must restrict this
to be equal to a(zj +3) or otherwise w will have hyper-order at least one. Since this
must hold ⋗S(r, w), we find

aa = cc.

Next, consider p = 3. Now, w(zj + 2) = c(zj + 1)/a(zj), and w(zj + 3) =
a(zj)/c(zj + 1), provided that w(zj + 2) 6= a(zj + 2), and w(zj + 4) will again be
infinite, provided that w(zj + 3) 6= hn(zj + 3), for any n = 1, 2, 3. Suppose that
there are more than S(r, w) sequences of this type. Then, comparing the orders of
the points (all of them are of order mj modulo a small error), we see that Lemma
3.11 will yield a contradiction.

There are two possibilities to avoid the contradiction: first, that more than S(r, w)
sequences are of the form (a(zj),∞, a(zj + 2), ϕ) for some finite value ϕ, which
implies that c = aa, and second, that we have a large number of sequences of the
form (a(zj),∞, ϕ, hn(zj+3)). This second possibility in fact leads to a contradiction,
as will be seen later.

In the case that p < 2 we get a sequence of alternating zeros and poles for
w(zj + 2), w(zj + 3), . . . , leading to a contradiction via Theorem 3.10 similarly as
on several occasions before. This happens also if one of the coefficients a and h1

vanishes identically. Hence the cases that q = 1 and p < 2 can be ignored.
Finally, let p = 2, and suppose that the coefficients do not vanish identically.

Again, w(zj + 2) = 0, and w(zj + 3) will be infinite unless

c(zj + 2)h1(zj + 2)h2(zj + 2)a(zj) − a(zj + 2)c(zj + 1)

vanishes. The next iterate is

w(zj + 4) = − c(zj + 1)a(zj + 2)c(zj + 3)

a(zj)c(zj + 2)h1(zj + 2)h2(zj + 2)
.

We get a contradiction via Lemma 3.11 unless either

ch1h2a = ac,

or zj + 4 is another zero of w − a, i.e.

−cac = ach1h2a.

In the case that some of the coefficients a, h1 and h2 vanish identically, the pole at
zj + 3 cannot be avoided and we always end up in a contradiction.
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5.3. Points where ww − 1 vanishes. Assume p > 0. We aim to prove that for
each n = 1, . . . , p,

(5.4) hnhk = 1, or hnhk = 1.

for some k = 1, . . . , p (it is also possible that n = k). Following the same reasoning
as in the proof of Lemma 4.2, we see that

N

(

r,
1

w − hn

)

= T (r, w) + S(r, w),

as long as hn is not a solution of (3.8), i.e. if hn does not satisfy hnhn = 1. Thus, we
may assume that there is a large number of zeros of w − hn; otherwise (5.4) holds
as desired.

Consider now the points zj where w(zj) = hn(zj). From equation (3.8) we see
that

w(zj)w(zj ± 1) = 1,

for all except at most S(r, w) points zj and for either or both choices of ±. In
principle, zj ± 2 can be poles of w. To avoid this kind of a pole we must have
w(zj ± 1) = 1/hn(zj) = hk(zj ± 1) for some k = 1, . . . , p. If this holds ⋗S(r, w) we
have exactly (5.4).

It turns out that there are some cases where (5.4) does not hold for one value of
n. These exceptions occur when q = 0 and when q = 1, p = 3. In all the other
cases, however, we will prove that (5.4) holds for all n.

In what follows, we fix n = 1, . . . , p, and suppose that (5.4) is not satisfied. This
means that, as w(zj) = hn(zj), we have w(zj ± 1) = 1/hn(zj), and w(zj ± 2) = ∞
for either or both choices of the ± sign, for all except at most S(r, w) such points
zj. Then all except at most S(r, w) zeros of w − hn are in these kind of sequences.
This means, in particular, that all except at most S(r, w) poles of w are in these
sequences, as well, since there are roughly the same amount of poles of w and zeros
of w − hn in these sequences, and both N(r, w) and N(r, 1/(w − hn)) are equal to
T (r, w) + S(r, w).

We make a few more general observations before looking at individual cases. It is
impossible to have a triple or quadruple factor w−hn in P . That would imply that
the right hand side of (3.8) has a zero of order (roughly) 3kj or 4kj, respectively,
at a point where w(zj) = hn(zj) + 0kj , but the left hand side cannot have a zero of
this high order. If hn appears twice in P , it is possible to have w(zj) = hn(zj) + 0kj

and essentially w(zj ± 1) = 1/hn(zj) + 0kj for both choices of ±, but this is the only
possibility.

Secondly, observe that a sequence where w takes the values (∞, hn(zj), 1/hn(zj))
cannot occur for more than at most S(r, w) points; this follows from (3.8) by con-
sidering the orders of the points.

Lastly, we often find that w(zj±1) = 1/hn(zj) would have to be equal to am(zj±1),
m = 1, 2, ⋗S(r, w), i.e. that hnam = 1 or hnam = 1. This however, is not possible if
we still assume w(zj ± 2) to be a pole, as can be seen from equation (3.8). Namely
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then we have, for example in the case that q = 1, p = 2,

(w(zj + 2)w(zj + 1) − 1)(w(zj)w(zj + 1) − 1)

=
c(zj + 1)(w(zj + 1) − hk(zj + 1))(w(zj + 1) − hn(zj + 1))

w(zj + 1) − a(zj + 1)
.

Here the left hand side is finite or a pole with a small order, since w(zj +2) = ∞ and
w(zj) = 1/w(zj + 1), both with roughly the same order. The right hand side,
however, has a pole, since w(zj + 1) = 1/hn(zj) = a(zj + 1), but because P and
Q have no common factors the numerator cannot be zero (with a significant order).
This contradiction can be obtained exactly in the same way for other values of q and
p (here we just took the smallest values for notational simplicity).

Case q = 2. We may assume that condition (i) or (ii) is true (if not, w satisfies a
Riccati difference equation).

Most poles of w must be contained in some sequence L(zj, w) containing at least
two distinct zeros of w − am. Because w(zj + 1) = 1/hn(zj) cannot be equal to
am(zj + 1) for many points, the next iterate after the pole at zj + 2 must be a zero
of w − am. Using (3.8), we get that w(zj + 3) = c(zj + 2)hn(zj). Restricting this
to be equal to am(zj + 3), ⋗S(r, w), we get ch

n
= am, and combining this with the

representation for c from (i) or (ii) gives hnam = 1, which is impossible.

Case q = 1. First, let p = 4. Computing the values of w at zj ± 2, 3, 4, we find
generally a sequence of the form

hn(zj) + 0kj , 1/hn(zj) + 0mj ,∞mj ,∞mj , ϕ,

where ϕ is some finite value or a zero or pole with an insignificant order, and the
orders are given only modulo a small error (if there is no zero of w− 1/hn at zj − 1,
or if hn appears twice in P , the orders mj and kj are roughly equal, while otherwise
mj < kj, but we get another similar sequence when iterating in the other direction).
By our assumption, all except at most S(r, w) zeros of w − hn are in these kind
of sequences. This means that most poles of w are present here, as well, but we
saw in the previous section that there are more than S(r, w) sequences of the form
(a(zj),∞,∞, a(zj + 3)), and this is again a contradiction, as it would imply that
hna = 1 or hna = 1.

Next, suppose p = 3. Now w takes at zj + 0, 1, 2, 3 the values

(5.5) hn(zj) + 0kj , 1/hn(zj) + 0mj ,∞mj , ϕ,

where ϕ = w(zj + 3) = c(zj + 2)hn(zj). By our assumption, all except at most
S(r, w) zeros of w − hn are in these kind of sequences, implying that in fact all
except at most S(r, w) poles of w are in these sequences, as well. We saw earlier,
when considering the zeros of Q, that more than S(r, w) poles must appear in
sequences of the form (a(zj),∞, a(zj + 2), ϕ) or (a(zj),∞, ϕ, hn(zj + 3)). Thus for
all except at most S(r, w) sequences, either of these possibilities must coincide with
the sequences (5.5).
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The first possibility implies that 1/hn = a, which is impossible. In the second
case we have either the same impossible result or c = ah

n
. This is the exception we

must allow to (5.4) in the case q = 1, p = 3.
Since p < 2 is impossible as seen earlier, the only case left is p = 2. It was also

observed earlier that the coefficients cannot vanish identically in this case. We know
that there are more than S(r, w) sequences of the form (a,∞, 0), and iterating the
equation with the current assumptions gives a sequence of the form (hn, 1/hn,∞, 0).
By assumption, the latter sequences contain all except at most S(r, w) poles of w.
To avoid a contradiction, these sequences must coincide so that hna = 1, which is
impossible.

Case q = 0. We have not shown that w would have (a large number of) poles when
q = 0, but if it does not, then clearly (5.4) must be true.

If p = 4, iteration gives a pole at every following point zj + 2, 3, . . ., which is
clearly a contradiction. The reasoning is not essentially changed if we suppose that
hn is a double factor in P .

Let then p = 3 and h1 6= h2 6= h3 6= h1. Then w takes at zj + 0, 1, 2, 3, 4, 5 the
values

hn(zj),
1

hn(zj)
,∞,∞, ϕ,

1

ϕ
,

where ϕ = c(zj + 3)c(zj + 2)hn(zj). To avoid a contradiction by Theorem 3.10, we

must restrict ϕ to be 1/hn(zj + 3), and thus cch
n
h

[3]

n = 1. This is an alternative for

(5.4). In the case that h1 = h2, say, a similar sequence is impossible, and we only
get a contradiction, since

N

(

r,
1

w − hn

)

≤ 2N(r + 3, w) + S(r, w).

When p = 2 and h1 6= h2, we find w(zj + 3) = c(zj + 2)hn(zj) and w(zj + 4) =
1/w(zj + 3). A contradiction can be avoided if the poles of w appear in a sequence
of the form

hn(zj),
1

hn(zj)
,∞,

1

hk(zj + 3)
, hk(zj + 3),

where k 6= n. This implies that hnchk
≡ 1. If h1 = h2, this kind of exception is not

possible.
In the case p = 1 we find that w(zj +3) = 0 and w(zj +4) = ∞, unless ch = ch. If

this condition is not satisfied, there seems to be another possibility as well, namely
that most poles would be in sequences of the form

(5.6) h(zj),
1

h(zj)
,∞, 0,∞,

1

h(zj + 6)
, h(zj + 6),

where all the points have roughly the same order. This would mean (computing

from the equation again), that h
[3]

h[3]cc = −ch. Now we can reason again similarly
as in the proof of Lemma 5.2. If w ≡ 0 is a solution, then −ch ≡ 1, while if w ≡ 0 is
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not a solution, then m(r, 1/w) = S(r, w), which means that there are more than
S(r, w) zeros of w somewhere outside of the sequences (5.6). Moreover, more than
S(r, w) of these zeros cannot be surrounded by poles of w, because all except at
most S(r, w) poles are already accounted for in the sequences (5.6). Hence, in any
case, −ch ≡ 1.

Summary and consequences of equation (5.4). Denote an arbitrary period-k function
by pk. We know that each coefficient hn of P satisfies hnhk = 1 or hnhk = 1 for
some k, unless some of the exceptional cases (when q = 0 or q = 1, p = 3) are valid.
If a function hn satisfies hnhn = 1, then hn is a solution of (3.13). If two functions
satisfy h1h2 = h2h1 = 1, we have that h1 = p2 and h2 = 1/p

2
. A “cycle” of three

functions, i.e. h1h2 = 1, h2h3 = 1, and h3h1 = 1, implies that h1 satisfies h1h
[3]

1 = 1,
and h2 = h

1
, h3 = 1/h1. Finally, a “cycle” of four functions implies that all the

functions hn are period-4 and can be written as p4, 1/p4, p4, and 1/p
[3]
4 .

In addition to the mentioned “cycles”, there are possibilities that cannot be di-
rectly solved any further. One is that we have h1h2 = 1, but not h2h1 = 1. This
gives h1 = 1/h2, but h2 remains arbitrary. Another possibility arises when p = 4,
two functions hn are equal, say h1 = h2, and we have just h1h3 = 1, h1h4 = 1, which
again leaves one arbitrary function. Observe that the exceptions allowed when q = 0
or q = 1, p = 3 are impossible for double factors.

Suppose that none of the exceptions of case q = 0 is valid. Then, combining the
above results gives essentially six different possibilities with p = 4:

4a: Each hn is a solution of (3.13).
4b: h1, h2 are solutions of (3.13), and h4 = 1/h3 with h3 arbitrary.
4c: The functions are h1, 1/h1, h3, and 1/h3, with h1, h3 arbitrary.

4d: h1 solves (3.13), while h2 solves ff
[3]

= 1, h3 = h
2
, and h4 = 1/h2.

4e: The functions are p4, 1/p4, p4, and 1/p
[3]
4 .

4f: h1 = h2 is arbitrary, and h3 = 1/h1, h4 = 1/h1.

The requirement that no three functions hn can be equal is assumed in all of these
cases. One or two pairs of equal functions are possible in cases 4a–4c. As mentioned
above, in certain special cases instead of arbitrary functions we have period-2 func-
tions.

With p = 3 we get the following options (assuming the exceptions do not hold):

3a: Each hn is a solution of (3.13).
3b: h1 solves (3.13), while h3 = 1/h2 with h2 arbitrary.

3c: h1 solves ff
[3]

= 1, h2 = h
1
, and h3 = 1/h1.

When p = 1, 2 we have only three possibilities:

2a: Both h1 and h2 satisfy (3.13).
2b: h2 = 1/h1 with h1 arbitrary.
1a: The single function h must solve (3.13).
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5.4. Restriction of the coefficients. In this section we collect our findings for
the various cases. We have shown that, assuming w to have hyper-order less than
one, equation (3.8) simplifies into

(ww − 1)(ww − 1) =
c
∏p

n=1(w − hn)
∏q

m=1(w − am)
, p ≤ 4, q ≤ 2,

where c ∈ S(w), and the functions hn, am are small, in general algebroid, functions.
We shall denote

H :=

p
∏

n=1

hn,

and drop the subscripts from a and h when q = 1 and p = 1, respectively, like we
have done above.

Solving the coefficients from the relations we have found turns out to be somewhat
easier if we assume that HH = 1, which is true whenever all of the functions hn sat-
isfy one of the conditions 4a–1a in the previous section without exceptions, and the
arbitrary functions appearing in these conditions are period-2. The outcomes with
arbitrary coefficients are HH = h1/h1 (from 4b, 3b, or 2b), or HH = h1h2/(h1h2)

(from 4c), or HH = h1h1/(h1h1) (from 4f).
We will also see what happens when all the hn are required to be period-1, which

corresponds to them being constants in the completely discrete setting. With p =
2, 4 this implies that H ≡ ±1. When p = 3 we have also H ≡ ±1, except in the
exceptional case when q = 1, in which H = h1 is period-1. When p = 1 we just
have h ≡ ±1. Observe that the case H ≡ −1 when p > 1 is possible only if two of
the coefficients hj are constants 1 and −1.

The value pairs of p and q in the following subtitles are the only possible ones.
The first paragraph after each subtitle gives all the constraints we have found on
the coefficients when assuming nothing extra. We only give these constraints in the
form obtained when iterating the equation in the positive direction; symmetrical
alternatives, where each positive shift is changed into a negative shift of the same
magnitude and vice versa, are also possible.

After the first paragraph, we give some example solutions for the coefficients. In
our examples, pk and qk are period-k functions, λ ∈ C, and uk is a kth root of unity.
For a more general discussion on solving some of the equations, see Section 3.3.1.

Case p = 4, q = 2. Either w satisfies a Riccati difference equation, or one of the
following is true:

c = a1a1,

c = a1a2 = a2a1,

a1 = a2 =: a, c = aa.

The functions hn satisfy one of 4a–4e. Moreover, by Lemma 5.2, cH = a1a2.
Suppose that HH = 1 is true. From the first of the above possibilities we get

a1a1 = a1a1. If c = a1a2 = a2a1, using either of these representations for c suitably,
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we find that both a1 and a2 satisfy the same equation ff = ff . In the last case we

have c = aa and cH = a2, and we get again this same equation for a.
If all the functions hn are period-1 so that H ≡ ±1, our reasoning simplifies

remarkably. In the case that a1 = −a2 we find the equation a1a1 = ∓a2
1 If we

choose H = +1, we eventually get a contradiction by Lemma 5.2. Hence, we can
take for instance a1 = λzp1u

z2

2 , and c = λ2zp2
1.

In the second case, when c = a1a2 = a2a1, we have for c the equation cc = c2,
so that we can take for instance c = g1λ

2z, and then the possible combinations for
a1 and a2 are a1 = fλz, a2 = hλz, where (f, h) is is either (p2, p2) or (p1, q1). By
Lemma 5.2, only H = +1 comes into question here.

When a1 = a2 =: a, we get for a the same solutions as above (a satisfies aa = ±a2),
and this gives also for c the same two possible solutions. Lemma 5.2 will again
remove one of the two possible equations.

To summarise, we have found the difference Painlevé V equation (3.20a), equation
(3.20b), and also the variants

(ww − 1)(ww − 1) =
p2p2λ

2z(w − p1)(w − 1/p1)(w − q1)(w − 1/q1)

(w − p2λz)(w − p2λ
z)

,

(ww − 1)(ww − 1) =
λ2zp2

1(w − p1)(w − 1/p1)(w − q1)(w − 1/q1)

(w − p1λzuz2

2 )
2 .

We stress that these are only a few examples from a large family of possible equa-
tions.

Case p = 4, q = 1. We have aa = cc, and hn satisfy one of 4a–4e, and cH = −a by
Lemma 5.2.

If HH = 1, we can combine these to find first that aa = cc, and further that a
satisfies aa = aa.

If the hn are period-1, so that H ≡ ±1, we have simply c = ∓a. The equation
for a is solved by a = p2λ

zuz2

4 for instance. The following are examples of equations
obtained in this case:

(ww − 1)(ww − 1) =
p2λ

zuz2

4 (w − p1)(w − 1/p1)(w − q1)(w − 1/q1)

w − p2λzuz2

4

,

(ww − 1)(ww − 1) =
p2λ

zuz2

4 (w − p1)(w − 1/p1)(w
2 − 1)

w − p2λzuz2

4

.

Case p = 3, q = 1. Either c = aa and the hn satisfy one of 3a–3c, or c = ah
3

and
h1, h2 satisfy one of 2a–2b. In both cases cH = −a must hold by Lemma 5.2.

Suppose that HH = 1 and the first of the above alternatives holds. Combining
the facts that cH = a, HH = 1, and c = aa, we get aa[3] = 1, which is solved by

a = p6/p
[3]
6 . For c this solution a gives

c =
p

6
p6

p
6
p6

,
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while the hn must satisfy H = a/aa.
Consider then the second alternative. By combining the known facts (assuming

now that h1h2h1h2 = 1) we get the equation h3h3h3
h3a = a. The general solution

of this is unknown, but it is solved for instance by a = p2, h3 = p4/p4.
Supposing that the hn are period-1 we have H ≡ ±1 or H = h3 in the alternative

case. In the first case we get aa = ±a = c. This equation has at least some
solutions (see section 3.3.1). The alternative case gives c2 = −aa, which has a
number of solutions (e.g. c ≡ i, a = p2/p2).

Case p = 2, q = 1. Either ch1h2a = ac or −cac = ach1h2a, and the hn satisfy one
of 2a–2b.

Assuming that HH = 1, we find from the first possible condition the equation
aac = aac. This is solved for instance by a = p2λ

z, c = q2λ
2z. These imply that

H =
1

H
= q2/q2.

Thus, depending on which of the two possibilities the functions hn satisfy, we find
either of the following two equations:

(ww − 1)(ww − 1) =
p2λ

2z(w − p2)(w − 1/p2)

w − q2λz
,

(ww − 1)(ww − 1) =
p2q2λ

2z(w − h1)(w − h2)

w − g2λz
.

In the latter, h1 and h2 both solve (3.13).
The other possible contraint, again assuming HH = 1 yields the equation aacc =

aa[3]aa. This is solved at least by a = c = p3λ
z, and we obtain more possible

equations resembling the above two.
Restricting the hn to be period-1 gives H ≡ ±1 so that ca = ±ac or ±cac = aca.

With H = +1, the first of these has at least the solution a = p2λ
z, c = p1λ

2z, which
gives

(ww − 1)(ww − 1) =
p1λ

2z(w − q1)(w − 1/q1)

w − p2λz
.

With H = −1 the first equation has at least the solution a = p2, c = p1e
iπz, and

then we have

(ww − 1)(ww − 1) =
p1e

iπz(w2 − 1)

w − p2

.

Case p = 4, q = 0. By Lemma 5.2, cH = 1. The hn satisfy one of 4a–4e.
If HH = 1 is true, we get cc = 1. If the hn are period-1, we have again H ≡ ±1,

so that c ≡ ±1. Hence, we find either of the following equations:

(ww − 1)(ww − 1) = (w − p1)(w − 1/p1)(w − q1)(w − 1/q1),

(ww − 1)(ww − 1) = −(w − p1)(w − 1/p1)(w
2 − 1).
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Case p = 3, q = 0. Now cH = −1 by Lemma 5.2. Either the hn satisfy one of

3a–3c, or one of them, say h3, satisfies cch
3
h

[3]

3 = 1 while the others satisfy 2a or 2b.
The above equation for c and h3 is solved at least by

c =
p2

p2

λz, h1 =
p10

p
[5]
10

λ−z,

and if HH = 1, we find cc = 1, so that λ = 1.
If the hn are assumed to be period-1 we have either H ≡ ±1, so that c ≡ ±1,

or cch2
3 = 1 and ch3 = −1, which combine into c = −1/h3. Hence we have the

following examples:

(ww − 1)(ww − 1) = ±(w ± 1)(w − 1/p1)(w − 1/p1),

(ww − 1)(ww − 1) = − 1

p1

(w − p1)(w − q1)(w − 1/q1).

Case p = 2, q = 0. Either the hn satisfy 2a or 2b, or the relation h1ch2
≡ 1 holds.

If the hn are period-1, this latter option implies ch1h2 ≡ 1, while in the first case
we find either of the following:

(ww − 1)(ww − 1) = c(w − p1)(w − 1/p1),

(ww − 1)(ww − 1) = c(w2 − 1).

Here we have not attempted to solve the coefficient c any further.

Case p = 1, q = 0. Now there are three possibilities: hh = 1, or ch = ch, or

h
[3]

h[3]cc = −ch ≡ 1.

The second one is solved at least by c = p1λ
z, h = p3λ

−z/3. In the third case the
right hand side of (3.8) becomes cw + 1, where c satisfies cc = c[3]c[3]. This is solved

for instance by c = p4λ
zuz2

16.
If h is period-1, the first possibility implies that h ≡ ±1, the second that c is

period-1, as well, and the third that c = −1/h. These put the right hand side of
(3.8) into c(w ± 1), p1(w − q1), or p1w + 1, respectively.

Case p = q = 0. This case is just

(5.7) (ww − 1)(ww − 1) = c.

6. Discussion

6.1. Summary and review of the results. We have shown that the existence of
just one admissible meromorphic solution of hyper-order less than one is a sufficient
condition to single out a relatively short list of difference equations from the large
family of equations (3.4), assuming that the solution does not satisfy a difference
Riccati equation. The lists of equations include the difference Painlevé equations III
and V, as well as a number of difference equations closely resembling them. Many
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of these additional equations are known to be of Painlevé type, and integrable at
least in the autonomous case.

We remark that the results we are able to rigorously prove are somewhat distinct
from the actual hypothesis. The hypothesis, originally presented in [1], is that suffi-
ciently many solutions of slow growth implies integrability, whether these solutions
are admissible or not. In our results, just one solution of slow growth is needed,
but it must be an admissible one.

The results as “Painlevé type” equations. While the differential Painlevé equations
have a unique canonical form up to a Möbius transformation, the situation is much
more complicated in the discrete setting. One criterion (but not alone a sufficient
one) for a difference equation to be a difference Painlevé equation or of Painlevé type
is the existence of a continuous limit to one of the differential Painlevé equations.
There are, however, several equations that have such a limit to, say, the differential
Painlevé I equation, and all of these very different looking equations can sometimes
be referred to as “difference Painlevé I”. Moreover, some of the difference Painlevé
equation have continuous limits to more than one differential Painlevé equation, so
that the choice of the limiting process determines the resulting differential equation.

Although we have identified equation (3.17a) as “the difference Painlevé III equa-
tion”, it contains as its special cases equations that should rather be called difference
Painlevé I or II, because they possess a continuous limit to the differential Painlevé
I and II equations. Similarly, “the difference Painlevé V equation” (3.20a) reduces
in some cases to forms that ought to be called difference Painlevé I, II, or IV.

The idea taken from the theory of differential equations, that there should be a
set of canonical equations, “the discrete Painlevé equations I–VI” for instance, does
not seem to be valid, and this “numbering” of the discrete Painlevé equations is in
that sense misleading. A satisfactory complete theory of these equations and their
relations does not exist at present, although attempts towards such a theory – for
instance the algebro-geometric approach of Sakai [43] – exist.

Many of the equations we have discovered can undoubtedly be found, in some
form or another, scattered in the vast literature on the subject of integrable discrete
systems. Degenerate cases of the difference Painlevé III and V were studied and
shown to be of Painlevé type in [37]. These include many of the same equations that
we have found. Of course, there is a “change of setting” involved, since we consider
analytic solutions while the objects of study in [37] are sequences. We also gave
some examples in Section 3.3.2, but this still leaves many of the equations we have
found unidentified in the sense that we do not know whether they are of Painlevé
type or whether they are integrable (or indeed: whether they have any meromorphic
solutions whatsoever).

It should also be remarked that in the cases when w was found to satisfy a Riccati
difference equations, we did not proceed to investigate the forms of equations (3.5) or
(3.8) further. This is in fact only natural, since several equations that are considered
non-integrable have special Riccati solutions. For example, if w0 is a solution to the



MEROMORPHIC SOLUTIONS OF DIFFERENCE PAINLEVÉ EQUATIONS 53

Riccati difference equation

w =
aw + b

w + c
,

then w0 also satisfies

w =
−cw + b

w − a
,

and by combining these we obtain

ww =
(−cw + b)(aw + b)

(w − a)(w + c)
,

which is generically not of Painlevé type, even though it possesses the special solu-
tion w0.

Integrability and some examples. The difference Painlevé III and V equations and
many of their degenerate cases are widely considered to be integrable. A difference
Riccati equation (3.6) has a large class of meromorphic solutions, but the existence
of finite-order solutions is so far known only in the autonomous case.

Many, but not all of the equations we have found fall into the QRT family in
the autonomous case. Those that do are generically solvable in terms of elliptic
functions, but again the non-autonomous case is still very much unknown. For
example, the autonomous version of equation (3.17b),

(6.1) ww =
w2 + c

w2 − 1
,

is not in the QRT family. To see this, one can write equation (3.1) into the form of
(6.1), which gives a system of equations for the numbers αi, . . . , ζi in the matrices
that define the functions fj (see page 8). It is not difficult to see that this system
has no solutions.

For the most simple non-autonomous equations it is possible to find some concrete
examples. Consider equation (3.7d). It is easy to find several examples for q = 2:

The easiest case, ww = w2, we have discussed in Section 3.3.1. With a non-
constant h, some examples are found through the linearization

u = hu, w = uw,

for instance (w, u, h) = (ez3

, e3z2+3z+1, e6z), or (w, u, h) = (Γ, z, z/(z − 1)), where
Γ denotes the Gamma function. Such examples have a tiered relation in the growth
in general, especially if the functions are entire.

For q = −2 and q = 0 we can find examples using tangent. Namely, if w(z) =
tan(πz/2), then ww = 1/w2, and if w(z) = tan(πz/4), then ww = −1. Examples
for various nonconstant functions h can of course be generated by adding a small
coefficient to w. The case q = 1 seems particularly problematic, as can be seen from
the simplest possible case of equation (3.14).

The simplest case of equation (5.7), when c ≡ 1, can be written as

w = 1/w + 1/w,
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which is solved at least by w =
√

2p2/p2. This, however, is also a solution to
ww = 2/w2. Examples that solve some equation of the form (5.7) but do not solve
any equation of the form (3.5) appear to be hard to find.

These trivial examples perhaps serve to show how difficult it is to find concrete
examples for the more complicated equations.

6.2. Open questions. It is known that the differential Painlevé V equation is in
close relationship with the differential Painlevé III. More precisely, with a particular
choice of parameters, a differential Painlevé V equation reduces to a differential
Painlevé III for another function; see [12]. As remarked in [37], implementing the
same condition to the discrete Painlevé V one should expect the equation

(ww − 1)(ww − 1) =
γ(w2 + 1)

2

αw2 + βw + γ

to be equivalent to some discrete Painlevé III equation (after some transformation
on w). The question whether such a relation exists in the discrete case remains
open. It is of course also possible that the relationship in the discrete case is not
quite so directly an analogy to the differential case.

We used practically identically methods, even at times the same reasoning verba-
tim, in the treatments that yielded the difference Painlevé III and V equations. This
alone suggests strongly that there is some connection between these two equations.

Another large open question, which has already been introduced above, is the
lack of generic methods to solve the non-autonomous equations, and even the lack
of concrete example solutions for such equations.

Whereas the list of equations in Theorem 3.2 contains all known integrable equa-
tions in the class (3.2) and apparently no non-integrable ones, we have not been
able to identify all of the equations arising from the study of the families of the
difference Painlevé III and V in the same manner, or even to list them in a similar
closed form. Our results could possibly be further restricted with some additional
reasoning. The difference Painlevé I and II equations also seem to be more widely
studied in the existing literature.

6.3. Alternative approaches. There are several ways to study the integrability
of difference equations in various settings. A few of these methods, mainly those
that are widely used and closely connected to the criterion used in this thesis, are
briefly discussed in what follows.

On the method of singularity confinement. Our approach to the question of inte-
grability of difference equations – to require the existence of meromorphic solutions
with sufficiently small growth – is closely related to the singularity confinement
(SC) method of [10], which was used in the discovery of the discrete versions of the
Painlevé equations in [38].

The simple idea of singularity confinement is to demand that whenever an iter-
ate of the equation becomes infinite, the following iterates must remain finite and
the data of the initial conditions must be preserved when passing the singularity.
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Moreover, to deal with examples such as xn+1 = x2
n/(x

2
n − 1), it is required that

backward iteration is well defined without proliferation of preimages.
To allow equations such as

(6.2) ww =
w2 + k2

w2 + 1
,

to pass the test, only singularities that have a definite starting point need to be
confined. Equation (6.2), which is a special case of the difference Painlevé III
equation, has a one-parameter family of elliptic solutions w = i/sn(z + c, k), where
c ∈ C and the modulus k is such that the Jacobi sn function sn(z, k) has a real
period 2K = 2. By the properties of sn, the poles of such a solution w appear in
infinite sequences.

The SC test is relatively easy to use and has been applied widely in the study of
integrable difference equations. There exist, however, well known examples showing
that SC is not sufficient for integrability. Hietarinta and Viallet found in [23] an
example that passes the SC test but is still chaotic. They proposed the additional
requirement that the equation should have zero algebraic entropy

lim
n→∞

log dn

n
,

where dn is the degree of the iterates of the equation (considered as a rational
function of the initial conditions).

The example of Hietarinta and Viallet is the equation

yn+1 + yn−1 = yn +
a

y2
n

,

which in our setting would read

y + y = y +
a

y2
.

Using the same methods as in Chapters 4 and 5, it can be shown that any meromor-
phic solution y has hyper-order at least one. This, of course, is a known fact, but
one that can indeed be obtained also using our method. We will omit the details
here; see [16].

Diophantine integrability. Let κ be some number field, i.e. a finite extension of
the field of rational numbers. The height H(x) of an element x ∈ κ measures the
complexity of x. In the simplest case, when κ = Q, the height of a nonzero rational
number is H(p/q) = max{|p|, |q|}, when p and q have no common factors. We
skip the more complicated definition of the height in a general number field; see for
instance [3] for further details.

The notion of height in a number field is in many ways analogous to the Nevan-
linna characteristic of a meromorphic function, as observed by Osgood [34, 35] and
Vojta [48]. Many, but not all of the results in Nevanlinna theory have a more or less
direct analogue in algebraic number theory. Vojta constructed a “dictionary” for
translating the concepts of one theory to the other, with the aim that a statement
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in Nevanlinna theory about the characteristic of a meromorphic function should
correspond to a statement in Diophantine approximation about an infinite set of
elements in a number field (the radii r correspond to individual elements).

The dictionary is not complete, however, as there is no clear analogue for the
derivative of a meromorphic function, which plays an important role in Nevanlinna
theory. Finding such an analogue would quite likely solve many existing problems
and conjectures in number theory. It might also be possible to build a similar
analogy by using the difference approach of Theorem 3.5 to Nevanlinna theory,
instead of the usual lemma on the logarithmic derivative. For the difference operator
∆f(z) := f(z + 1) − f(z) there clearly is a simple discrete analogue.

For more details on the relationship of Diophantine approximation and Nevan-
linna theory, see for instance [4, 3]. The correspondences between the theories are
studied in more depth and width in [41].

The criterion of integrability that has been applied in this thesis can, at least
under certain assumptions, be translated using Vojta’s dictionary. In [13], the fol-
lowing definition was suggested: a polynomial discrete equation for yn is Diophantine
integrable if the logarithmic height of the iterates h(yn) = log H(yn) grows no faster
than a polynomial in n.

Let w be a finite-order meromorphic solution to a given difference equation. Re-
stricting the independent variable of w to integers we find a discrete equation for
yn, say. Assume that after this restriction all the iterates yn are in some number
field κ (for suitable initial values chosen in κ). Then the fact that w was of finite
order would, by Vojta’s dictionary, correspond to h(yn) growing no faster than a
polynomial in n. That these statements would in fact be equivalent has so far been
proven only for certain first-order equations, see [13].

Diophantine integrability is related to the zero algebraic entropy condition of
Hietarinta and Viallet. If

R =
apx

p + ap−1x
p−1 + . . . a1x + a0

bqxq + bq−1xq−1 + . . . b1x + b0

is an irreducible rational function of x and deg R = max{p, q} =: d, then the
logarithmic height satisfies

|h(R) − dh(x)| < log C,

where C is a polynomial in H(ai) and H(bj) [13] (this can be seen as an analogue
of Theorem 3.6). In the Diophantine integrability approach, the height growth is
considered directly, and the required condition is quicker to check numerically even
for a large number of iterates.

Several results of Nevanlinna theory can be directly translated to the study of
Diophantine integrability. See [13] for more details.

Other settings. The general principle that integrability seems to correlate with the
slow growth of certain characteristics was expressed by Veselov [47], who showed
that certain types of first integrals do not exist for equations where the degree of the
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iterates grows exponentially. Roberts and Vivaldi [40] studied orbit dynamics over
finite fields, and found markedly different orbit statistics for integrable mappings
than for nonintegrable ones. The approach of estimating the growth of solutions
has also been applied in the study of ultradiscrete equations, and a tropical version
of Nevanlinna theory has been developed for this purpose, see [20].
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plane, Walter de Gruyter, Berlin, 2002.
13. R. G. Halburd, Diophantine integrability, J. Phys. A: Math. Gen. 38 (2005), L1–L7.
14. R. G. Halburd and R. J. Korhonen, Difference analogue of the lemma on the logarithmic

derivative with applications to difference equations, J. Math. Anal. Appl. 314 (2006), 477–487.
15. , Existence of finite-order meromorphic solutions as a detector of integrability in dif-

ference equations, Physica D 218 (2006), 191–203.
16. , Finite-order meromorphic solutions and the discrete Painlevé equations, Proc. Lond.
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