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l"troAuctipn

Consid.er the folloving predicates of set theory:

Ca(x) .+ x isacardinal,

Rg(x) *.+ x isaregularcarclinal,

Pr(xry) ++ y is the powerset of x.

These are aIJ- examples of llr-preclicates end it is trivial that Cd is
:.,(ng) and Rg is :r(fw). In this paper ve sha1l stutly the folloving
two axioms:

(p) Py is E1(cd),

(n) Rgis:r(ca).

Clearly (p) * (R). In Chapter 1 ve consider various models of set
theory in vhich (P) and (n) irofa and also discuss models in wnich (R)

holds but (P) is false. In Chapter 2 a nodel is constructect in vhich
(n) is false.

Let LI be the logic with the Hårtig-quantifier

I x y a(x) B(y) e card(A) = card(B),

. -IIand L-- the usual second order 1ogic. By means of the A-operation
of abstract logic, axiom (p) can be characterized in terms of LI and

LII,



(P) ** a( r,r)=a(ll).

If the quantifier

R x y A(x,y) * {(a'b) | l(a'u)} has the order type

of a regular cardinal

is used, a sinilar characterization obtains for (R):

(n) <.-+ A(Lr)=a(m).

Thus the consistency results of Chapters 1 and^ 2 give also infornation

of the relative strengths of the logics LI' LR and l,II. Con-

sicleration of these logics leads to some natural weakenings of (P) and,

(n). These are discussed in Chapters 3 and h. In particular, a model

is constructed in vhich the Lövenheim number of LI is strictly less

than the tövenheim number of LR.

Nolslj§D

Our notation is stanttard and, follows in set theory nostly [21

ancl in abstract nodel theory [9]. Our metatheory is ZFC. The symbols

r anct I refer to carclinals. The cardinal number of a set x is
clenoted by cartl(x). The symbols cr Br y ancl 6 refer to ordinals.

9k) is the poverset of x and. exp(r ) is cara( f ( r) ) .

Tine decision problen of a logic t is the set of valitl L-

sentences. The Löwenhein rutmben of L is the least r such that if
tp € L has a model, then A has a motlel of pover < (. Itle Hanf

nwber of L is the least r such that if Q € L has a model of
pover ) r, then tp has arbitrarily large models.
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Itre =Uagje iJtqeJen+exce 'q

1.1. rn this chapter we show that (P) hortls in such inner models

as f,, l[O#] anil l,tul but fails to holci in models vith generic rea]s.

This also shows that (n) aoes not imply (P). The chapter encts with

eome results to the effect that the consistency of -(R) is essentially

harder to obtain than that of -(P).
1.2.P roposition. Sttpposetheset a is fl(cd)-

definable and V = Ltal. rhen (P) holde.

Proof. Let r = sup(rorcard(TC({a}))). Note that x is :1(cd)-

definable. Suppose I > r. We prove at first that ?0) t Lf+["]'

Suppose therefore b c t. Let u { Ltal such that rc({a})' u € u

and card.(M) = 1 (strictry speahing u { Lo[aJ for a suitab]e o)'

Let n: M = Lolal be the collapsiag isomorphism, o ( Å*. Nov n(t) =

tn(e) I B€b)=tB I 8€b)=b. Therefore t€LolalcL^+[al. }le

have proved ?(x) . r,^+[al. Note that the predicate x = L^+[a] is

a Er(Cd)-predicate of a and l. Nov ve have the following El(Cd)-

d.efinition of hr:

Pv(xry) 3t

te(r1r...rrn) € o# *' L"

f3z
rY t

It suffiees to recall the following

(Lr*t"l F Pw( cltz) n3a

orollarxr. If V=L o? v=L[0#], then (P)1.3. c

holds,
Proof.

of 0#,

E1( cd ) -aerinition

. ,crr),

where C1 ,. .. ,Cnr.. . rC, are the

1.1+. L e m m B. Suppose V

measure on a measura.ble eardinal,
Proof. Suppose p is the

at first that if Lo[u) F "u is
and Å a,re card.inals such that

F to(c1,.

first o+ 1 uncountable card.inals .

=L[u]ruhere u t,sanormal
Then u is t., (Cd)-definable.

underlying card.inal of p. We prove

a normal measure on Ätt , where o

t, [u] reflects Cd, then I = P and
o
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u=u. Suppose acI 8nd a€L[u]. Let I'l{L[u] suchthat

TC({u}), a € M and card(l,t) < o. Let n: M= Lo[u'l be the col]apsing

isonorphisn. Note that n(u) = tr(x) | x € u) =

{{n(g) | oex} | x€u} =ix I x€u}=ur anchence u=u'. Also

r(a) = a. As c ( or a€ Lo[ul c Lotul. Nov it folfovs easily that
L[u] F "u is a norma] measure on 1". gy [5] r p is the smallest

orclinal vhich is measurable in an inner model. Therefore p S ),.

suppose p < ),. By 6.7 and 5.8 of [5], u1t^(Ltul,u) = Llul. rt is
uerl-knovn that p+ < io1(p) . p**, whence the cardi.nar io.,(o) of
Ultl(L[U] ru) is not a rea] cardinal. Note that I is a linit eardinal

in ttul and hence also in v. Therefore ior(o) < r. Hence io,,(o)

is not a cardinal of UIt^(L[ulru). Let f be a mapping which

collapses io,, (o) in urt^(r,IuJ,u). But

?tio.,(p)) n urt1(Llul ,v) = ?(io,(o)) n ultr(Llul,u),

antl f is coded by a subset of i..,(o). This contradiction shows that
p = I. Now u = u follows fron the uniqueness of u (see [5]).
The folloving :r(ca)-aerinition of u obtains:

x€u .e+ !u3o:r(lo[ul p"uisanormalmeasureon l"A
Ctl(r) a Cd(o) a I < o a V q ( o (Ca(s) **
Llul tsca(a))nx€u).o'

1.5.CoroIlary. If Y=Llv),uhere v ieanorrnal
measure on a meaau?able catdinal, then @) holds,

1.5. The above results shov that (P) is consi-stent with zfc if
ZF is consistent. corollary 1.5 shovs thet (P) is also consistent

rittr a measurable carclinal. It reuains an open problem rhether (p) ls
(relatively) consistent vith a supercompact cardinal. t'Ie turn now to

the problen of independence of (P) and (R). in view of 1.2, a natural

candidate for a mod,el of -(P) is L[a], where a is a generic real:
1.?. Propos it i on. Suppose M isacountablemodelof

Z?C and a ie a veal whieh is Cohen'genen'ie ouer t"{. Then

tttal F -(P).



J. Väänänen

Proof. Let P be the set of Cohen-conditions. It is well-
knovn that P is honogeneous. Hence, if utalF (p), tuen p l[- tpl.
Moreover, there is a single Er(Cd)-formula tp(x,y1 such that

P lF vxy(Pw(x,y) *p(*,y)).

Let b={n<r^rlZn€a}. Then b is P-genericover M anct

b € Mlal but a E Mlbl. Let c be ?6) in Mlbl. Then

Mtbl F Q(orc). As M[b] and' utal have the same cardinals,
r'rta] F rp( to,c), that is, M[a] F c = ?fu). But this is absurd

because Mtal Fa€c and c€M[b],but aEI't[t]. fhisproves
that utal F -(P).

1.8. c o r o 1 1 a r y. -r1 con(zF), then con(zPc + GcH + -(p))
and con(zFc + ^,GCH + _(p)).

Proof. For the first clain, choose M in 1.? such that
M F cCH. For the second c1aim, choose M such that M F ^CCH.

Adding one generic real cloes not affect GCH or ^CCH.

1.9. Pr ob I em. Does cot(zE) irnplV con(zpc+^ccH+ (P))?

1.10. The situation vitn (R) is more subtle. We shall shov that
no generi.c extension of L can satisfy -(n). The proof is baseil on

R. Jensear s ttMarginaliatt.

1.11. P r o p o s i t i o n. If -(a)' then o+ erists, Hence

(n) is true in eoe"A gene"ic estension of a nodel of ZFL.

Proof. R. Jensen proves in [t]: If there is a singular linit
cardinal which is regular in L, then O# exists. Thus if 0#

does not exist, then a lirnit cardinal is regular if and only if it is
regular in L, that is,

Rg(r) *+ 3 I (r = l* v (r is a limit cardinal,l
L.* F Re(*))),

'ehich gives a Er(Cd)-definition for Rg.

1.12. C o r o 1 1 a r y. ff con(zr'), then coa(zFc + GcH +-(P)
+ (R)) and con(zEc + ^ccH + -(P) + (R)).

1.13. The axion (n) is only interesting in the presence of large

cardinals. In fact, if there a"re no vealrly inaccessibfe carilinals,
then
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Rg(r)e 3l(r=l+),

vhence (n) trotas. Thus -(n) inplies the existence of at least one

veal<Iy inaccessible cardinal, and by 1.11' furthermore, of a proper

class of weakly compact cardinals in L (even in ,r.). Therefore:

1.111. Corollary. Let T= ZFC+there is aproperclass
of veally compact cartlinals. If I is consistent, then one eannot

pro»e in I tlnt con(T) inplies con(zrc + -(n)).
'1.15. In contrast to 1.11r ve shal] prove shortly that Con(ZFC +

there are uncountably many measurable cardinals) does inply Con(ZFC +

-(R) ).

2, The consisteney oL-( R \

2,1. In this chapter we construct a Boolean extension in which

-(R) holds. our starting point is a model with uncountably many

measureble carclinals, and ve use an elaboration (essentially due to

Magidor) of the so called Plikry-forcing to find the required Boolea.n

extension. In view of 1.11+ it seems legitimate to base the construction

on large cardinals, althou6h it is not cleer whether many measurables

are really needed..

2,2.L enna. Sttppose {oo la<r.,} ieasequeneeof
meaeutlable cardinals sueh that 9o . 0B uheneDe" o < B < ol. There

ie a eequenee {Bo I o < ur.,} of eontplete Boolean algebras euch that

the follouing hold for any c < urt:

(t) B is
0

(z) B is
u

(3) vBo F
(l+ ) ,/Bu F
(:) vBo ts

Proof. Let Po consist
that- po is a finite sequenee

11p

homogeneous and prae serues cardinals .

exp([) = (exp(*) )* for ana cardinal K.

of elements of cB, pB is ernpty but fcr
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where D^ is a normal ultrafilter on
K
F,'

as fol-]ows :

is partially ordered

11

pB.

o

if anct only if for all U . o, pB extends eBr AB. BB and

pB - sg c BB. This notion of forcing is a sinplification of the cne

used in [8]. The ful1 pover of Magidorts forcing is not needed,

mainly because ve have no measurabl-e liroits of measurable cardinals.
The advantage of the simplification is that the homogeneity is fairly
easy to prove, whereas the homogeneity of Magidorts forcing is open

(to ttre authorrs knovlecige). Let Bo = RO(P'). Proofs of (t) - (5)

can be found. in [8] ana [t!].
2.3. T h e o r e m. Suppose there are uncow*ably many measurable

eatdinals. Then thene ie a eornplete Booleqn algebra B such that 3

p"eserues cardinale and. exp(a), q'rd f F qal.

Proof. Suppose {oolo<0r., } and {Bolo<i,r., } areasinZ.2.
ile cleim that tP" p -tni for some o . ,1 . Suppose the contrary.
Then for every o . ,.1 , ll (n) llBo , o. Let o < r,rr. As Bo is horao-

geneous, there is a E., (Ca)-fo:rorula Ao(x) such that

vBoFvx(Rs(x)*oo(x)).

As the number of all Er(Ca)-forrrulae is 0rO, there are a and B such

that o < B < 01 and eo(x) = or(x). By 2.2(5), voo F oo(öo). ns

Bo and. BB preserve cardinals, VEB F oo(öo), and hence v"S F Re(äo),

which contradticts 2.2(\).
Z.\. C o r o 11a r y. Let urr-MC be the etatement t'Thene are

uneountably mq/tA measu?able cardinals't. -ff Con(ZFC + urr-MC), then

Con(ZrC *.,-MC + GCH + -(n)) and Con(ZFC + o,-MC +^cCH +-(n)).
Proof. Suppose M is a countable model of ZFC + rrrr-MC. gy [5],

there is a generic extension N of M to a model of ZFC + u)l-MC + GCH.

By 2.31 I'l can be generieally extended to a model of ZFC + rrr.,-MC + GCH +

-(n). Note that the algebra B in 2.3 leaves uncountably raany of the

measurable cardinaLs measurable. To prove the seeond. claim it suffices
to note that by [?] N can be so chosen that N F ^CCH.
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3. A connection uith

1.1. We relate the ocioms (P) ana (n) to the equivalenee of certain

abstraet logics. The above indepenclence results can then be interpreted

as feflecting the relative strengths of these logics. This connection

vith abstract logics also leads to problems of independence of certain

weaker forms of (P) ana (n).

3.2. The folloving result was proved in [tZJ: A nod'el class is
ttefinable in a(Lr) (A(LB), a(r,rr)) if anct only if it is a1(cd)-

(41(Rs)-, Ä1(Pw)-, respectively) tiefinabl-e in set theory. For unex-

plained notation the reacler is referred to [tz] or [9]. The axion (P)

is equivalent to saying thet every 4.,(Pv)-predicate is A1(Cd)-definable.

Hence

(p) *-' 
^(Lr) = a(Lr').

Similarly,

(n)++A(LI)=a(r,n).

conbinecl vith the results of chapter 2, this yields the consistency of

a(Lr) - a(lrr),

A(lr) t a(lrr) + ccg,

A(Lr) * a(lrr) + ^'ccH,

relative to the eonsisteney of ZF, and also the consistency of

a(LI) #A(rR) +GCrr,

A(Lr)#a(rn)+^ccH,

relative to the consistency of ZFC + o.,-MC.

Using well-known preservation properties of the A-operation one

can prove ttat (p) inplies the following axioms:
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(rr; LI and LII have the sane Lövenheim numbers.

(pz) LI and r,II have recursively isomorphic ctecision problens.

(p:) a(Lr) and Lrr have the sane Hanf numbers.

3.3. P r o b 1 e m. (P) itnplies (Pl), (P2) and (P3), Are there

any other inrplications betaeen these a.sions?

:.1+. A Boolean extension of L in which the d.ecision problem of
1LI is Ai was constructed in [tl]. Thus -(P2) is consistent relative

tc Con(ZF). fn [13] a Boolean extension vas constructed in vhich the
Hanf number of A(LI) is less than the Hanf nu:nber of E(LI) (see [t2]
or [t3] for a definition of f) and therefore less tha.n the llanf number

of LII. Tnus -(p3) is consistent relative to Con(ZF).

fuxion (Pl ) has a purely set-theoretical foru. ft was proved in
[1e] tnat the Lörenheim nr:mber of Lr (r,n, r,rr) is sup{c I o is
nl(cd)- (n., (Rg)-, n1 (P,r)-, respectively) definabre) . For any set D

of set-theoretical fo::nulae let us define (whenever possible):

o(D) = supta l o is definable by a formula of D).

Then

(pt) *"* o(trr(ca)) = o(n., (nr))

> o(n1 (cd)) = o(fle).

I'lote that exp ( rrl ) i s [r-d ef inable . Therefore

(rt; + exp(r,r) < o(flr(ca)).

fn I t t ] we constructed a Boolean extension of L in vhich
o(n., (ca) ) < exp(r,r) . Thus -(pt ) is consistent relative to Con(ZF).

This result is independently due to J. Stavi. For further and stronger

results in this d.irection see [10]. There is also a consistency result
fcr -(Pl) + cCH: fn [tl] we construct, starting with a proper class of

13
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measurable cardinals ) a Boolean extension in vhieh GCH holds and

o(n,,(ca)) < the first measurabre cardinal ' o(ne)'

This raises the folloving Problen:

3,r. P r ob 1em. Does coo(Zl) inrplU con(zFc + GcH +-(pt))?

s.6. rr the above analysis or (P) is repeated ror (B), a more

subtle situation emerges. As above, (R) implies

(nf) LI ancl LR have the same Lövenheini ntrmbers, that is'

q1nl1ca)) = o(n,(Re)).

(nZ; LI and LR have recursively isomorphic ciecision problems'

(n:) A( tI) and Ä(LR) have the sa'ne lla^nf numbers'

Problen 3.3 can be restated for (R), (nt), (nZ) and (R3)' By

elaborating the construction used for -(R) ve shaIl shortly construct

models 1'o1 -(n1) and -(R2).
3.?. R e m a r k. If ue uae the resulta of 112)' ue get the

follor,ring equioalence e :

(P1) s o(ar(ca)) = o(ar).

(P3) s o(:.,(ca)) = o(:r).

(R1) ä o(4.,(ca)) = o(a,(ne)).

(nz) .* o(:.,(ca)) = o(r.r(ng)).

3.8. One nay also consicler the axiom

(p)' hr is z, (ne)

or, vhat araounts to the same: A(LR) = a(r'Ir). The resuits 1'T and

1.8 carry over triviatly to (P)r. Analogously one may define (Pl)',

(p2)' and (P3),. Apart form the result based on measurable carclinais,

all consistency results of 3.lr carry over to these nodified axiorns.
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l+. Conststency reE#s go

1.1. L e rn m a (tn ca + Globa1 choice), Suppoge Gcfl, Let

{oo I c € on} be a sequence of measuruble eatdittals euch thot o < B

irnpliee c ( 0o < gB. There is an irtdeaed forrila {Bo I o € on} of
conrplete Boolean algebrae such that for etterg a € 0n the follourtng
lpld:

(1) - (5) as in 2,2.
(6) If f" F i is meaeu?able, then K - pB for eome B >l c.

Proof. The construction of tBo I o < r,r.,) in the proof of 2.2

cen be continued over all ordinals. For a proof of (5) ve refer to [8].
l+.2. T h e or em. Ifcon(zlc + there is aproper class of meas-

urable cartiinals), then Con(ZfC + -(Rl) + there is a proper class of
neasurable cardinals ) .

Proof. Suppose M is a countable model of ZFC + there is a proper

class of measurable carcliuals. By [5] M has a generic extension Ml

to a nodel of ZFC + GCH + there is a proper class of measurable carttinals.
It is well-known (see [\]) tirat Mr has a generic extension N to a

nod.e1 of GB + Global Choice + GCH such that Mt and N have the same

sets. Let {oo I c € On} be an ascend.ing well-ordering of the neasur-

able cardinals of N. If there is an o such that o = Por ve let
Nt be the restriction of N to sets of rank less than a, a^nd' other-
wise Nl = N. Non Nt is a moilel of GB + Global Choice + GCII + there

is a sequence {oo I o € On} of neasurable cardinals such that s < B

irnplies a < po < pB. ,: .l:tt work*iaside Nt for a moment. Let

G: 0n + On such that G(oo-) - ,o- for o € 0n ancl O(c) = 0 other-
vise. Folloving Easton-forcing ([3]), ve consid.er sets of conttitions

p vith the properties:

P c H{c}xroxC(ro)t2,

15
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Note that Lenna 35 of [3] stiLl holds for this forcing. We nodify the

proof of Theorem tO in [?] to prove that each go is sti]] measurable

in the generic extension Ne of Nl in this forcing. Suppose F is
a normal ultrafilter on go in Nt antl Fr is the filter on go

vhich is generated by F in N2. Suppose u denotes a subset of 9o

in N2. By Lerma 35 of [3] there is a condition n(x) in the generic

sequence ancl a set Il such that (in the notation of [:])

(i)

(ii )

p€ll

(k), 
,p lr

Dcf^o

u c go.

that pUP' decides

with e.

Let us denote this set by X. If X

X is in F. By completeness there is

n(o) ti-rc1.r. Hence NzFu€F'!"
ultrafilter. The 9,r-"ompletenes§ of

is not in F, then

Ne F Po Lt € Ft . SuPPose then

a D €ll suehthat Y=^o
Note that Y is in Nt and

1,Ie have proved that Ft i* an

!'1r is proved simil-ari;,.. ?hus

is
p

and

the

q s p(n) , then there

statement J.€u and

go I (po u p(k)) lF g € u).

some p€ll such

is eompatible

Note that carct(Io ) < Po, as go is strongly inaccessible. Hence

also cara(n) < po? We shalL use the properties (i) - (iii) to prove

that Nz satisfies u€Fr rPo u€Fr. rf n=n(*) and,

s lF g € u, then.bv (iii) there is some o € II- conoatible with Qr

;;;. i u ottl 
';."t."; 

B € u. ,r'i- , itrr lr- u, u, then-o - - 'o
p^ u q. lFgfu, which contradicts q lF g e.". Therefore

n] r r(nl lF s e,r. conversery, 'r .pa, nt*].iFCeu ror some

po € fl then there is a q. (= po u n(x), = n(u) such that q lF
B € u. Thus we have provecl

D€ II*o
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g - i s measurable in N^ .o/.
We shall work now in NZ. Let t Bo

finish the proof we construct an c € On

I a € 0n) be as in \.1
such that

17

To

(*) ,Bo F -(nr ).

Let {on(x) | n < r,r} be a recursive enumeration of all nr(ca)-fomu-
lae with one free variable. Let t.I(n) be the f,,(Cd)-predicate

"n < o, a 3 a-err(o)". Note that by honogeneity || ru(;) IlBo € 2 for
every a € On and n € o. Let co-= 0. If on is defined and there
is a B ) an such that ll u(;) ll'g = t, Iet an+, be the least
such 81 and othervise ontl = on. Let B = sup{co I n < r,r}. Let K

be acard.inal suchthat v"g FVn<6 (t't(n) *3o< E (^<on("))).

Let c € 0n such that 9o , *. lle clain that o satisfie" (*), andr

indeecl, that

vBo F o(n.,(ca)) < r < o(n,(Rg)).

Suppose n < o aud Oo(x) clefines the ordinal Y in _fc. Then

ll M(il) llBo = 1, vhence, by construction, ll M(il) llBs = 1. Ilence

for some 6 ( r, vBo F ^.$n(ä) a Y < E. Thus vBo F o(nr(cd)) s r.
To prove f" F r < o(nr(nä)) it suffices to note that ä^* is
4.,(ne)-aerinable in f": rn fact, it is true in fo thai v > oo+

if and only if there is a regular carilinal I such that I' S v anil

exp(l+1 > t***.
l+.1. r h e o r e m. Ifcon(zvc + or-MC), then Con(ZfC + o1-MC +

-(R2)).
Proof. The proof resembfes that of the previous theorem, and

some of the details can be onittecl. Let us stert vith a noodel Nt of
GB + r,r,-14g + GCE. Let tOo I * <.r) be an ascentting sequence of
measurable cardinals in Nl. We shal1 work in Nl. Let {ao I o < rrrr}
be a sequence of infinite alrnost disjoint subsets of a). Let
{Do I o < urr} be an ascending sequence of homogeneous earilinals pre-
serving Boolean algebras such that pB is singular in fo if and only
if B < a, and exp(,,rr) 2 ^y*2 holcis in /o i.f and onry if
y=rg+n+1 where n€aU and BSo. Weclaimthat(R2)fails
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in vDo for some o . ,.,. Suppose the contrary. Let {on I n < ur}

be a prinitive reeursive enuiaeretion of all LR-sentences and

i,r- | n < o) a sinilar list of all LI-sentences. By a sirnple pigeon-'n '

hole argrurent there are c, B and a (description of a) recursive

function f such that cr ( B < ur, anit the sentence V n (rO- has a

noctel if anct only if 0r(n) has) is true both in \Do 
"ndnin 

vDB.

Let for any t < rr, r9U{n) be the LR-sentence vhich says that
exp(o.) t rö*2 holds for sone 6 = u * n i 1r vhere u is an in-
accessible cardinal. To derive finally a contradiction, we prove that

"o 
. .8. So 1et n € ao. Then Ae(rr) has a model in VDo. Therefore,

9f(g(n); has a mod.el in V"cr. As cardinals are preserved in our ex-

t;;:i;;;, 0r(e(n)) has a moctel in vDB, vhence ae(r,) has a nodet in
v"B. By construction, this inplies n € aU. This ends the proof of

"o. "8. 
The arising contradiction shovs that (R2) fails in sone Po.

lr.l+. fn fact, the above two constructions can be put together to
yield a moctel- in \rhich -(R1) ana -(n2) holtt sinuLtaneously. A simil-ar,

but, in a sense, reversed. argument can be used to prove the consistency

of -(R3) relative to the consistency of a proper class of measurable

cardinals. We onit the cletails of this construction. It remains an

open problem vhether one can have -(R1), -(ne) and -(R3) simultaneously.
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