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1. INTRODUCTION

The foundations for the modern treatment of singular integrals were provided by
Calderén and Zygmund in their seminal work [CZ52] and these operators have been
studied extensively in various settings [Chr90, HS94, NTV03, Tor91|. The principal
objective of this monograph is to explore certain weakly singular integral operators
which are related to singular integrals and originate in pseudodifferential operators
and PDE’s. To be more precise, assume that {2 C R" is a domain and K : Qx) — C
is a kernel that defines a linear integral operator

(1) 17@) = [ K@iy aeo
Q
We establish conditions on this domain and kernel under which the weak derivatives
(1.2) 0T = 0" | Klo)fw)dy
Q

of prescribed order || = m > 0 have bounded extension to the spaces LP(2) for
1 < p < oo or to some other natural function spaces on 2. Results to this direction
are available in the case Q0 = R" [Tor91, p. 141] but apparently not in the context
of proper domains.

Inhomogeneous Dirichlet problem. Weakly singular integral operators (WSIO’s) as
in (1.1) arise naturally in connection with elliptic PDE’s on domains. In order to
illustrate our main result, consider the following inhomogeneous Dirichlet problem
in the ball B = B(0,1) C R" for n > 3,

{—Au = f e L?(B),

(13) u e WP (B).

We restrict ourselves to the exponents 1 < p < co. Then (1.3) has a unique solution
and it satisfies |[ullw2r3) < Crpll fllr(z) [ADN59], [JK95, Theorem 0.3], [GTS83,
Theorem 8.12|. Certain Holder-regularity estimates combined with our main result
can be used to deduce this W*P(B)-regularity and we sketch this argument for



6 ANTTI V. VAHAKANGAS

illustration. The solution of (1.3) can be expressed in terms of a weakly singular
integral operator

(1.4 ua) = Gf() = [ Glanf)ds. =€ B.

Here G : Bx B\ {(z,x)} — R is the Green’s function, which is defined for y # 0 by

Yyl e — g — | — gy

G(z,y) = . g= |y,

wn-1(2—n)

and G(z,0) = (w,_1(2 —n))~'(1 — |z|*™), where w,,_; is the (n — 1)-measure of
OB = S™!. The Green’s function is symmetric so that G(z,y) = G(y,z) if z # y.
Using the definition it is straightforward to verify the estimate

(1.5) 105G (2,y)| < Coalz =y if o € Ny and 2 # y.

As a consequence, the kernel G belongs to a certain class K3* of standard kernels
of order —2 which is defined in connection with our main result.

Let kK € Ng and 0 < § < 1. Then C*9(B) denotes the Hélder space of functions
f € C*(B) satisfying

Zuaf||m3)+zsup{|aa ‘) 0 f(y)| :WGB’%H}@O

1)
x —
|a| <k la|=k y‘

We use the Holder-regularity estimate that, if f € C%(B) C LP(B), the solution
(1.4) satisfies u = Gf € C*°(B) |GT83, Corollary 4.14]. This estimate is used for

(1.6) Gl=Gyxp e C*(B), if0<s<l.

Using the properties (1.5) and (1.6) with our main result, Theorem 1.20, it is possible
to verify that the operators 9“G are bounded on LP(B) if |a| = 2. As a consequence,
the solution (1.4) satisfies u € W?P(B) and also the norm-estimate

lullw2rm) = |G fllw2ri) < Cnpllflles)

To recapitulate, the kernel size-estimates with the Holder-regularity estimate on G1
imply W??(B)-regularity for the solution of (1.3). For details, see Example 6.21.

Integral operators on R™. Next we consider operators of convolution type on R"™.
These integral operators, treated in Section 2 and restricted to kernels of the form
K(x,y) = k(z — y), can be applied in solving the problem —Au = f with data f in
homogeneous Triebel-Lizorkin or Besov spaces.

The basic ingredients of the following result are available in the literature but
the novelty lies in their combination, showing how concrete characterizations are
available in our situation. Here S is the space of Schwartz functions with all
vanishing moments and &'/P is its topological dual space; B;’s form the scale of
homogeneous Besov spaces, to be defined in Section 2.1.
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Theorem 1.7. Let « € R, p € {1,00}, and 1 < ¢ < oo. Let k € §'/P. Then the
convolution operators f — 0% x f : Soo — S'/P, |a| =1, have bounded extensions
to B;"q if, and only if, k has an extension to a reqular tempered distribution K € S’
satisfying the integral estimate

(1.8) il;}g {|y[1 /n |K(z —y)+ K(z+y) — 2K(x)|dx} < 0.

The endpoint spaces Bf‘ 1 and ngq are classical in the following cases. If o > 0,
then ngoo ~ C* is the homogeneous Holder—Zygmund space. If 0 < a < 1, then
this space consists of complex-valued functions f on R”, satisfying a modulus of
continuity estimate

|f<x)_f(y)| §0|x_y|a’ if x>y€Rn'

The norm ||f||sa is the infimum over all constants C' > 0 for which the above
inequality holds and this space is defined modulo polynomials. If 1 < a < 2, then
the first order difference is replaced with the second order difference, and so on.
In the other endpoint, the space B? ! is a so called minimal Banach space that is
discussed later. Because Theorem 1.7 is a characterization for the boundedness in
the endpoint spaces, it can be used to obtain boundedness results on the whole scale
of Besov spaces via interpolation. In particular, if the condition (1.8) holds true,
then the convolution operators f +— 0% x f, || = 1, have bounded extensions to
the space BY? ~ L*(R"). Further results about boundedness of weakly singular
integral operators on homogeneous Triebel-Lizorkin and Besov spaces can be found
in [Tor91, V&hO0§|.

Then we advance beyond convolution operators. We assume that 7" is a WSIO
as in (1.1) with © = R". We also assume that the associated kernel K is a standard
kernel of order —m; this condition is quantified later. Then the operator 90%T as
in (1.2) is a so called SK(d)-type operator. These operators generalize the classical
singular integral operators and their LP(R")-boundedness is characterized in the
seminal work of David and Journé [DJ84]. Cancellation properties captured by
the quantities 71 and 7T'1, along with certain weak boundedness property, play
a decisive role therein. Generalizations of the T'1 theorem are numerous but the
conditions and conclusions often share the same spirit [Chr90, DJ84, HS94, NTV97,
NTV03, Tor91, Vah08, Wan99|. These include results about certain WSIO’s [Tor91,
V&h08|. There is also a very general Tbh theorem about SK(d)’s due to Nazarov,
Treil, and Volberg [NTVO03|. This result is targeted at certain metric measure spaces
and, in particular, it applies in domains.

For the convenience of the reader we formulate the fundamental result of David
and Journé. Fix any m € N and define the normalized bump functions consisting
of those smooth functions & : R* — C, supported in the unit ball, that satisfy
[|10%P||0 < 11if 0 < |a| < m. For each ball B(xy, R) C R™ we write

R (1) = § (“’ ;xo) .
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A linear and continuous operator 7' : S(R") — S'(R™) has the weak boundedness
property, denoted T' € WBP, if there exists a constant A > 0 such that for all pairs
of normalized bump functions ®, ¥, it satisfies

|<T(I)R,xo’ \IIR7$0>| S AR"™

for all R > 0 and xzy € R™. Here the constant A may not depend on the functions
PR or W The weak boundedness property is a natural condition since if T'
has a bounded extension to L*(R") then 7" € WBP.

A function K : R" x R"\ {(z,2)} — C is a Calderon—Zygmund standard kernel
if there exists § € (0,1) such that |K(z,y)| < Cklr —y|™™ and

(19)  |K(z,y) = K@ y)| +|K(y,2) = K(y,2)| < Oz — 2’z —y[ "7

if 2| — /| < |x—y|. A continuous linear operator 7" : S(R") — S’(R") is associated
with a Calderon—Zygmund standard kernel K if

(1.10) Tro) = [ [ Ko

given that f,g € C3°(R™) C S(R") have disjoint supports. We denote this by T' €
SK(6). The transpose T* € SK(9) is defined by (T"f, g) = (f,Tg) for f,g € S(R"),
and it is associated with the transpose kernel (z,y) — K(y, x).

For instance, if o € Nj, the operator f — 0%f belongs to the class SK(9) since
the associated kernel is identically zero and other requirements are also satisfied.
The additional condition 7' € WBP excludes such pathological cases for a # 0.
Intuitively, this condition states that

][ Txp
B

for every ball B C R™. The integral (1.11) is not defined, a priori, but if 7" has a
bounded extension to L?((2), then the extension satisfies (1.11).

We define T'1 as a continuous linear functional on SoNCEe (Sy consists of Schwartz
functions satisfying [ ¢ = 0). For this purpose we assume that 7" € SK(4). Fix f €
Sp so that supp f C B(0, R), R = Ry > 0. Fix a cut-off function n = ny € C°(R")
so that n(z) = 1 for every z € B(0,2R). Define (T'1, f) = (T'n, f) + (1 —n, T"f).
The quantity (T, f) is defined because 7, f € S(R™). Because [ f =0, we have

(1.11) <A

1'5(9) = [ (K(w) = KO.9)fw)ds
for y & B(0,2R). This allows us to define
(-n1)= [ =0 [ (K - KO fa)dady

The Holder-Zygmund-condition (1.9) shows that this integral converges absolutely.
Applying (1.10) it is simple to verify that the quantity (7’1, f) is independent of the
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cut-off function 7. Because Sy N Cg° C H'(R™) is dense it is reasonable to denote
T1 € BMO(R") = (H'(R™))* if

(TL ] < Cllf i, i f€SNC
holds with C' independent of f. Here is the 7'1 theorem of David and Journé [D.J84].

Theorem 1.12. Assume that T' € SK(5). The following conditions are equivalent

e 71, T"1 € BMO(R"™) and T € WBP,
o T € CZO, that is, T has a bounded extension to L*(R"),
e T has a bounded extension to LP(R™) for 1 < p < oo.

To indicate a possible usage of this theorem, let 7" be as in (1.1) such that 0*T €
SK(0) if |a] = m. The T'1 theorem above applies and it provides a characterization
for the LP-boundedness of 0*T. However, the verification of the assumptions is
not necessarily feasible and in some cases it is more effective to work directly with
the operator T'. The non-homogeneous T'b theorem of Nazarov, Treil, and Volberg
[NTV03] can be invoked to localize the situation to domains but the aforementioned
difficulties remain.

WSIO’s on domains. In this monograph we suggest a geometric approach to WSIO’s
on domains and the implied connection between integral operators and geometry is
apparently a new one. The main result of ours is somewhat reminiscent to the 71
theorem of David and Journé, but modified to the direction of Theorem 1.7 so that
the conditions involved concern T' instead of, say, 9T

In what follows, we confine ourselves to this main result of ours, applicable on so
called admissible domains. To define this class of domains, we use the notions of

uniformity and (co)plumpness.
A path v: [0, L] — Q C R" is rectifiable, if

k
0(7) :sup{Zh(tj) —(tim1)] 0=tg <ty <--- <tk:L} < 00.
j=1

A rectifiable path ~ : [0, L] — § is parametrized by the arc length if £(7|[0,s]) = s
for every s € [0, L]. In particular, L = ¢(y). Next we pose the definition of uniform
domains [Mar80, p. 198 and the definition of (co)plumpness [MV93, p. 251].

Definition 1.13. Assume that n > 2. A domain () # Q C R" is uniform if there
exists a uniformity constant a € [1,00) with the following property. Each pair of
points z,y € € can be joined by a path 7 : [0,£(y)] — Q, parametrized by the arc
length, such that v(0) = z, v(¢(~)) = y, and

o ((y) < alr—yl,

e min(t, ((y) —t) < adist(y(t), Q) for every t € [0, 4(~)].

Definition 1.14. Assume that n > 2 and ¢ > 1. A set A C R" is c-plump if for all
r € Aand 0 <r < diam(A) there is z € B(z,r) with B(z,r/c) C A. Aset ACR"
is c-coplump if R™ \ A is c-plump.
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Now we can define Whitney coplump and admissible domains.

Definition 1.15. Assume that n > 2. A domain () # Q C R" is Whitney coplumyp
if diam(R™ \ ©2) = oo and Q is c-coplump for ¢ > 1. The Euclidean space 2 = R"
is Whitney coplump. A domain is admissible if it is both uniform and Whitney
coplump.

The family consisting of admissible domains is invariant under quasiconformal
mappings f : R” — R"™ as follows: if 2 C R” is an admissible domain, then the
image f{) C R” is also admissible. The unit ball B(0,1) C R™ is admissible and, as
a consequence, the images fB(0,1) of the unit ball under quasiconformal mappings
f:R" — R™ are admissible, see Section 6.

We make use of certain sequence spaces f72?(Q2) on domains; these sequence spaces
are defined later. However, if we formally set m = 0 and 2 = R™ then we recover
the space f%?(R") that is related to the space BMO(R") [Ste93, pp. 140-141|. This
relation is established using the Carleson’s condition [Mey92, p. 151-156].

Next we define local kernel classes on domains by generalizing condition (1.9).
For this purpose we need certain difference operators y — Al (f, D,y) : R* — C
that are parametrized by £ € N, h € R™, and D C R"™. These operate on functions
f D — C according to the rule

S (DR fly + kR), if {y,y+h,...,y+Llh} C D,
0

, otherwise.

AﬂﬁDwﬁ={

Let ) # Q C R", n > 2, be a domain. Let m € N, 0 < m <n, and 0 < § < 1.
Consider a continuous kernel K : Q x Q\ {(z,z)} — C satistying

e kernel size estimate

(1.16) |K(z,y)| < Cgle —y[™™", z,y €,
e semilocal integral estimate
1
1.17 sup —/ A" K (), Q, y)|dy < Crlo — 29|79,
(1.17) W O Q! n (K (), Q) | |

if v € Qand Q CC Qis a cube', centered at 29 and Ck diam(Q) < |z —29|.
We assume the same estimate with K (z,-) replaced by K (-, x).

In the case that (1.16) and (1.17) hold true, we say that K is a standard kernel
of order —m and denote this by K € Kg™(6). It is simple to verify that (1.17) is
implied by the following semilocal condition

e estimate on the order (m + 1) differences
(1.18) AT K (2,), Q. y)] < Crel A" —y| ™"

if x,y € Q, Q CC Qis a cube, and 2(m + 1)|h| < |z — y|. We also assume
the same estimate but with K(x,-) replaced by K(-, ).

"n this work cubes have sides parallel to the coordinate axes.



WEAKLY SINGULAR INTEGRAL OPERATORS ON DOMAINS 11

The motivation for these kernel classes is that, if we formally set m = 0 and
2 = R™, the conditions (1.16) and (1.18) reduce to the defining conditions for the
Calderon—Zygmund standard kernels. Thus the kernel classes Kg,*(d) extend these
standard kernels in a natural fashion. Assume that K € K. () satisfies (1.18) and
K(z,y) = k(x — y) for some k : R"\ {0} — C. Then the size-condition (1.16)
reduces to

k()] < cxlz["
and (1.18) reduces to
k(x4 2R) — 2k(z 4+ h) + k()| < cp|h|* )z, if 4]h| < |z].

Applying these reduced conditions and changing the variables w = z + h, we see
that k satisfies the integral condition (1.8). That is, if we consider operators of
convolution type, the resulting conditions here are stronger than in Theorem 1.7.

There is also technical motivation for the kernel classes above. Condition (1.17) re-
sembles the condition on certain local smoothness space €7 9()), see Section 5.
Indeed, the kernel classes K" () have a close connection to these and other Hélder-
type spaces, and such relations are exploited in solving a natural kernel extension
problem by reducing it to the Holder extension on the product domain €2 x (2.
These extension results, applicable on uniform domains, reflect the local-to-global
type function theoretic phenomenon that is emerging in connection with various
classes of functions defined on uniform domains [Geh87].

A weakly singular integral operator (abbreviated WSIO) of order —m on a domain
Q CR" n > 2, is defined for f € Cy(Q2) pointwise by

(1.19) Tf(z) = / K(z.y) )y, =€,

where K € K™ (6). We denote this by T € SK;™(0), and we say that the operator
T is associated with the kernel K. The adjoint operator T* € SKg™(d) is the
uniquely defined operator which is associated with the adjoint kernel

K* = (z,y) — K(y, ).
The adjoint operator satisfies (T*f | g) = (f | Tg) if f,g9 € Co(Q).

The integral (1.19) exists since the function y +— K(z,y) is locally integrable
for every x € R™. This is unlike with Calderon—Zygmund operators, where the
singularity causes the need to define T" as a continuous operator &S — &’ with
the weak boundedness property. The order of standard kernels and corresponding

WSIO’s is related to the estimate (1.16). Indeed, if a kernel K satisfies K(x,y) =
|z —y|~™*™, then the corresponding integral operator T'is —m homogeneous so that

T(fA)) = AT (X)), A>0.

This justifies the terminology regarding the order of standard kernels and operators.
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T1 theorem on admissible domains. The following theorem is our main result. It is
similar in spirit to Theorem 1.12.

Theorem 1.20. Assume that 2 C R™ is an admissible domain and T € SKq™(6),
where m € {1,2,...,n — 1}. Then the following conditions are equivalent

o Txa, T*xa € f2*(0),

e 0°T,0°T* have a bounded extension to L*(Q)) if |a| = m,

e 0°T,0°T* have a bounded extension to LP(QY) if |a] =m and 1 < p < o0.
The deriwatives are understood here in the weak sense.

This theorem is reformulated and proven in Section 6. Here we outline parts of
its proof: Assume that Q@ C R" is admissible, T € SK;™(0) is associated with a
kernel K € K;™(0), and

(1.21) Txqo. T xa € [22(Q).
We wish to establish the L?*(2)-boundedness of 9T, 9*T* for |a| = m. The proof

proceeds with a construction of an extension 7' € SKz(¢') so that 0°T and 9*T*
have a bounded extension to L*(R") if |a| = m, and also

(1.22) (f1T9)=Tflg)=Tflg ={f1T"9),
if f,g € Co(Q) C Cy(R™). The existence of such an extension 7" implies that 9*T
and 9*T* both have a bounded extension to L?*(f2); this is seen by applying (1.22)
with g = (—1)l?10%h, h € C$°(Q), and using that C$°(Q) C L?*(Q) is dense.

The extension 7 is constructed as follows. First consider the corresponding kernel
extension problem. That is, how to construct a kernel K e Kgi'(d') so that

(1.23) K = K[Qx Q\ {(z,2)},

where T is associated with the kernel K € K;™(6). For this purpose we establish
an atomic decomposition for kernels of the class K™ (9), where 2 C R™ is uniform.
Using this decomposition, the kernel extension reduces to Holder extension on the
product domain €2 x Q C R?". The described kernel extension procedure, treated in
sections 4 and 5, immediately leads to the extension of the corresponding weakly
singular interal operator: the operator T e SKgn'(0"), associated with the extended
kernel K, satisfies the condition (1.22) because of (1.23).

There is no reason why 9T and 9*T* would now have a bounded extension to
L2(R™) if |a| = m or, equivalently, T1,T*1 € f™2(R"). We solve this problem by
modifying K outside of Q x Q\ {(z,2)} in order to obtain a bounded extension, still
satisfying (1.22). Within Section 3 we prove a Ty theorem which states that this
modification is possible if, and only if, the condition (1.21) holds. This modification
is established with the aid of so called reflected paraproduct operators which are
used, in addition to the standard reduction, in propagating certain error terms near
the boundary to the complement of the domain. This is the place where the Whitney
coplumpness of the domain is utilized.
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2. WSIO’Ss OF CONVOLUTION TYPE

In this section we provide a proof for Theorem 1.7. That is, we obtain a concrete
integral characterization of the boundedness of f +— Vkx f in terms of the convolving
kernel k and this characterization applies, for instance, in the homogeneous Holder—
Zygmund spaces and in the so called minimal Banach space. The proof relies on the
Littlewood—Paley theory [FJW91|. We also construct unbounded operators that are
counterexamples to certain natural questions related to the themes of this work.

2.1. Homogeneous Besov spaces. Before the definition of homogeneous Besov
spaces, let us illustrate their connection to our problem and introduce the so called
minimal Banach space B)"'. Consider a Banach space B that contains Sy(R™),
the Schwartz functions with zeroth vanishing moment, and that is continuously
embedded in S)(R"). Assume also that the B-norm is translation and L'-dilatation
invariant. The Banach space B = B?’l satisfies the aforementioned properties and it
is actually the minimal such space according to the following theorem, whose proof
can be found in [FJWO91, pp. 25-32|.

Theorem 2.1. Let (B, || ||g) be a Banach space that is continuously embedded in
SH(R™) and that contains So(R™). Assume that if f € B, h € R", and X\ > 0, then
f=f(—=h),\"f(\) € B and

I flls = [1fllz, A" FA)ls = [[f]]5-

Then BY"" € B and this inclusion is bounded.

We take this result for granted and it gives a description of B (R") for the
purposes of the present discussion. The maximal characterization of Hardy spaces
[Ste93, p. 90-91] implies that H'(R") satisfies the assumptions of Theorem 2.1. As
a consequence, the following inclusions are bounded

BY'(R™) ¢ HYR™) ¢ LY(R").

Theorem 1.7 characterizes the boundedness of f — Vk % f in the minimal Banach
space. This result is somewhat anticipated as the boundedness of singular integrals
depend on delicate cancellations that manifest only if the function that we are
integrating has the zeroth vanishing moment. And this is true, in particular, for
functions in the minimal Banach space B(l)’l(]R") as a subspace of the Hardy space.
However, one should be careful here because the assumptions of Theorem 1.7 do
not suffice for the boundedness of f + Vkx f in the Hardy space H'(R"), let alone
in L'(R").

Next we justify the B)"'(R) — L'(R) boundedness of those operators character-
ized in Theorem 1.7. This justification is not completely rigorous as is later indi-
cated. This one-dimensional heuristics, based on a special atom decomposition, pro-
vides insight how integrals associated with the second order differences emerge. The
following discussion regarding this decomposition is from [FJW91, pp. 25-32] and
details can also be found in [Mey92, pp. 192-197|. For a finite interval I = [a,b] C R
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we denote its left and right halves by I, = [a, (a + b)/2] and I, = [(a + b)/2,0].
The special atom associated with I is the function h; = |I|7(xs;, — x1,). Clearly
||h]||L1(R) =1 and

d
(2.2) %hj = ’& — b]’l(da + 0y — 25(a+b)/2)
in the sense of distributions, where d, is the Dirac’s delta located at the point x. Let

B consist of all those distributions f € S|(R) having a special atom representation
(2.3) F=Y cih,
j=1

where the convergence is in Sj(R), the complex coefficients satisfy > 7%, |¢;| < oo,
and hr,’s are special atoms as described above. If we let

||f||lz = inf { Z lej| = f= Z cjhy, is a special atom representation},
=1 =1
then (B, || -||) is a Banach space, known as the special atom space. Related spaces
are studied in [OSS86] but the following result is taken from [FJW91, p. 32|.

Theorem 2.4. The special atom space (B, || -||p) coincides with BY'(R) and there
exists a constant ¢ > 0 so that

e < M fllpore < ellflls, if fe B (R).

Having this atomic decomposition at our disposal we can now proceed. Assume
that & satisfies the integral condition (1.8).2 Fix also f € BY"'(R) and apply (2.2)
and (2.3) in order to justify the following manipulations

d
T (kx ) E:qd (k% hy,)(x)

= ZCj'CLj — bj|_1(l€(l' — CLj) -+ k’(l‘ — bj) — 2]6’(1’ — (aj + [%)/2))

Integrating this identity with respect to the x-variable, yields

d o
—xp)=C -
[ty = O 2 e
where C} denotes the left-hand side of (1.8). Then infimizing the right-hand side
over all atomic decompositions (2.3) and applying Theorem 2.4 yields the bound-
edness of f — Lk« f from BY(R) to L'(R).

2This requires a more specific quantification. A trivial one is that k € S (R). Perhaps a more
realistic one is to assume that k can be approximated by a sequence (k;);en C So(R) satisfying
the integral estimates (1.8) uniformly.
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A rigorous proof of Theorem 1.7 is based on the Littlewood-Paley theory. This
is where we are heading from now on.

Definition of Besov spaces. The topic here is the scale of homogeneous Besov spaces
and our treatment follows [FJ90, FJW91], see also [Tri83, Chapter 5|. These spaces
allow us to measure the size and smoothness of a given distribution in high precision.
First we introduce some notation. The Fourier transform of f € L'(R™) is defined
pointwise by f(€) = Ff(€) = Jan fx)e™?™4dz if & € R™. The Fourier transform
extends to &’ by the duality (FA,¢) = (A, Fp), where A € S’ is a tempered
distribution and ¢ € § C LY(R") is a Schwartz function [Rud91, p. 192]. A
Schwartz function ¢ : R® — C € S is a Littlewood—Paley function if it satisfies:
e ¢ is a real-valued function,
e suppp C {{ € R" : 1/2 < |¢| < 2}. In particular ¢ € S, that is, ¢ is a
Schwartz function whose all moments vanish,

o [p(&) > > 0if3/5 <[] <5/3.

The function ¥, ¢ = $/n, n = >oven(@(277))?, is a Littlewood-Paley dual function
related to . 1t is a Littlewood—Paley function itself, satisfying

(2.5) Y e@OYERTE =1, HEAO.

The topological dual of the closed subspace S,, C S is isomorphic to §’/P, the
space of tempered distributions modulo polynomials. The convolution of A € §'/P
and a test function ¢ € S, denoted by A x ¢ = ¢ x A, is the element of S'/P
defined by (A * p,¢) = (A, ¢ x9) for ¢ € So. Here ¢ = ¢(—-) is the reflection
of ¢. Furthermore, A % ¢ is regular and it coincides with the smooth function
r — AN*xop(x) = (A o(x —+)). The identity (2.5) yields the following Calderdn
reproducing formula for A € S’/ P,

(2.6) A:Z%*lﬁy*/\
vEZL

with convergence in the weak*-topology of &'/P [FJW91, pp. 120-125|. Choose a
Littlewood—Paley function p, depending on a priori function ¢, so that p(§) = 1 if
¢ € supp . Then

(2.7) v py = (p*xp)y =, =2"p(2").
Having a fixed but arbitrary Littlewood—Paley function ¢ at our disposal, we define
the homogeneous Besov spaces as follows.

Definition 2.8. Let 1 < p,q < 0o and a € R. The homogeneous Besov space B;"q
is the Banach space of all f € §’/P satisfying

1/q
g = 1 lgec = (Z (2”ar|wfr|m)q) <o

VEZL

If ¢ = 00, we use sup-norm instead of /?-norm.
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The index « is related to regularity or smoothness and the indices p,q are re-
lated to size. Higher value of the regularity index « implies higher local regularity
properties. The size index p is more significant than the so called fine-index q.

The spaces Bl?’q are included in §’/P by definition. However, the convergence in
the Calderon reproducing formula (2.6) can be further analyzed to show that the
formula

FeY oty f
VEZL
defines a linear extension operator Bg’q — &, if k = max{[a —n/p|, —1} [Kyr03].
Here Sj, k € Ny, denotes the topological dual of Sy ={p € S : [27¢0 = 01if |o] <
k}, which is a closed subspace of S. Denote also &’ ; = §'. Furthermore, [o — n/p]
denotes the greatest integer less than or equal to a — n/p.

A non-linear extension operator §’'/P — S’ exists and it allows us to compute the
Fourier transform of A € §’/P. This Fourier transform is uniquely defined outside
the origin. There are also implications to regularity. Indeed, assume that o > 0,
1 <pg<oo,and f € Bg"q. The Hahn—Banach theorem [Rud91, p. 61| allows us
to extend f to a Schwartz distribution, that is, there is A € &’ such that A|S. = f.
Let ¢, 9 be a dual pair of Littlewood—Paley functions that are even (this is achieved
by choosing ¢ so that its Fourier transform is even). Define a Schwartz function @,

. 1, £=0
(&) = N
© {zﬁ_w PR7EP(27E),  EH0.

Then A = ®*x A+ > 2 p, x 1, x A in the weak* topology of &'. Here ® x A
is a smooth polynomially bounded function, according to Paley-Wiener theorem
[Rud91, pp. 199-202], and the series > - ¢, x ¥, * [ converges absolutely in
LP(R™) since f € B;z,oo and o > 0. Thus A is regular so that

(2.9) A € CX(R™) + LP(R™),

where C(R") is the space of smooth polynomially bounded functions.

Definition 2.8 is @-independent so that the resulting norms associated with two
different Littlewood—Paley functions are equivalent [FJ90, Remark 2.6.]. This pro-
vides the means to interprete Littlewood—Paley functions as eigenfunctions for el-
liptic partial differential operators. To illustrate this further consider powers of the
Laplacian

(=A)"p, = 22" ((=A)"p),, meN.
Here (—A)™p = FH(4n?)™|€*™ @] remains a Littlewood—Paley function. In this
sense the functions ¢, are eigenfunctions with corresponding eigenvalues 227, One
can consider more general homogeneous elliptic pseudodifferential operators like
fractional powers of the Laplacian provided by Riesz potentials,

(2.10) (V=A)p =T =F'[@2rlg)*¢], acR.

Hence the Littlewood—Paley functions are eigenfunctions whose eigenvalues are 247,
It is not difficult to show that Riesz potentials Z¢ map S, to itself continuously and
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they map S’/P to itself when defined via the duality (Z*A, ¢) = (A, Z%p). Using
homogeneities of the Fourier transform it is easy to verify that, if 0 < § < n, then

(2.11) TP p(x) —Cn’ﬂ/Rn —\x—y\”—ﬂdy’ if v € R",

given that ¢ has some regularity, say, if ¢ € Cy(R™). Hereby we are lead to weakly

singular integral operators as 7™ € SKg.'(0) if m € {1,2,...,n—1} and 0 < 6 < 1.
The following result establishes the fact that different means to quantify the

boundedness of Vk x f on homogeneous Besov spaces are equivalent. Notice that

the distribution derivative 0%, o € N, induces a linear operator, mapping S'/P to

itself.

Proposition 2.12. Let a,s € R and 1 < p,q < co. Then I* is an isomorphism of
By onto B;*O"q and the Riesz transforms R; = —=1'0;, j = 1,2,...,n, are bounded

on Bg"q. In particular, if k € §'/P, the following are equivalent
o fikxf is bounded B;"q — B;*O"q,
o =T kxf=3"" Rj(0;kx [) is bounded on By,
o [ Ok« f is bounded on By for every j =1,2,...,n.
That is, the initial domain of definition of these operators is Ss and, in the positive

case, they admit a bounded extension to the corresponding Besov space. If 1 < p,q <
00, then this bounded extension is unique.

The verification of this result is straightforward by using the ¢-independence and
the reproducing formula (2.7). The specific details are omitted.

Various homogeneous Besov spaces have a characterization in terms of relevant
and concrete function spaces [FJW91, Gra04]. The minimal Banach space B)"" was
mentioned. The homogeneous Sobolev space BS™? & W*2(R") consists of f € S'/P
with Z=®f € L?(R"). This space is normed with

ez = 127 Fl| 22

Furthermore, B4 ~ C*(R") is the homogeneous Holder-Zygmund space. If a =

m + 6, where m € Ny and 0 < § < 1, this space consists of continuous functions
f :R™ — C such that

AR (f )] < CIA™, x h e RY,

where A7(f,+) = (7_p, — id)™"1f is the order (m + 1) difference of f. These
differences provide a similar characterization of all those homogeneous Besov spaces
for which a > 0. This is what we study next and our focus is on the space B% s

2.2. Boundedness of convolution operators. The purpose of this section is to
provide a proof of Theorem 1.7. We begin with a characterization of Bl1 *® in terms of
the integral condition (1.8). Then we characterize the boundedness of f +— Z 'k« f
in terms of test functions. Removing this test function dependence in the endpoint
exponents yields Theorem 1.7 as the resulting condition is precisely that k € B% st



18 ANTTI V. VAHAKANGAS

Characterization of B;™. Recall that AP(f,-) = (7_, — id)™f is the order m € N
difference with offset h € R™ of f : R* — C. The difference operator extends to
S' /P via duality

(AR (A ), ) = (A AT (g, ), A eS/P.

These difference operators yield a characterization of homogeneous Besov spaces
with positive regularity. To be more precise, we fix 1 < p,q < oo and a = m+4 > 0,
where m € Ng and 0 < § < 1. Then m +1 > m + ¢ and the following norm-
equivalence holds true [Tri83, p. 242|

1/q
—aq|| AL |2 dh
213 Il ~ | (o AT EDIE )T g <o
sy 118718 s, -

The restriction a@ > 0 in (2.13) is crucial. For instance, the Dirac’s delta satisfies
5 € BY™ but A™(4,-) remains only a measure if m € Ny and h # 0. However,
Proposition 2.12 implies that Z'(8) = C,|z|""' € By™.

The right-hand side of (2.13) requires an interpretation. The series in the Calderén
reproducing formula (2.6) converges a priori in the weak* topology of &’/P. But
there is more to this if we apply the formula to k£ € B;"q with indices as specified
above. Fix a Littlewood—Paley function ¢ and its dual function . Then there
exists polynomials {Py : N € N} C Py, where k = max{[o — n/p|, —1} < m and
P_1 = {0}, and a tempered distribution K € S’ such that

(2.14) K:J}Enoo(z go,,*w,,*k—i—PN),

v=—N
with convergence in the weak™ topology of &’ [Kyr03|. The Calderén reproducing
formula states that K|S, = k and (2.9) shows that K € C¥(R™) + LP(R™). In

particular, if A € R", we define
AT R ) |ee = (1A ]

and these quantities are well-defined. We also have the identification
o0

@) [ ATE)e@d = 3 (AP ar b k) g), 9 €S

V=—00

by using (2.14) with the identity AJ**!(P,.) = 0 if P € P,, (this follows from the
representation (A.1) for the order m + 1 difference). Using the identification (2.15)
with an approximation of the identity, we see that AZ”H(K ,+) is independent of the
renormalizing polynomials.

We have settled the interpretation of (2.13) and then we continue the proof of
this norm-equivalence under the assumptions p = 1, ¢ = oo, and a = 1. The case
p = ¢ is treated in the same manner but the general case requires further estimates
that we omit.
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Lemma 2.16. Let k € BlloO and p, ¥ be a dual pair of Littlewood—Paley functions.
Then k satisfies the estimate

(2.17) sup {10174 32 13 w3 f <
Yy

VEZ

Proof. Fix y € R™ \ {0} and choose vy € Z so that 20 < |y|~t < 2»*+l Split
the summation in (2.17) as > ., = > o, +> ., = X1 + Zao. Applying the
triangle-inequality and Young’s inequality, we obtain

(218) S0 <4 [[ullnllen * bl < Cy > 2772 |y % Kl < Cyllk]]groelyl-
v>1g [ 224 20)

Next we estimate |Ys|. Applying the translation invariance and linearity of the
convolution, we obtain the identity

2 2 n
AL (py * by x k) = (AL (Yo, ) x @ x k(z), = €R"
Using this together with Young’s inequality, we get the estimate
2.19) B2l < D NANw Iz llew * Kl = (1l gree D 271 Ay (&, )|z
v<vg v<vo

To estimate further, we use the following integral representation

AR () = (Tp — id)?(x)
=D hahs, /1 /1(5j10j2w)(:c + (01 + 02)h)dB,db,,

J1=1j2=1

which follows from applying the identity ¢(x + h) — (z) = fol h - N(z + 0h)do
twice for h € R™\ {0}. Taking the absolute values in this representation, then using
triangle-inequality and Fubini’s theorem yields

1A%, e < 1R calld™llp

|af=2

Applying this estimate with A = 2"y allows us to continue the estimate (2.19) as
follows

(2.20) 5] < Cul ke 322727y < Col oyl
v<rg
The estimate (2.17) follows by combining (2.18) and (2.20). O

We are ready for the characterization of B>, Recall that, by definition, k € B}*™
means that k € S'/P satisfies the uniform estimate sup,cy 2"||¢, * k||1 < oo for a
Littlewood—Paley function ¢ € S..
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Theorem 2.21. Let k € §'/P. Then k extends to to a reqular tempered distribution
K € 8" which satisfies the integral estimate

(2.22) smp{|y|1 K(x—y)+ K(z+y) —2K(x)|d:c} =B <
y#0 R~

if, and only if, k € B]™.

Proof. Fix a dual pair of Littlewood—Paley functions ¢, 9, satisfying p(z) = ¢(—x)
if x € R™. This is achieved by choosing ¢ so that its Fourier transform is even.
Assume first that k is a restriction of a regular tempered distribution K, satisfying
the integral condition (2.22). Fix v € Z. Because ¢ € S is even and [ ¢ = 0, we
obtain for almost every x € R™,

o * k(2)] = o, x K(2)] <270 [ [ou(W)I|K (2 —y) + K (2 +y) — 2K (2)|dy.

Rn

Integrating this estimate with Fubini’s theorem and (2.22), yields

l|p * || < B/ lou ()| lyldy = B2‘”/ 2" p(2"y)||2"y|dy = C,B27".
R" Rn

This implies that k € B> as desired. Then assume that k € B>, At this stage
we could apply (2.14) and (2.15) with Lemma 2.16 to reach K € &’ and identify
AY(K,-), y # 0, with the integrable function ., A%(¢, b, x k,-). We include
further details in the easy case n > 1. Fix v € Z. Then

IF(w x % B)l[ee < [lpw % b % k[ < Cylloy x K|l < Cyp27

and properties of Littlewood-Paley functions imply that supp F(p, x 1, x k) is con-
tained in the annulus B(0,2""!) \ B(0,2""!). Combining the observations above
and using the assumption n > 1, we see that the formula

FE=3" Floywty k) € Lb (R) N LE®" (0}) C 8

loc
defines a Fourier transform of K € & with K = Y2 ¢, x ¢, x k in the
weak™® topology of &’. The Calderon reproducing formula (2.6) implies that K
is an extension of k, that is K|S, = k. Estimating as in (2.9), we see that
K € C(R™) + L'Y(R™). Then, assuming that y € R™\ {0}, we apply Lemma
2.16 to see that A2(K,-) € L'(R") satisfies the estimate

[ASE M < Y 1A x %k, )|l < Clyl.

V=—00

By the change of variables w = x + y we replace the integrand A2(K,-) on the
left-hand side by the absolute value of the symmetric second order difference, which
yields the desired estimate (2.22). O
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Characterization of the boundedness. Next we characterize the boundedness of the
operator f +— Vkx f on homogenenous Besov spaces in terms of the convolving
kernel. In certain endpoints the condition is that k € B;"™. Moreover, this function
space admits a concrete characterization given in Theorem 2.21.

Our proof is an adaptation of Peetre’s characterization of the boundedness of
f— kx* f [Pee76, pp. 132-136] where the corresponding endpoint condition reads
as k € B)">°. This function space does not have a concrete integral characterization
as was pointed out in connection with (2.13).

Theorem 2.23. Let « € R, 1 < p,q < o0, and k € S'/P. Then the convolution
operator f+— kx f has a bounded extension By? — B;Jra’q if, and only if,

(2.24) SHEQ”II%*/@*J"HLP < Cillfllees  f € S,
ve

where  is any Littlewood—Paley function.

Proof. We prove the case o = 0. The general case then follows from Proposition
2.12 and the identity Z*(k xZ-*f) = k% f for f € S. Fix Littlewood—Paley
functions ¢, p as in (2.7), satisfying ¢ x p = ¢.
First we prove necessity. Fix f € S and v € Z. Using the assumption about
boundedness, we get
2|y * bk flle = 27|y * ko pu x fllee < |k x pu* [l grag,)
< Ckllpy f||Bqu(¢) < Ckllpy f||Bg’1(¢)-

In order to estimate further, notice that the supports of ¢ and p are contained
in {{£ € R" : 1/2 < |¢] < 2}. Thus, using the Fourier transform, we see that
¢u* py = 01if [ —v| > 1. Applying this and the Young’s inequality, we obtain

(2.26) low* Fllgory = D leu*pu flloe < Copl|fllno-
pilp—r|<1

Combine estimates (2.25) and (2.26) in order to obtain the estimate (2.24).
Then we prove sufficiency. Let f € Sy and v € Z. Then using (2.24), we get

2" oy x kx flloe = 2"||0u *x kx py * fllze < Crllpy * £l Lr-

Taking the (7(Z)-norms we get the estimate ||k x f|[z1a0,) < Cul|f[[goa(,). The
boundedness result follows from this and the p-independence. U

(2.25)

Theorem 2.23 has the following convenient interpretation in the case p € {1, 00},
connecting the boundedness properties of f +— k% f to the condition k € Bl’c’O

Theorem 2.27. Let k € 8'/P, a € R, p € {1,000}, and 1 < q < oco. Then the
convolution operator f +— kx f has a bounded extension Bo‘q — BHO"‘J if, and only
if, k € By™, that is, k € S'/P satisfies

sup 2”||¢, * k|| < o0
VEZL

for any Littlewood—Paley function .
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Proof. Fix Littlewood—Paley functions ¢, p as in (2.7), satisfying ¢ x p = ¢p. We
begin with sufficiency for p € {1,00}. For f € Sy and v € Z, apply Young’s
inequality to obtain the estimate

2lpy x b x flle < 2%|lu % K|t fllr < ClIF o

Thus k satisfies (2.24) and Theorem 2.23 implies the boundedness result. Then we
prove necessity for p = 1. Applying Theorem 2.23 we obtain the following estimate

2V u * k|| = 2"||@y * k% pul|r < Crllpuller = Cillpl|r, v € Z.

The right-hand side is independent of v and therefore we have k € Blloo Finally
we consider necessity for p = oo. For a fixed v € Z it suffices to show the same
estimate as before,

(2.28) 12" x K[ < Cllpy||r = Cllpl |

with C' independent of v. Fix R > 0 and choose a sequence of smooth functions
(9j)jen such that [g;| < XpBo.r+1) and lim;o g; = exp(—iarg(2”y, x k))XB(o.r),
arg(0) = 0, pointwise almost everywhere. Denote also h;(z) = g;(—x) for every
7 € N. Now using the identity ¢ = ¢ % p, the Dominated convergence theorem, and
Theorem 2.23 we have the estimate

/ 12", *x k(z)|dx = lim
B(0,R)

Jj—00

| @ o b@g s

< limsup 2”|[p,, * k * py, * hj|[ < limsup Cl|py|[ 1|7 < Cillpl|Ls-
j—o0 Jj—o0
We inserted p, to ensure that Theorem 2.23 applies. Indeed, it may be that h; € Sy
but in any case we have p, x h; € So. The estimate (2.28) follows from Fatou’s
lemma and the estimate above as the right-hand side there is independent of R. [

The following concrete characterization for the boundedness of f +— k x f follows
by combining Theorem 2.21 and Theorem 2.27.

Theorem 2.29. Let « € R, p € {1,000}, and 1 < ¢ < co. Assume that k € S'/P.
Then the operator f — kxf : Soo — S’ /P has a bounded extension B;“’q — B;’Lo"q if,
and only if, k has an extension to a reqular tempered distribution K € S’ satisfying
the integral estimate

(2.30) 31;%) {\y[l /n |K(z —y)+ K(z+y) — 2K(x)]dx} < 0.

In Theorem 1.7 we proposed a somewhat different formulation; its proof follows

from Theorem 2.29 and Proposition 2.12.

Remark 2.31. (i) Let a,s € R, 1 < ¢ < 00, and p € {1,00}. Using the Riesz
potentials and Theorem 2.27 it is simple to verify that the convolution op-
erator f — k* f has a bounded extension By — B;’*a’q if, and only if,
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k € BP*. Assuming that m + 1 > s > 0 then, according to (2.13), the
condition k € BY'™ is equivalent to the integral condition

sup{|yrs / !A;"“(k,xndx} < o0
Rn

y70

(ii) Assuming that k € B‘f’oo, the operator f +— k x f has a bounded extension
B]‘j’q — B;Jra’q if o € Rand 1 < p,q < oo. This follows from the Young’s
inequality and ¢-independence of the homogeneous Besov norm;

(iii) An inhomogenous counterpart of Theorem 2.27 exists. That is, the corre-
sponding result holds within the scale of inhomogenous Besov spaces Bj.
For the definition of inhomogenous spaces, see [Tri92, p. 28|. For the proof
of the result, see [Tai65, p. 827].

2.3. Unbounded operators. Theorem 1.7 characterizes the boundedness of the
operator f — VEk«x f on spaces B(l)’l and C®. The characterizing integral condition
(1.8), equivalent to that k € B{*™, is also sufficient for the L*(R") boundedness
of the operator in question; this follows from (ii) in Remark 2.31. Here we give a
counterexample which implies the following negative result:

e The condition k € Bioo 1s insufficient for the boundedness of the operator

f— Vkxf in the Hardy space H*(R™) or even in LP(R™), p € (1,00) \ {2}.

We don’t know if the LP-boundedness holds with a kernel k € Bll’oo satisfying the
pointwise size condition |k(z)| < ci]z|"". At least this size condition itself is
insufficient for the LP-boundedness, as our second counterexample implies:

e The L*-boundedness of the operator f +— Vk x f can fail under the size
condition |k(z)| < ci|z|™™ . This is so even when combined with a natural
pointwise Lipschitz reqularity condition.

To complement this negative result, let us also state a closely connected positive
result here. Assume that a locally integrable kernel satisfies the size condition
|k(z)] < cg|z|"! and the (1 + §)-Hélder condition for 0 < § < 1, that is,

[k(a + 20) — 2k(x + ) + k(2)] < b2l 0, dlh] < ol

Then we gain boundedness of the operator f +— Vk x f in the spaces LP(R") for
p € (1,00). Indeed, Theorem 3.40 shows that the operator T = f +— kx f € SKza (6)
satisfies the assumptions of Theorem 1.20. Further analysis yields boundedness also
in the Hardy space [Vah08§]|. It is also interesting to notice that k here satisfies (1.8).

Failure of the LP-boundedness, p # 2. We show that the condition k & Bi’oo itself
does not suffice for the boundedness of f — Vk % f on LP-spaces, p # 2. The
construction here is due to Triebel [Tri79] and it exploits certain intricate cancella-
tions captured by the Littlewood—-Paley inequality. This inequality implies that the
relevant cancellation effects manifest already within dyadic frequency ranges and
two separate Littlewood-Paley projections ¢, x f and ¢, * f, i # v, do not interact
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by producing significant cancellations. That is, if 1 < p < co, we have
1/2
(2:32) Al < || (D lewx 1) || < UL,
vEZ

where ¢ is any Littlewood—Paley function and C' is independent of f € LP(R")
[FJWOL, p. 42|. Then consider the following functions Gy, Fy : R" — C defined in
the Fourier variable

(A) F(GN)(E) = N _ 7(€ — 2™e,) is the sum of translations of a fixed bump
function © € C§°(R™) at dyadic points 2™e; for m =1,2,..., N,
(B) F(Fn)(&) = Zi\izl e 22" (¢ — 2™ey) is as in (A) but with the m’th
translation modulated by & r e=2m2"¢1,
The inequality (2.32) implies that the LP-norm of the function G is roughly N'/2.
To reach this estimate, it suffices to notice that

loy * Gn| = |pu*xGy|, 1< puv< N

The functions Fly are uniformly bounded with respect to N; indeed, due to modu-
lation in the Fourier variable, the m’th bump function is concentrated near to the
point 2™e; in the spatial variable. Interpolation between the endpoint spaces L?
and L™ implies that the LP-norm of the function Fy is roughly N7 if 2 < p < oo.
The punchline is as follows: an operator, transforming Fl to Gy independent of
N, is unbounded in L? for 2 < p < oo because limy_..o N'/?>~ /P = co. We shall
realize the program above in what follows.

First we construct a kernel k € Bioo For this purpose, fix a Littlewood-Paley
function ¢ satisfying

(2.33) F(p)|Bler,e) =1, Fle_1)|Bler,e) = 0= F(¢1)|B(es,e),

for some € € (0,1). Let m # 0 be a real-valued Schwartz function satisfying supp 7 C
B(0,¢) and define f,(£) = 22" (¢ — 2Mey) for all m € N. Using (2.33), we see
that F(¢,)fm = Oumfm if m € N and v € Z. Define g(€) = S22 27" f,.(€). We
claim that ¥ = F~!g has the desired properties. By the properties of ¢, we have
o, *k=01if v < 1. For v > 1, we have

2|y * bl = 1fullor = [1Toave, (X7 F )10 = ||F ] < 0.

Thus k € Bll’oo, as desired. In particular, according to Theorem 2.21, the kernel k
satisfies the integral condition (1.8). Applying the Fourier transform we see that,
in the sense of distributions,
k(x) = Z 9 me2miZter@tMe) (Folyy(p 4 9Me)) x € R,
m=1

so it is immediate, for instance, that the integral [, |k(x)|dz converges and therefore
the kernel has decay at the infinity. The following result shows that size+cancellation
is a delicate combination when understood as conditions that might or might not
imply the boundedness of f — Vkx f on LP.
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Proposition 2.34. Let k € BL™® be as constructed above. Then the convolution
operator f T ' kx f =" Rj(0jkx f) has no bounded extension to LP(R") if
1 < p<ooandp # 2. In particular, the operator f — Vkx f has no bounded
extension to these function spaces.

Proof. Let Fy be given by its Fourier transform F(Fy) = Zﬁzl fim. Then Fy € Su
for all N € N and using the basic properties of Fourier transform, we have the
explicit formula
N
FN(l') _ Z €2m'2mel.(x—2mel) (filﬂ') (.CL' - Zmel)'
m=1
From this we can conclude that

|1 Fn|loo < SURP { Z (F 7)) (z — 2’”@1)\} < 00
m=1

TER?

for all N € N. Also ||Fy||z2 = ||F(Fn)||z2 = CN'?, where C is independent of N.
Thus, if 2 < p < 0o, we have the inequality

(2.35) |1 Fxlloe < ||Ew|IS2P|| fu]]27 < ONYP,

where C' is independent of N. On the other hand, applying the Littlewood—Paley
inequality (2.32) with p-independence, yields the estimate

(i@”\wk*mv)m

v=1

N 1/2
(Z ’627ri2”x1 (:F_lﬂ' % Jq:-—17r>’2)

v=1
= C,NY?||F\rx F 7| 1o

Combining the estimates (2.35) and (2.36) we get the following estimate, with con-
stant C' independent of IV,

NY2 < C||T % * Fy||» < C||Fy||» < CNYVP.

Hence the operator f — Z7'k* f is unbounded on LP(R") if p > 2. This conclusion
for exponents 1 < p < 2 follows from duality. Unboundedness of f — Vkx* f follows
now from the boundedness of Riesz transforms R;, j = 1,2,...,n, on LP-spaces for
1 <p<oo. O

T~k % Fx||» > C,

Lp

(2.36) e

Lp

Failure of the L?-boundedness. Here we show that natural size condition on &, com-
bined with Lipschitz regularity, does not suffice for the boundedness of f +— Z 'k« f
on LP(R") if 1 < p < co. Using the boundedness of the Riesz transforms on these
spaces, combined with the identity

T 'kxf=) ROk« f), fE€Sx,
j=1
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we see that the boundedness of f +— VEk* f on LP(R") does not either follow from
these size and smoothness conditions on k.

The following construction is joint work with M. A. Vdhikangas [V&h05]. Define
k:R"\ {0} — R by k(z) = sin(z;)|z| ™. We claim that f +— Z 'k* f is unbounded
on L*(R™) and the kernel k satisfies

e the size condition

(2.37) |k(z)| < cplz|' ™™ for all z € R",
e the Lipschitz condition
(2.38) |k(z + h) — k()| < cglhl||x|™" for |z| > 2|h|.

Clearly k satisfies (2.37) and it is continuously differentiable outside the origin with

cos(ry) nsin(xy)x; —nsin(zq)z; .. .
- ;o O0jk(r) = ————, if 1.
|x|n |ZE|”+2 ) J (.I) |l‘|n+2 , 117 7é

Thus |Vk(z)| < Cylz|™™ and k satisfies (2.38). It suffices to prove that the Fourier
transform of k fails to be bounded near 4(27)'e;. Then the operator f — Z 'k f
has no bounded extension to L?(R") and an interpolation argument, combined with
duality, shows that Z~'k % f has no bounded extension to LP(R") for 1 < p < oo.

Proposition 2.39. Let k(z) = sin(xy)|z|™, © € R" \ {0}. Then the Fourier
transform Fk € 8" is a reqular distribution, given by the formula

€ — (1/27)e|
2.40 Fk() =C,log ————7—,
240 &) = oo | (1 am)e
As a consequence, the convolution operator f — I 'kx f has no bounded extension
to LP(R™) if 1 < p < o0.

81k(x) =

£ €R™.

Proof. We prove the claim only when n > 3; similar computations apply in di-
mensions n = 1 (the derivative of log|{| is p.v.1/§) and n = 2 (recall Laplace’s
fundamental solution). Because the Fourier transform of z +— sinx; is compactly
supported, we have for j € {1,2,...,n} the identity

—2mix; Sin Xy

0;Fk —]:( ) = —=2miF (z;|z|™") * F(sinzy).

]
We also have the identity

Fajla|™) = CuF (05]=*™)

= Co&F (l2]P™") = Cugyl€| ™ = Cu0;log [¢].

Combining the two previous identities, we obtain
€ — (1/27)ed|
€+ (1/2m)e|
Because the partial derivatives coincide and k € L'(R™)+ L*(R"), so that the Fourier

transform of k£ cannot converge to a nonzero constant at the infinity, we have the
desired identity (2.40). O

0;Fk = C,0;10g €] % (81 /2m)er — 0—(1/2m)er) = Cn; log
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3. WSIO’Ss WITH GLOBAL KERNELS

In this section we study global WSIO’s — operators T' € SKg.'(0) whose associated
kernels are globally defined. The main result here is a so called Ty theorem, see
(3.1), characterizing the desired boundedness property of global WSIO’s restricted
to a Whitney coplump domain 2 C R"™. The following ingredients are utilized in
the proof whose main obstruction is comprised of terms associated with so called
boundary cubes:

e A reduced T'1 theorem, formally stated as
T1=0=T"1= {0°T,0°T" : |a| = m} C L(L*(R")),

where T' € SKg,'(6). If T is of convolution type, then the condition 71 =
0 = T*1 is satisfied. The main application of this result lies in the proof of
the T'yq theorem.

e BMO-type spaces f™2(Q) and F™2(Q) defined on general domains Q C R”.
These are large spaces because certain terms associated with boundary cubes
in the domain are omitted from the definitions.

e A geometric characterization of Whitney coplump domains in terms of a
reflection. This implies that boundary cubes in the domain can be reflected
to the complement of the domain, so that the diameter of the cubes is
preserved. Also the mutual distance between the boundary and reflected
cube should be bounded by a constant multiple of the common diameter of
these two cubes.

e Reflected paraproduct operators on Whitney coplump domains 2 C R".
Such an operator depends heavily on the reflection occuring in the charac-
terization of the Whitney coplump domains. The purpose of these operators
is twofold: they are used in a reduction to the reduced 7’1 theorem (in a
standard manner) but they also modify the associated kernel K outside of
Q) x € to reach a bounded operator on L*(R"™). The novelty of our solution
lies in this modification procedure where the boundary terms are treated
using the reflection.

The aforementioned ingredients combine in the proof of the following T"xq theorem
for restricted operators,

(3.1) Txa, T*xq € f™2(Q) & {9°T,0°T* : |a| = m} C Z(L*()),

where T" € SKg.'(d) and Q@ C R” is a Whitney coplump domain. Altough the
operator T is associated with a globally defined kernel, the conditions in (3.1) are
intrinsic to €2 so that they depend only on the associated kernel restricted to the

set Q x Q\ {(z,z)}.

3.1. Reduced T'1 theorem in R". The fact that convolutions do commute, used
in conjunction with the Calderén reproducing formula (2.6), lies behind the proof of
Theorem 1.7. Not all of the WSIO’s commute with convolutions and the following



28 ANTTI V. VAHAKANGAS

approach is adapted for the proof of the reduced T'1 theorem which is a boundedness
result for globally defined WSIO’s under strong cancellation conditions.

The Calder6n reproducing formula can be refined to a so called ¢-transform
identity [FJ85] which states that

F=> {f.0a)vq

QeD

where f € S§'/P and ¢g,1q are translations and dilatations of a dual pair of
Littlewood-Paley functions ¢, 1, so that both ¢¢, g are concentrated on the dyadic
cube Q € D. The sequence {(f, pg) : @ € D} of coefficients can be used to compute
norms of f in the scales B;“’q(R”) and Fpo"q(]R”). In particular, if T': Soo — §'/P is
continuous, various function space norms ||7f|| can be computed using the coeffi-
cients

(Tf,0q) = > (f.or)Tp,0q), QE€D.

PeD
As a consequence,

ITfIl < CrlI£1]

given that the matrix {(T9¥p,pq) : P,Q) € D} is a so called almost diagonal
matrix. Hereby the boundedness of T on various function spaces reduces to an
almost diagonality condition. An important example is that, if 7" is a Calderén—
Zygmund type operator, this almost diagonality condition is implied by the integral
conditions

/n T'pg(z)dr =0 = /R" Tiyg(x)dr, Q €D,

which correspond to the weak formulation of the familiar cancellation conditions
T1 =0 = T'1. This Frazier—-Han—Jawerth—Weiss approach to reduced 7’1 theorem
for Calderon—Zygmund type integral operators is well established [FHJWS89, FJ90,
Wan99| and there are also results for potential operators resembling globally defined
WSIO’s [GT99, Tor91, V&hos].

The described approach does not support localization since the functions ¢q, ¢
are not compactly supported. We conform to later requirements of locality by adapt-
ing the treatment of Meyer and Coifman, originally involving Calderén—Zygmund
type operators [MC97, pp. 51-55|. In particular, we use compactly supported
wavelets {77%} and establish almost diagonality estimates for the operator matrices
{{(TYp | ¥5)}. There is also a price to pay from this wavelet transform point-of-
view: small technicalities arise from that compactly supported wavelets are not of
class C*°(R").

Standing definitions and notation. Let ) # Q C R™ be a domain. If f € LP(Q) and
ge LP(Q),1/p+1/p =1, then denote

(3.2) (f | g) = / f(2)g(x)de.
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This extends the notion of an inner product on L?(2). For the sake of weak deriva-
tives we need another extension, furnished by the duality. A typical approach via
distributions excludes compactly supported wavelets as test functions since these
are not smooth. To include these wavelets as test functions we make use of the fol-
lowing modifications. Let k € Ny and denote C§(Q2) = {p € C§(R") : supp ¢ C 0},
Co(2) = CJ(Q2). By (CH(Q))* we denote the algebraic dual, consisting of conjugate-
linear functionals

A:CHQ) = C:p— Alp) = (A| o).

In the sense of (3.2), LP(2) C (CH(Y))*. If o € Nj and xk = |a| then the weak
partial differential operator 0* is the linear operator (Cp(€2))* — (C§(€2))*, defined
by

(0°A @) = (D) UA | 0%¢), ¢ € CF(Q).

Here 0% on the right-hand side denotes the pointwise partial differential operator
C§(Q) — Cp(£2). Integration by parts shows that these weak and pointwise partial
derivatives coincide if A € C§(Q) C (Co(2))*. Let k € Nyg and T : Cp(Q2) —
(CH(2))* be a linear operator. Then we denote T € Z(LP(R2), L%(Q)) if, given
1 <p,q<ooand1l/q+1/q¢ =1, it satisfies

(3.3) (TS 19 < Crllfllee@llgll Lo o

for every f € Cy(Q2) and g € C§(2). In the special case p = ¢ we denote T' €
Z(LP(2)) and say that T has a bounded extension to LP(€2). This terminology is

justified in what follows. Assume that T € Z(LP(Q2), L9(Q2)). Fix f € Cyp(2). Then
the estimate (3.3) implies that T'f is a bounded conjugate-linear functional on the
normed vector space

(CE, 11 1)) -

Since C§(Q) C L7(Q) is dense we see that T f € (C§(Q))* extends uniquely to a
conjugate-linear functional on L7 (Q2), with norm bounded by Cr||f||rs(). Now use

the identification (L7 (Q))" = L(Q) [Rud87, p. 127] to conclude that this extension,
denoted also by T'f, belongs to L%(Q2) and satisfies the norm-estimate

(3.4) 1T f o) < Crllfl]e )

Then fix f € LP(2). The estimate (3.4) allows us to define T'f as the limit of
a Cauchy sequence (7'f;)jen C L) in L(QY), where (f;j)jen C Co(Q2) satisfies
lim; .o f; = f in LP(Q). This definition of T'f is independent of (f;);en and it
provides an extension of 7' : Cy(2) — (CH(2))* to a bounded linear operator 7" :
LP(Q) — L9(Q2). Indeed, due to norm-estimate (3.4), we have

17|y = I 1T fjllza@y < Cr lim [[fil[ze@) = CrllfllLr@).
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Foundations for WSIO’s. Here we establish a fundamental size estimate for WSIO’s
and extend their domain of definition to include, for instance, the space BMO(R™).

Atoms in connection with function spaces appear in various forms and here they
are understood in the sense of (m + 1)-regular wavelets {yg, : (Q,¢) € D x £} C
C/"H(R™) which are defined in Appendix B. These possess vanishing moments, up
to order m + 1, and a compact support that is concentrated on the dyadic cube
Q € D. Let T € SKg.'(9) satisfy certain cancellation condition 71 = 0 = T*1.
Then T maps atoms to molecule-like functions that share properties with so called
smooth molecules [FJ90, p. 56|. These are, in a vague sense, dispersed atoms and
their properties include some smoothness, decay at infinity, and vanishing moments.

These molecule-like size estimates for T'Yg’s is the first topic here. A powerful
tool for these purposes is the following Whitney approzimation theorem.

Theorem 3.5. Let Q C R" be a cube and f € L*(Q). Then we have

inf — Pllpioy < Chm  sup A Q) o)
Per(R")Hf o) ’ |h|§diam(Q)H Y Nz

A related result is originally due to H. Whitney in dimension n = 1 [Whi57|.
Whitney’s result is further generalized in [Bru70|, where the proof of Theorem 3.5
can also be found as a special case. Another proof of Theorem 3.5 via interpolation
theory is in [JS77].

We begin establishing the molecule-estimates. Fix 7' € SKg.'(d) that it is as-
sociated with kernel K € SKg.'(d). Let 1 < p < n/m. Then using the kernel
size-estimate (1.16) and a well known inequality [Gra04, p. 416], yields

Tf()] < /Rn | K (2, )| (y)ldy < ConZ™(|f])(2)

< Cognpr M (f) (@)= |fI[5#"

if z € R and f € Cy(R™). Here Z™ is the Riesz potential operator as in (2.11). As
a consequence, 7" induces a linear operator Co(R™) — (Co(R™))*, satisfying

(3.7) T € L(LP(R™), L™/(=mP)(R™), if 1< p<n/m.

Estimating as in (3.6) and applying the Fubini’s theorem, we also obtain the identity
(Tf|gy=(f|Trg)if f,g € Co(R™). Here T* € SKg."(d) is the adjoint operator,
associated with the adjoint kernel

(3.6)

(2, y) = K(y, ).
In particular, (S+7)" = S*+T*if S,T € SKg."(6). Next we prove a quantitative
size-estimate about T'Yg’s. Such an estimate is one of the requirements of molecules.

Lemma 3.8. Let T € SKg."(6). Then for every Q € D, ¢ € £, and v € R", we
have

Twg(a)] < CQITH™ M1+ 6(Q) o — xq) ™.
Here the constant C' depends at most on n,m,Cyi1,T.
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Proof. Recall that g denotes the lower left-corner of @ and 2% denotes the midpoint
of Q. In particular, |29 —xg| < /nl(Q) and therefore it suffices to verify a modified
estimate where |z —x¢| is replaced with |z —2%|. Denote by K € Kgi*(§) the kernel
associated with operator T'. Using the inequality (3.6) with p = 1 and properties
B4)-B5) of wavelets, see Appendix B, we get

Te (@) < CM () (@) "l < ClQI/*+mm,
As a consequence, it suffices to verify the following inequality
(3.9) | Tg ()] < ClQI™/# ™/ (UQ) o — a®) ™

for |z — 29| > Ok diam(C,,,11Q), where Cx denotes the constant in assumption
(1.17). Using B2)-B5) from Appendix® B, we get

g = | [ Keipnay
310 — ot | [ ) - Py
<l ot [ K G~ PO

Using Theorem 3.5 and the integral estimate (1.17), we obtain the following upper
bounds for the right-hand side of (3.10)

clor? s / ATE (2,), Cos Qs )|y
[h|<diam(Crn41Q) J Crt1Q

< O|QITMAEIHImEN/ Mg QT8 = C|Q VA (U(Q) o — Q) T,

Here the constant C' may vary from one occurence to another but it depends at
most on n,m, Cy,11,T. Combining these estimates we obtain (3.9). O

This lemma is a powerful tool, used in various occasions. Here we collect some of
its implications that turn out to be useful. Lemma 3.8 combined with the Holder’s
inequality imply the following L*-estimates: assuming that 7' € SKgi'(0), |a| = m
and ¢, p € £, we have

sup (TWg, | 0“Y2)Y| < sup ||TV5 ]| 12| |0“YE || 2 < oo.
sup |75 0705 < sup [T lla 0.

An L'-estimate is recorded in the following corollary of Lemma 3.8. This estimate
is used later on when normalizing weakly singular integral operators.
Corollary 3.11. Let T' € SKgi'(0) and (Q,e) € D x E. Then

Tyl < ClQIM* /™,

where C' depends at most on n,m, o, Cpiq,T.

3All of the references to B1)-B5) in the sequel will be to Appendix B
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Next we extend the domain of definition of T" € SKg.*(d) to the vector space

2(0) = {b € L. (R") : () |(1 4+ 6(Q) o — xg]) ™ dr < 0 if Q € D}.

R
The quantity Th, b € Z(), need not exist as an absolutely convergent integral.

Therefore we modify the range of T" to reach this extension. Define Th: D x & — C
for b € Z(6) by

(3.12) Th(Q,e) = /n b(z)T*yg(x)dz, (Q,e) € DXE,

where 9g’s are (m + 1)-regular wavelets. Because of b € (), Lemma 3.8 shows
that the integrals in (3.12) do converge absolutely. This definition induces a linear
operator b — T'b, defined in Z(§) and valued in the vector space {7 : D x & — C}.

The main reason for this extension is that cancellation phenomena occuring in
the Ty theorem are best quantified in terms of certain BMO-type sequence spaces,
formally T'xq, T xq € fOTQQ(Q) The following related definition is used in connection
with the reduced 7T'1 theorem.

Definition 3.13. We say that T' € SKg,."(9) satisfies a strong cancellation condition
ifT1=0¢€{r:D x & — C}, that is,

(B.14)  TUQ,e) = Tyan(Q,c) = / T @)de =0, (Q.c) €D x&.
Here the wavelets {15} are (m + 1)-regular.

The sequential approach, which is initiated above, makes it possible to study
WSIO’s when their domain of definition is L*(R™) or BMO(R™).

Ezample 3.15. Let b € Lj, _(R™) and denote

1 1
ooy = sup {o [ pto) = bolde |, b= o [ blaja
Q cube in R? |Q| Q |Q| Q

We show that if ||b||gmomn) < 00 and § > 0, then b € Z(§). For this purpose we
invoke the following estimate which is an easy implication of [Gra04, pp. 521-522],

[h(@) = hppye|(1+ |2) ™" da < Cugllhllsmomn), b € Lige(R").
RTL

Next, if € D, then by a change of variables h(z) = b({(Q)x + zg) for x € R™ we
are reduced to this estimate,

- [b(2) = bol(1 +£(Q)Mx — 2q[) ™" da

(8.16) 101 [ 1ho) — Hoal 1+ fa)

< Cr51Qlh][BMo@ny = Cns|Q]1b]|BMoO@®R) < 00.
It follows that b € 2(9).
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Almost diagonality estimates for WSIO’s. The size estimates combined with strong
cancellation condition (3.14) for 7" and T* imply almost diagonality estimates for
these WSIO’s. It is precisely these estimates that ultimately give rise to the reduced
T'1 theorem. We continue with a useful lemma towards the almost diagonality. Here
one should keep the primary application in mind:

G =|P|"""Typ, F =1

for some T" € SKg."(9) satisfying 7*1 = 0. However, there are also other applications
and we present a general result whose proof is modelled after [MC97, p. 53|.

Lemma 3.17. Let 9 > 0 and P,Q € D be such that {(P) < ¢(Q). Let G € L'(R")
satisfy [pn G(x)dx = 0. Assume further that, for some 6 € (0,1), we have

(3.18) |G(z)| < o|P|7V2(A + (P) Yo —xp|) ™™, ifx e R™
Let F € CY(R"™) satisfy supp F C 0Q and
(3.19) 10 F || oo my < 0|Q|7Y2 1V if o] < 1.

Then we have the estimate

(320) (G| ) < c(%)n/w(l n '“”“;(‘—Qfﬁ?')_(m),

where the constant C' depends on the parameters o,0,n.

Proof. Let P € D, and @ € D, be such that {(P) = 27# < 277 = {(Q). Without
loss of generality we can further assume that p > 1. First we change the variables

(G| F)= 2"”/ G2 Hx+xp)F(27Hz + xp)dx

(3.21)
— 9—hn/2+vn/2 /n g(m)f(R_l(x _ xo))d.r,

where R = 2177, xy = 2*(zg — zp),
g(x) = 272G x +ap), f(z) =27 F2Vx + 1q).

Using assumption (3.18), we get the estimate |g(z)| < o(1 + |z|)™°. Using (3.19),
we have supp f C B(0,/no) and [|0°f||p=@n) < 0 if |a| < 1. As a consequence,
we have supp f(R(-  20)) © Blao, Ry'ip)

First assume that |xg| > 2R+/ne, that is, |tp — xg| > 2v/nol(Q). In particular,

—n—90
[ s (5~ an)ie] < Clanl e = e (B2l
This combined with (3.21) yields the desired estimate (3.20) in the present case.
Then assume that |zo| < 2R\/np, that is, |zp — x| < 2¢/nel(Q). In this case the
functions f(R™'(- — z¢)) and g are concentrated roughly on the origin and g is well
localized when compared to f(R™!(- —x()). What saves us here is that the integral
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of g vanishes and f has smoothness. These facts allow us to utilize cancellation
effects as follows. First of all, define

gj:(mj/|x|n)*g7 j€{1727"'7n}‘

The divergence theorem shows that, for every y € R", we have

(322 Z [ oy e = ) = £ ),

Wn—1

An elementary proof of the identity (3.22) is [EE87, p. 238|. Multiply the identity
(3.22) by g(y) and then integrate with respect to the y-variable. Then using the
Fubini’s theorem, justified by (3.6), we get

=Y w [ @@ e —m)de= [ g)f (R~ )y

Wn—1 T n
]7

(3.23)

According to the definition of ¢ and the assumption [ G = 0, we have [g = 0.
Hence, if j € {1,2,...,n} and z € R™ \ {0}, we can write

(3.24) g;(x) = / ) g(y)(ﬁj __yyfn —~ gfn)dy

Define the sets A(z) = {y € R* : |y| < |z|/2}, B(zx) = {y € R* : |z|/2 <
ly| < 2|z|}, and C(z) = R"\ (AU B). In what follows we also use the assumption
0 < 0 < 1 and denote by C' any constant depending at most on n, p. Using the
estimate |g(z)| < o(1 + |])™~% and the mean value theorem on the difference, we

get
Tj — yj n —n—4
g<y>( ) 'dy <l [l lylay < S

The integrals with respect to B(x) and C(x) are easier to estimate by using again
the size estimate about |g|, resulting to the inequality

TpY Clz|"+7°
[ Yoo (B0 - )y < .
(/B(z) C(z) lz—yl* |z 0

Combining the estimates above with the identity (3.24), we have
(3.25) 19;(2)] < Cpsole|™™7°, je{1,2,...,n}.
Using the identity (3.23) and then the estimate (3.25) about g;’s, we get

[ @ (B o = )
<C, i R

Together with (3.21) this shows the desired estimate (3.20) in the present case. [

C‘x|—n+1—6

[ @O o= a)a] < Ot = Cop 2
B(03R /7o)
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As a consequence, we obtain the following almost diagonality estimate for WSIO’s.
It can be interpreted as a technical formulation of the reduced T'1 theorem.

Proposition 3.26. Let T' € SKg'(9) satisfy T1 =T*1 =0¢€ {r: D x & — C}.
Then for every P,QQ € D and e,p € £ we have the weighted almost diagonality
estimate

_ C(ap) A g(@))n/2+6+m - lzp — 0 —(n+6)
T (UP) v @))Er ((P)V Q) ’

where the constant C' depends at most on n,m,d, Cyy1,T.

Proof. Assume first that ((P) < ((Q). Let G = [P|7™/"Tyf, and F = 5, €
Ci"tHR™). Using the assumption T*1 = 0 and the identity (7*)* = T, we have

L G(x)dr = [, TYh(x)de = 0. Also, because T' € SKy,*(d), Lemma 3.8 implies
fR ( ) R P ) R ) p
that (G satisfies the estimate

|G(z)| = |P|™™/™| Ty (x)] < Cn,m,C’m+1,T|P|_1/2(1 +4(P) oz —ap|)™°, ze€R™

[(Tp | ¥g)]

On the other hand, the localization property B4) for (m+1) regular wavelets implies
that supp F' C C,,,11Q. Also, the regularity property B5) implies that

10%F [ 1o ny || = [10*05]|Loony < Cona| Q17272 ] < 1.

We have verified the assumptions of Lemma 3.17 with constant ¢ depending at most
on the parameters n,m,C,,.1,T. Accordingly we obtain the estimate

E(P>n/2+5+m |517P—5EQ| —(n+96)
Qe < UQ) > '

This is the required estimate in the present case ¢(P) < ¢(Q). The other case,
((P) > £(Q), reduces to the estimates above. Indeed, we have

(Tp [ o) = (Wp [ T™Pg) = (T*vg | ¥p),

where T* € SKg'(9) and the assumption T'1 = 0 implies that [T*¢§ = 0. By
setting G = \Q!‘m/”T*wa and F' = ¢}, we can proceed as above. O

(TWp [ )l = [PI™"[(G | F) < C

Reduced T'1 theorem for WSIO’s. Here we finish the proof of reduced T'1 theorem.
The main work is done — culminating in Proposition 3.26. It remains to deal with
certain technicalities. Fix 7' € SKgi'(9) satisfying 71 = 0 = T*1. We need to
show that 9T € Z(L*(R™)) if |o| = m. This is here established by constructing
an operator [0°T] € Z(L*(R")) that satisfies

(3.27) ([0°T]f [ g) = (0°Tf | 9)
if f € Cy(R") and g € CJ'(R™). Definition (3.38) for [0*T] : Cy(R™) — (Co(R™))* is

given by using the wavelet transform and the operator matrix
(3.28)
Maear = {M(P, p; Q,e) = (0°TYp | V) : Q, PE€Dande,pe &}, |af=m.
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Using Proposition 3.26 and a factorization
Maoar = MamrMaa jm

where Mya om is a Riesz-transform type almost diagonal matrix and Mymy is a
discrete derivative matrix of T', we will see that Myap is an almost diagonal matrix,
hence bounded on ¢?(D x ). Now the boundedness property [0°T] € £ (L*(R™))
follows because this operator is defined in terms of a bounded matrix operator and
the wavelet transform, which is an isometry between L?(R") and ¢?(D x &).

To complete this sketch we begin with some preparations. Let P,Q) € D and
recall that the lower-left corners of these dyadic cubes are xp € P and zg € Q,
respectively. Let also 3,y > 0. For these parameters, we denote

_(UP) A Q)N lxp —xg \ "7
e )= (fpvag)  (Camvia)

Notice that wpq(8,7) = wo.p(B,7) and wpo(B,7) > wpo(B,7) if 6 < fand 7 < 4.
A matrix M : (D x &) x (D x &) — C, denoted by

M ={M(P,p;Q,c) e C : P,Q € D and p,e € £},

is almost diagonal if there exists 9 > 0 such that

M (P, p;
(3.30) Sup{‘ (P.p:Q:2) :P,QEDandp,5€5)<oo.
wpr((S,é)

This condition is symmetric so that the adjoint matrix M*, defined by
M*(P, p;Q,e) = M(Q,&; P, p),

is almost diagonal if, and only if, M is. The same holds true for the transpose
matrix defined by M = M*.

Ezample 3.31. Let 0 < m < n and fix (m + 1)-regular wavelets {15} as described
in Appendix B. Here are certain almost diagonal matrices:
o Let T e SKpi'(9) satisfy T1 =T*1 =0 € {7 : D x £}. Denote the order m
discrete derivative matrix of T' by

Manr(P, p; Q. €) = |QI™™™(T0% | 1)
if PQ € D and p,e € £. Then Mgmr is almost diagonal by Proposition

3.26.
e Let a € Ny satisfy |a| = m and consider the Riesz-transform type matrix

Mae o (P, p;, Q,€) = [PI™™(0°Y | 0)
if P,QQ € D and p,e € £&. Then Mya/pm is almost diagonal and it satisfies
(3.30) for every 6 € (0,1). Indeed, we can do the case studies {(P) < ¢(Q)
and ¢(P) > ¢(Q) and choose the functions G = |P|™/"0%y}, and F = Vo

in the former case and vice versa in the latter. The assumptions of Lemma
3.17 are satisfied in any case by B4) and B5).
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e If p € £ then there exists a canonical multi-index o = a(p, m) € NI with
la] = m and a function ¥”™ : R" — C as in Lemma B.2. This satisfies
PP = 0*YP™. Define

Myt (P, p; Q) = (U™ [ 0g)
for P,Q € D and p,e € £. Then the lift matrix MU is almost diagonal. In
the proof we proceed in a case study as above and choose F, G € {%"™, ¢22}

The matrix multiplication M N corresponds to the composition of the matrix
operators M and N on ¢*(D x £). The following lemma shows that almost diagonal
matrices are closed under this matrix multiplication. A proof is in [FJ90, p. 158-
159] and, in comparison therein, we only changed the variable .

Lemma 3.32. Let P,QQ € D. Let 3,71,7% >0, 1 # 72, and v1 + v > (3. Then
Z wpr(B;1)wrQ(3,72) < Cwp(B, 11 A7),
ReD

where the constant C' depends at most on n, 3,71, 2.
Now we can show the almost diagonality of the matrix Mgar defined in (3.28).

Lemma 3.33. Let T' € SKg.'(9) satisfy T1 =T*1=0¢€ {r: D x & — C}. Then,
if || = m, we have the factorization Mgar = MamrMae jgm. As a consequence, the
matriz Maar is almost diagonal if || = m.

Proof. First of all, the relation (3.7) implies that T € .Z(LP(R"™), L™/(=mp)(R™)) if
1 < p <n/m. Also, according to Proposition 3.26, the matrix Mgmp defined by

Momr (P, p; Q,€) = |Q|™™™ (T} | 15)

is almost diagonal. Fix p € (1,n/m) and denote ¢ = np/(n — mp) € (p, 00).

First we prove that the matrix Maar in (3.28) is almost diagonal. Fix P,Q € D
and p,e € £. Now, according to the property B2), the wavelet approximation of
T4 € L1(R™) converges uncoditionally. That is, the series

Tgh =Y > (Tvh | vi)vg,

ReD ock

converges unconditionally in L¢(R"). Because 9*¢, € LY (R") and 1 = |R|~™/"|R|™/,
R € D, we have

Maor (P, p; Q,€) = (0°TW | ) = (—1)*HTf | 0%5)
(3.34) =D D R[TMTYE | R R0 | 0G)

ReD o€l
= MamTMaa/am<P, o Q, 8).

As a consequence, we have Maar = MamnrMaa /om. Using Lemma 3.32 and Example
3.31, we see that Myap is almost diagonal, being a product of almost diagonal
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matrices. To be more precise, there exists 9, ¢’ such that 0 < 6 < § < 1 and
(3:35) [ Moer(P,p;Q.6)| < Crirtyasom D wri(8,0)wrg(8,0") < Cwpg(6,6).
ReD
We refer to this estimate later and it serves also for those purposes. O]
We need yet another fact: Almost diagonal matrices can be interpreted as bounded

operators on £2(D x &). This is formally stated in the following result whose proof
is based on Schur’s lemma and can be found in [MC97, pp. 54-55].

Lemma 3.36. Let M be an almost diagonal matriz, therefore satisfying the estimate
[M(P, p; @, )] < Cuwp,g(9,0)
if P,Q € D and p,e € €. Then M is a bounded matriz operator on (*(D x £). That
is, assuming v € (*(D x &) we define
y(P,p) = Mxz(P,p)= > M(P,p;Q,€)x(Q,e), (P,p)€DxE.
QeD,ec&
Then y = Mz € (*(D x &) and it satisfies the norm-estimate
Y. wPpl<c > w(@e)
PeD,pel QeD,ect

where the constant C' depends only on the matriz M.
Next we combine all the pieces together for the reduced 71 theorem.

Theorem 3.37. Let T € SKp'(9) be such that T1 =T*1=0¢€ {r: D x & — C}.
Then, if |a| = m, we have 0°T, 0°T* € £ (L*(R™)).

Proof. Because of the symmetry it suffices to verify the boundedness of the operator
0°T for |a| = m. According to Lemma 3.33, the matrix Mgar is almost diagonal.
We define a linear operator [0°T] : Co(R™) — (Co(R™))*. If f, g € Co(R™), we set

(3.38) (°T)f Ly =D D (f1 P Maer(P,p;Q.8) {15 | 9)-
QED,ec€ PeD,pck

With the aid of property B1l) and Lemma 3.36, we can first change the order of
summation and then use the Holder’s inequality for that [0°T] € Z(L*(R™)) in the
sense of (3.3). In particular, to reach the desired conclusion 9*T € Z(L*(R")) it
suffices to verify that

(3.39) ([(0°T1f,9) = (0°Tf. 9)

if f € Cp(R™) and g € CF*(R™).
To do this, we invoke definition (3.38) and expand the double series therein by
applying the identity (3.34). This results in

([0°T1f | 9) Z Z Z (f 1 Op)(TYp | YR)(O™VE | ¢Q><¢Q | 9)-

Q€eD,ec€ PeD,pe€ ReED,ocEE
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This sum converges absolutely. This is seen by estimating as in (3.34)—(3.35) and
using Lemma 3.36. Hence we can organize the summation to the order R, Q), P. By
(3.7) we have T' € Z(LP(R™), L4(R™)) if p € (1,n/m) and g = np/(n — mp). Using
this relation with B2), and the definition of weak derivative, we reach the identity

(0°T1f | 9) = (=1)KTf | 9%g) = (9°Tf | ).
This is the required representation formula (3.39). O

Application to convolution operators. The assumptions of the reduced 71 theorem
hold true if T" € SKg."(6) is of convolution type. Notice that the assumptions here
are stronger than those in Remark 2.31 (i).

Theorem 3.40. Let 0 < m < n and k € L] _(R™) be a kernel satisfying the size

loc
condition |k(z)| < cglz|™"™™ and the regularity condition

(AT k)] < el h[™ 02770 df 2(m 4+ 1)[A] < .

Then the operator T = f — k* f € SKgi'(9) satisfies the cancellation conditions
T1=0=T*1 and the boundedness property 0°T € L (L*(R")) if |a] = m.

Proof. To begin with, it is simple to verify that the convolution operator 7' asso-
ciated with the kernel K(z,y) = k(x — y) satisfies " € SKg,"(d) and we have a
generalization of the integral condition (1.8), which occured in Remark 2.31,

(3.41) sup{|h|_m/ |A?+1(k,x)|dx} < 00.
h+£0 n

According to Theorem 3.37 it suffices to verify that 71 = 0 = T*1. Due to symmetry

it suffices to prove that 7*1 = 0 and for this purpose we fix (@, e) € DXxE. According

to Definition 3.13 it suffices to show that

(3.42) | e =ainis = | Tugaa=o,

where 1g, is an (m + 1)-regular compactly supported wavelet.

Notice that T is integrable due to Lemma 3.8 and, in the formal level, the
identity (3.42) is trivial since [ Yg = 0; one would change the variables and then
the order of integration. However, Fubini’s theorem does not apply because the
kernel may not be integrable at infinity. Instead the cancellation condition (3.41) is
utilized by using the Fourier transform as follows

TV, (x)dr = lim TE (x)e %8 dy
| regar= tim [ Ti)

= (=27t " A (T, w)e™*m¢da,

where g(&) = 271¢/|€]? if € # 0. The last identity follows by iterating the corre-
sponding identity with m = 0 and in this special case it follows by a simple change
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of variables with the aid of the Euler’s identity e™ = —1. Using linearity we get
€ _ (_o9—1ym+1 : m+1 —2miz-§
[ mgtens = (<27 (ARG v e e

If & # 0 both of the functions A”(Lgr)l(k -) and 9§, are integrable and applying the

integral estimate (3.41) we have

[ = eS| = LF A D IF ) E)
< AT (s F RO < erlgl©)MIF @RI,

We also have [g(£)|™ < [§|™™. The Fourier transform of 1, is smooth and all of its
partial derivatives of order < m+-1 vanish in the origin because of the corresponding
vanishing moments for the (m + 1)-regular wavelets. Estimating F (i) near the
origin by using the Taylor expansion, we get

lir?jélp 1§17 F(5)(€)] = 0.

Combining this with previous estimates leads to the desired identity (3.42). U

3.2. BMO-type spaces on domains. To advance beyond the reduced 71 theorem
we need certain BMO-type sequence and function spaces. Let ) # Q C R, n > 2,
be a domain and o > 0. We utilize the following partition of the dyadic cubes into
interior (1), boundary (B), and exterior (E) cubes:

e Dr(a, Q) ={Q €D : Q CQand dist(Q,09) > adiam(Q)},
.DB(Q,Q):{QGDZQﬂQ?’é@}\D](O{,Q), o
e Dp(Q) =D\ (Di(a, Q) UDp(a,Q)) ={Q €D : QNQ=0}.
The BMO-type spaces f™2(Q) and F2(Q) depend on the interior cubes D;(av, Q)
with
(343) a = Om—i—l >0

being the constant in Appendix B for which B4)-B5) hold true in case of (m + 1)-
regular wavelets. A function f € L .(Q) belongs to F(Q) if its wavelet coefficients

(3.44) {(f1¥g) + (Q,€) € Di(Crnsa, ) x E}

belong to certain sequence space fOTQQ(Q) which, in turn, is defined in terms of
a Carleson’s condition. The novelty of this definition is that the supports of the
wavelets ¢g, in (3.44) are contained in the domain because of (3.43). These BMO-
type spaces turn out to be useful in the difficult direction of the T'yq theorem
but only if we restrict to the class of Whitney coplump domains where there is a
reflection

Q QS ( m+1, Q) - DE(Q)a
satisfying diam(Q) = diam(Q®) and dist(Q, Q°) < B, diam(Q) for some [, > 0.
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Spaces fo”QZ(Q) and F£2(Q) on general domains. We define the sequence spaces
f£2(Q) and the corresponding function spaces F: m:2()) on general domains. These
spaces depend on the a-interior cubes for a suitable a = «,,,. The boundary and
exterior cubes are not used here.

Definition 3.45. Let () # Q C R, n > 2, be a domain and m € Ny. Denote
D?ﬁb(Q) = DI(Cm+17 Q)a

where Cp,41 > 0 is the constant defined in Appendix B for which B4)-B5) holds
true in the case of (m + 1)-regular wavelets.

Remark 3.46. Let ) # Q C R", n > 2, be a domain and m € Ny. Let {1g} denote
the set of (m + 1)-regular wavelets. Then, according to B4) in Appendix B and
Definition 3.45, we have supp ¢ C Cpi1@Q CC Qif (Q, ) € DF(Q) x €.

Definition 3.47. Let ) # Q C R™, n > 2, be a domain and m € Ny. Assume that
7:D x £ — C is such that

= 5 |ZZ|@1 (@) < oo,

QCP ec&

[l

where the outer summation is over all () € D satisfying () C P. Then denote
7€ f™2(Q). Assuming that f € LL_(Q), we denote f(Q,e) = (f | Vo), if (Q,¢) €
D7 () x &, and f(Q,e) = 0, if @ € D\ D7 (2) and ¢ € €. The wavelets {5}
here are (m + 1)-regular. Furthermore, we denote f € F/™2(Q) if fl| ey =1 :
Dx&— C||fm 2 < Q.

We also need the space of bounded mean oscillation on domains.

Definition 3.48. Let ) # @ C R™ be a domain. Then BMO({?) is the seminormed
vector space of f € L (Q) satisfying

1
1o = s {|Q, / e fQ\dx} <o o=z /Q F(a)de

The supremum is taken over all of the cubes compactly contained in the domain.

The function space F%2(R") gives a characterization of BMO(R") as follows.
Assuming that f € L] _(R") is bounded at infinity, then

f € BMO(R") & f € F2*R")

and the corresponding norms are equivalent [Mey92, p. 154]. The analogous iden-
tification does not hold true on proper domains 2 C R" because the boundary
behaviour of functions in the space F&Q(Q) is less restricted than in the space
BMO(©Q).

The function spaces F'™2(R™) for m > 1 are related to certain Triebel-Lizorkin
spaces that are also denoted by F7-2(R"), see [FJ90, p. 70]. These spaces satisfy

F™2(R™) = Z™(BMO(R™)) = {f € /P : 9°f € BMO(R") for |a| = m}.

loc
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The first identity follows from the (p-independence and the second can be found in
[Str80, Proposition 3.1.(b)]. Also, a function f : R® — C is in Z'(BMO(R")) if,
and only if, the difference quotients x — |h|~!(f(z + h) — f(x)) are in BMO(R"™)
uniformly with respect to A € R" [Str80, Theorem 3.2.|.

The Txq theorem motivates our definition for the sequence spaces f72(Q) on
domains. These spaces furnish the correct means to quantify certain cancellation
effects therein. The corresponding function spaces F/™2(Q) are large spaces because
we ignore the boundary behaviour in a certain sense. A smaller space in the sense of
bounded inclusion is the restriction of FgZZ(R”) on the domain €2. This restriction
space is more natural in many applications. However, our definition for the sequence
spaces f72(Q) has the advantage that the projection

T = TXpr@)xe : {D X E = C} - {Dx & — C}

induces a bounded linear operator f™2(€2) — f™2(R") on general domains  C R",
n > 2. This important auxiliary result is verified next.

Lemma 3.49. Let () # Q C R, n > 2, be a domain and m € Ny. Let 7 € f™2(1)
and o : D x & — C be such that 0(Q, ) = 7(Q, ) if Q € DI*(2) and 0(Q,e) =0 if
Q € D\ D7 (). Then o € f™*(R™) and o] 2 gny < AITl ez

Proof. Fix P € D. 1t suffices to prove that

1 —zMm/n
B 2 2 IR lo(@. )P < oy

QCP ec&

Denote 3(Q) = Y. |Q|7™/"o(Q,¢)|*>. This vanishes if @ ¢ DP(Q). If Q €
D7(Q) and @ C P then there exists a maximal cube Q™ € D7*(2) with the property
Q C Q™ C P. Denote

M={Q™ : QC Pand Q € DJ'(N)}.

Fix QR € M. Then QUR C P and Q N R = () because of maximality and
properties of dyadic cubes. Combining these facts, we get

17113

1 1 _ fm2(Q
57 2 8@ = 5 IRl 3o A0 < 5= 3 @1 < iy
Qcp QeM RCQ QeM
which is as required. O

Reflection of dyadic cubes on Whitney coplump domains. We provide a geometric
characterization of Whitney coplump domains in terms of so called («, 3)-coplump
domains. This gives us a certain reflection of dyadic cubes.

Definition 3.50. Let o, 5 > 0. A domain () # Q C R", n > 2, is («, )-coplump if
for every @ € Dp(a, ) there is a reflected cube Q° € Dg(?) satisfying diam(Q) =
diam(Q?®) and dist(Q, Q*) < fdiam(Q). If Q is («, F)-coplump domain then we
extend the reflection Q — @° to all of the dyadic cubes by setting Q° = @ if
Q €D\ Dp(a, Q).
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Remark 3.51. Regarding an («, 3)-coplump domain 2 C R",

e Ifa>adand 3 < then Qis (&, B)—coplump. We will show that for every
a > 0 there exists 5 > 0, depending on the parameters a,n, so that €2 is
(a, B)—Coplump.

o Q is minimally reqular, that is, Q = int(Q). To prove the nontrivial inclusion,
let z € int(Q). Then B(z,r) C  for some r > 0. We assume, aiming at
a contradiction, that z ¢ Q. Then € Q\ Q = 9Q. Choose a cube
Q € Dp(a, ) such that x € Q and diam(Q) < r/(2+ ). Then there exists
a cube Q° € Dg(Q) so that @Q* N Q = 0 but also Q° C B(z,r) C Q because,
for y € QQ°, we have

|z —y| < diam(Q) + dist(Q, Q°) + diam(Q*) < (2 + §) diam(Q) < r.

e Assume that () # Q # R™. Then there exists x € 9 and therefore also
arbitrarily large cubes @@ € Dg(a,2). In particular, there are arbitrarily
large cubes @Q°* C R™ \ © and therefore R™ \ € is unbounded.

e Assume that 2 # R™. For every interior cube Q) € D;(a, ) there exists
a unique maximal cube Q™*(Q) € Ds(«,?) such that P C Q™(Q) if
P € D;(a, Q) and @ C P. Furthermore, we have

Di(a, )= |J {QeD:Qc@™(P)}

PED[(&,Q)
and the family {Q™(Q) : @ € Dr(«,Q)} is a partition of the domain €.

The following result is due to J. Vaisdlad [Vai08] but the proof is ours. For the
definition of c-coplump domains, see Definition 1.14.

Theorem 3.52. Let ) # Q C R™, n > 2, be a domain such that diam(R™\ Q) = occ.
If Q is c-coplump then it is (¢, 3c)-coplump. Conversely, if Q is («, 3)-coplump then
it is c-coplump with ¢ = \/n(12 4+ 43).

Proof. First assume that € is c-coplump and fix Q € Dg(c,Q). Then Q N Q #
() and dist(Q,09) < cdiam(Q). Fix a point x € 90 such that dist(z,Q) <
cdiam(Q). Using the assumptions we find a point z € B(z,2cdiam(Q)) such that
B(z,2diam(Q)) € R™\ . Let @Q° be the unique dyadic cube such that z € Q°
and £(Q°) = £(Q). Then Q* C B(z,2diam(Q)) C R™\ Q; that is, Q° € Dg(Q).

Furthermore, we have
dist(Q°, Q) < 2cdiam(Q) + dist(x, Q) < 3cdiam(Q).

We conclude that €2 is (¢, 3¢)-coplump.
Conversely, assume that ) is (a, §)-coplump. Consider any x € R™\ Q and r > 0
so that

B(z,r/(3+0)) Z R"\ Q.
Then there is w € 09 satistying |z — w| < /(3 4+ (). Let @ € D be a cube such
that w € Q and /(6 + 26) < diam(Q) < r/(3 + ). Clearly Q € Dp(«,2) and
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therefore there exists a cube Q* € Dg(2) such that £(Q°) = ¢(Q) and dist(Q*, Q) <
Bdiam(Q). In particular, if y € Q*, then

|z —y| < |z —w| + diam(Q) + dist(Q, Q°) + diam(Q°) < r

proving that Q° C B(x,r). As a consequence, the centerpoint z of Q* belongs to
B(z,r). Furthermore, we have

B(z, m) C B(z,0(Q%)/2) c Q° CR"\ Q,

proving the claim. ]

We have the following characterization of Whitney coplump domains.

Theorem 3.53. Let ) # Q C R™, n > 2, be a domain. Then
e O is Whitney coplump if, and only if, it is («, 3)-coplump for some o, 3 > 0.
o IfQis («a, B)-coplump and & > 0 then there exists [3 > 0, depending at most
onn,a, 3, so that Q is (d,B)-coplump.

Proof. The first claim follow from Theorem 3.52 and Remark 3.51 about the un-
boundedness of R™ \ Q if Q # R™. Then we prove the second claim. If Q = R”
then we are done because R" is (&, B)—coplump for every 8 > 0. Assume then that
2 # R™. Then diam(R" \ §2) = oo, see Remark 3.51, and we are in the position to
apply Theorem 3.52. But first note that € is (o, &+ 3)-coplump because a+ (5 > .
In particular, © is c-coplump where ¢ = /n(12 + 4(a + 3)) > &. Applying The-
orem 3.52 again we see that Q is (¢, 3c)-coplump and, because ¢ > &, it is also
(&, 3¢)-coplump. d

This characterization allows us to choose the a-parameter such that supp g CC
Q if Q is an a-interior cube and vg, is an (m + 1)-regular wavelet. This is recorded
next.

Definition 3.54. Let 2 C R™ be a Whitney coplump domain and m € Ny. Denote
by Cyi1 > 0 the constant for the (m+1)-regular wavelets, see B4)-B5) in Appendix
B, and denote also 5, = 1 +inf{8 >0 : Qis (Cpy1, B)-coplump} < oc.

Remark 3.55. Let € C R™ be a Whitney coplump domain and let m € Ny. Then
the domain €2 is (Cyyy1, Bm)-coplump. In particular, if ¢5’s are (m + 1)-regular, we
have

e supp ¥y C Cppn1Q CC Qif (Q,¢) € DP(Q) x &,

e ((Q) =4(Q") and Q° C B(zq, (2 + ) diam(Q)) if Q@ € D,

o ) CR"\Qif Qe D\ Dy Q).
In the sequel m € Nj is explicitly given but the parameters C,, 1, 3, are often
omitted. The convention is that the given index m (implicitly) determines the
parameters C,1 and (3, as in Definition 3.54.
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Remark 3.56. Later in Theorem 6.6 we prove that Whitney coplump domains are
invariant under K-quasiconformal mappings f : R” — R™. This result combined
with Theorem 3.53 shows that («, 3)-coplump domains are also invariant: if Q@ C R™
is (v, #)-coplump, then the image f is (&,B)—coplump for some @&, 3 that depend
at most on «a, G, n, K, (.

3.3. Endpoint estimates for restricted operators. Let 7" € SK."(d) be asso-
ciated with a global kernel and () # Q0 C R™ be a domain. The ultimate goal in this
section is to characterize when

(3.57) {0°T : |a| =m} C L(L*(Q))

and the same with T replaced by T™. This is the Ty theorem for restricted oper-
ators. The present object of study is the boundedness on certain endpoint spaces
and the following results give the easy direction of the T'xq theorem. Our results
here read as follows
e Assume that ) # Q C R™, n > 2, is any domain and the condition (3.57)
holds. Then T' € Z(L>(Q), f™2(Q)).
e Assume that @ C R™ is a uniform domain and that the condition (3.57)
holds. Then Tyg =0 in fg’olQ(Q) if, and only if, T' € Z(BMO(1), fO“;Q(Q))
The downside is that the target fggz(Q) is a large space. We enhance the target
space in connection with the T'yq theorem, see later Corollary 3.117, but there we
need to restrict to Whitney coplump domains.

Standing assumptions and notation. Let ) # Q C R", n > 2, be a domain and
0 <m <n. Let {¢5} € C""(R") be the family of (m + 1)-regular wavelets. Fix
the family D}*(€2) in Definition 3.45. Fix S, T € SKg.'(d) and denote S ~ T' if the
associated kernels Kg, K € Kg."(§) satisty

(3.58) Ks|Q x Q\ {(z,2)} = K7|Q x Q\ {(z,2)}.

Notice that ~ defines an equivalence relation in SKg,"(6). Let a € Nf satisfy
la| = m. We denote 0°T € Z(LP(Q)) if

(3.59) 0%oid"oT oid : Cp(2) — (CFH(N))" € L (LP(Q))

in the sense of (3.3). Here id : Cy(€2) — Cp(R™) and id* : (Co(R™))* — (Co(02))*
are canonical inclusions. If S ~ T and 0*S € Z(L*(R")), then 0°T € Z(L*(Q)).
Fix b € 2(5). Then Tb : D x & — C is defined in (3.12) and we denote Th €
f22(Q) i {TH(Q,€)} € f2*(Q). For instance, we have bxo € 2(0) if b € L*(Q)
and we denote T' € Z(L>=(Q), f™*(Q)) if

(3.60) T (bxa)ll 2y < ClIbllz~(0)

holds with C' independent of b € L>(£2).
Assume that Q C R" is a uniform domain. There exists a bounded and linear
extension operator £ : BMO(2) — BMO(R"), Eb|Q? = b if b € BMO(Q2) [Jon80].
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Example 3.15 shows that bxq = (Eb)xa € Z(9) if b € BMO((2). This allows us to
define T'(byq) using (3.12) and T € Z(BMO(Q), f7*(Q)) if

(3.61) 1T (bxa)ll jm2q) < ClbllBMoce)

holds with C' independent of b € BMO(£2). Because of ||xal|smo) = 0, the condi-
tion T'xq = 0 in f™2(Q) is necessary for the inequality (3.61) to hold.

Norm estimates of Tb for b € L*(). A Calderéon-Zygmund operator T' € CZO
maps L>(R™) to BMO(R") boundedly [Gra04, p. 580-582]. The counterpart in our
setting is formally stated as follows:

T € SKg'(9) and {9°T : |a| = m} C L (L*(Q))

(3.62) .2
=T e Z(L=(Q), f™2(Q)).

Definition (3.12) and Corollary 3.11 combined yield the estimate

(3.63)  sup{|Q"**|TH(Q.€)| : (Q.¢) € D X E} < Croyn iy, rl bl oo zny

if b € L*°(R™). This estimate is sharp: Theorem 3.93 implies that there exists
a so called (adjoint) paraproduct operator II* € SKg.'(0) satisfying I1*1(Q,¢) =
|Q|'/2+m/ for every (Q,e) € D x E. As a consequence, IT*1 ¢ f™2(R"). In the light
of (3.62) we see that

{0°T1; + |a = m} ¢ Z(L*(R")).

Thus the boundedness properties for WSIO’s are not trivial. The paraproduct
operators are defined later and now we turn to the proof of (3.62).

We begin with a tail estimate which arises from the globally defined kernel. This
tail lemma is useful also later in connection with the so called interior paraproduct
operators.

Lemma 3.64. Assume that T € SKgn'(0) andb € L>*(R"). Let P € D and B C R"
be a measurable set, satisfying dist(B, P) > ol(P) for some o > 0. Then

1 —zm/n
BT 2o 2@ T0xs) Q) < Ol feqan

QCP c€&

so that the constant C' depends at most on the parameters o,n,m,d, Cpi1,T.

Proof. By scaling we can assume that ||bxp||r~®) = 1. Fix a dyadic cube @ C P
and ¢ € £. Applying Lemma 3.8 we have the estimate

T(ox)(Q.2)| = '/;b<xyr*¢a<x>dx

< [ |T"Yg(x)|dx
(3.65) /B ¢

< C|Q/rmin / (14 6Q) o — wol) " d.
B
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Fix z € B. Due to the assumptions, we have |z —zq| > of(P) and also 1+ le—rql >

Q)
QZ( (P) " Using this and the estimate (3.65), we get

(3.66)
[T (bx)(Q,2)| < C|Q| /> meo/2)/m| pl =/ / (1+ 6Q) Yz — zol) " dx

< C|Q|1/2+(m+5/2)/n|P|—(§/2)/n'
Summing the squared estimates with respect to € € £, we get

(3.67) D _IT(bxs)(Q.9) < C|Q|"Fm /" P|=/"if Q € D and Q C P.

eef

Denote ((P) = 27" and ¢(Q) = 27". Then, applying the estimate (3.67), we get

Z ST1QIM M T (b ) (@, €)* < [P 5/“ By 2 Il

QCP ee& QCP

— nC P vnao—v n —V
S P 3 g = AP S0 < i

V=[L

This estimate is as required. U

In order to estimate ||T'(bxq)|| jm2q) we apply the tail lemma above which reduces
the situation to the boundedness assumption

{0°T : |a| =m} C L(L*(Q)).
The inclusion to the smaller space .Z(L?*(R™)) need not hold true.

Theorem 3.68. Assume that ) # Q0 C R", n > 2, is a domain. Let T' € SKg."(9)
be such that 0°T € ZL(L*(Q)) if |a| = m. Then T € ZL(L>(Q), f2*(Q)). To put
this otherwise, we have T'(bxq) € f1*(Q) for every b € L>=(Q) and

T (bxa)ll f2() < ClIblL= (@),
where the constant C' is independent of b.

Proof. By using the linearity, we can assume that ||b||z~@) = 1. Let us denote
B(Q) = .ce IT(bxa)(Q,)* if Q € DF*(2). According to Definition 3.47 it suffices
to prove that

PeD;ﬂ(Q Q par s

with constant C' independent of b. For this purpose we fix P € D}*(§2) and denote
Sp =P Y 0ep 1QIPMB(Q). T (Q,€) € DP(Q) x € satisfies Q C P, we write

(3.70) T(bxa)(Q,e) = T(bxaur)(Q, ) + T(bxarna)(Q, €).
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D}eante also 61(@) = zseg |T<bXQ\4P)(Q7 5)| and 62(@) 2568 |T(bX4PmQ)(Q €)|
Then

3 —zm/n
Xp <5 Pl E QI 31(Q @+ 5 > QI 3 (Q) = Lpi + Spo,
QCP QCP

Notice that dist(Q2\ 4P, P) > {(P). Hence, by using Lemma 3.64 with B = Q\ 4P,
we get the estimate

(3.71) P Z QI "B1(Q) < Ch.
QCP
Here the finite constant C is independent of P and b.

In order to estimate the sum ¥py we need some preparations. Fix ¢ € £ and
consider the corresponding lifted wavelet in Lemma B.2 — there is a canonical oo =
ale,m) € Nj, |a] = m, and a lifted wavelet =™ satisfying ¢° = 0*=™ and
B4)-B5) in Appendix B. Fix a dyadic cube @ C P. It satisfies @ € D}*(€2) and

QI = 0™yg™.

Here supp wam C Ch1Q CC ), which follows from Lemma B.2 and Remark 3.46.
The assumption 0T € Z(L*(2)) implies that f* = 0T (bxapna) € L*() satisfies
(3.72) 1f*|z2(0) < Crallbxarnallz2 @)

Using these preparations we can now proceed as follows

1T (bxarna)(Q, )| = [{bXarna | T*¢Zg>|
(3.73) = Q™" [(0°T (bxarne) | 5™
= Q™5™ | xaf)!.

Squaring this identity and summing it with respect to the dyadic cubes ) C P, but
still keeping ¢ fixed, we get
(3.74)

Ypa(e Z Q17> T (bxaprna)(Q; ) S ZZ! U™ | xal*) .

QcP QED o€t

Then, by expanding the lifted wavelets 5™ € L*(R"), we obtain

SO W™ R h | xaf*)|-

PeD pek

(g™ | xaf ") =

The matrix M = MU defined by

M (Q, 03P, p) = (vG™ | ¥p)

for Q,P € D and o,p € £ is almost diagonal, see Example 3.31. Thus, applying
Lemma 3.36, we see that M is a bounded matrix operator on ¢*(D x £). Using
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this result within the right-hand side of the inequality (3.74) and then using (3.72)
yields

Cu o Cura
(3.75) Ypa(e) < WHXQf |172(ny < WH[)XZLPDQHQLQ(Q) < Gy(e).

Here the finite constant Cy(e) is independent of P and b because ||b||p~@) < 1.
Combining this with the inequality (3.71) we see that

Yp < 321371 + 32232(8) <(C

ce€

with upper bound independent of P and b. Taking supremum of ¥p over all P €
D7(Q) we obtain the estimate (3.69) as required. O

Norm estimates of Th for b € BMO(Q2). A Calderén—Zygmund operator T' € CZO
is bounded on BMO(R™) if, and only if, 71 = 0 [MC97, p. 23]. Here we establish a
similar result for WSIO’s restricted to uniform domains.

Theorem 3.76. Let @ C R" be a uniform domain. Let T € SKg."(6) be such
that 0°T € ZL(L*(Q)) if |a| = m. Then Txq = 0 in f2*(Q) if, and only if,
T € Z(BMO(RQ), fm™2(Q)). The latter condition is equivalent to the estimate

1T (bxe)ll jm2qy < ClbllBmoe),
where C' is independent of b € BMO(2).

Proof. The sufficiency follows as ||xqo||smo(e) = 0. Next we assume that Txo = 0 in

f™2(Q)). Because the extension operator E : BMO(Q) — BMO(R") is bounded, it
suffices to prove the estimate

(3.77) T (bxe)ll jm2 ) = IT((Eb)xQ)ll jr20) < ClIEb][BMOE),

where C' should be independent of E'b. The proof of this is estimate very similar to
the proof of Theorem 3.68 and we only indicate the required modifications here.

Fix P € D7'(Q) and (Q,¢) € DP(Q) x & satisfying Q@ C P. Analogous to (3.70),
but using also the assumption T'xq = 0 in f72(), we have

T((Eb)xe)(@Q,e) = T((Eb)xa)(Q, &) — (Eb)4pTxa(Q,€)

=T((Eb— (Eb)ap)xa\ar)(Q,€) + T((Eb — (Eb)ap)Xanipr)(Q, €).
First of all, we need to reach the estimate
(3.78) \% DO 1R T((Eb — (Eb)ap)xeur) (@, €)* < Cil|Eb|[Baogn).

QCP ec&
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where C7 should be independent of P and Eb. Estimating as in Lemma 3.64, we
have

(3.79)
IT((Eb — (Eb)ap)xa\ur)(Q,€)|

5/2
<l (D) [ 1) — (B0l + @) o gl

We invoke following estimate, valid for functions in the space BMO(R"),

“p)
(Q)

Combining the estimates (3.80), (3.16), and (3.79), we get

(3.80) (Eb)ap — (Eb)o| = Coll Eb|lmaiogen (1og +log 8).

Q)N opr
IT((ED ~ (Bir)xonar) Q. ) < ClIEMmorao @ () (14108 5001 ).
This corresponds to the estimate (3.66) altough this is slightly worse due to loga-
rithmic factor. However, this factor is easily compensated and we can continue to
estimate as in Lemma 3.64 to reach the required estimate (3.78). Second we need
the estimate

(3.81)

S = o 3 S IQI (D = (Eb)ar)xacar)(@-2)F < ClLEM Buioger

| QCP ec&

with C' independent of P and Eb. First of all, (Eb — (Eb)4p)xarup € L*(2) and
therefore we can proceed beginning from the estimate (3.73) and until we reach
(3.75), which is replaced by the following estimate in the present context

Yp2 < |||(Eb (Eb)ar)Xxanapl|T2() < Eb — (Eb)ap)Xap|22(n)

P |P|||(

|P|/ |Eb(z) Eb)4P| dx < CHEb”BMO(R"

This is the required estimate (3.81) since the constant C'is independent of P and Eb.
Finally, combining the estimates (3.78) and (3.81), we reach the estimate (3.77). O

Example 3.82. Here are examples when Theorem 3.76 is applicable.

e The assumptions of Theorem 3.76 hold if 2 = R™ and T is of convolution
type. This follows from Theorem 3.40.

e Later in Definition 3.91 we define operators II, € SKg."(§) satisfying 1,1 =
0 € fm2(R™) but II*1 = 0 € f72(R") only if I, = 0. Hence Theorem 3.76
applies to those operators IT, that meet the L?(R")-bundedness criterion.
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3.4. T'xq theorem for restricted operators. Next we treat the Ty theorem for
restricted operators. Its difficult direction remains to be proven and, to describe it,
we fix T' € SKg,"(6) that is associated with a globally defined kernel K € Kg,"*(9).
The difficult direction of the Ty theorem states that

(3.83) Txa, T*xa € f™3(Q) = {0°T,0°T* : |a| =m} C L(L*(Q)),

where 2 C R" is a Whitney coplump domain. The assumption on the left-hand
side of (3.83) is rather weak because the space f7-?(12) is defined in terms of the
interior cubes and the boundary cubes are omitted.

The main tools here are certain reflected paraproduct operators that are obtained
from the usual paraproducts by establishing a geometric modification. This modi-
fication is based on the reflection of dyadic cubes that exists in a Whitney coplump
domain.

Let us sketch the proof of (3.83). If T' € SKg.'(d), there exists reflected para-
product operators mp, mp« € SKg,"(6) such that the reduced operator

(3.84) M =T — np. — 7 € SKg™(6)

satisfies the all the assumptions of the reduced T'1 theorem, Theorem 3.37. In
particular, it satisfies M1 = 0 = M*1. Applying the reduced T'1 theorem, we see
that

(3.85) {0°M,0°M* : |a| = m} C ZL(L*(R")).

The proof of (3.83) in the case @ = R™ is an adaptation of the proof of the T'1
theorem of David and Journé. First we show the implication

(3.86) T1,T*1 € f4R™) = {0%p-, 0%5 : |a| = m} € L(LAR™Y)).

This is a direct computation, using the special properties of the paraproduct oper-
ators and the reflection of dyadic cubes. Combining (3.84), (3.85), and (3.86), we
obtain the conclusion in (3.83) for this special case 2 = R"™. To proceed in the case
of general Whitney coplump domains €2 C R"™ we decompose the reflected para-
product operators 7y« and mp to interior (I) and residual (R) parts wps = Iy« + Rop-
and 7 = Iy + Rp. This decomposition and the definition (3.84) yield the following
important identity

(3.87) M +1p« + 17 =T — Ry — R}

The interior and residual parts are defined so that, first of all,

(3.88) (Rr-f1g9)=0=(Rypflg), iff,geCo()),

but also

(389)  Txo,T*xa € f73(Q) = {07, 0°T; : |a = m} € L(IX(R")).

Both (3.88) and (3.89) are crucial and follow from the properties of reflection @) —
()° and the globally defined kernel. Fix o € N} so that |a] = m, f € Cy(Q2), and



52 ANTTI V. VAHAKANGAS
g € CJ'(22). Then, using (3.87) and (3.88), we get
[O°Tf | 9)| = {0 (T = Ry« = RY) f [ 9) = [{(0%(M — Iy« = 17) f | g)]-
Finally, applying (3.89) with this identity, we get the required norm-estimate
0T | ) < Crllflle2@nmllgllz2@ny = Crll fllz2@)ll9ll22(0)-

As a consequence, we have 9T € Z(L*(Q)). Due to symmetry in the assumptions,
we also have 0°T* € Z(L?*(Q2)). These are as required in (3.83).

We stick to the definitions and notation introduced in the beginning of Section
3.3 with the exception that the domain 2 C R is assumed to be Whitney coplump.

Basic properties of reflected paraproducts. Here we cover the definition and basic
properties of reflected paraproducts. We adapt the treatment in [MC97, pp. 57-60]
to meet our needs and the geometric modification involved in this adaptation is
apparently new. Fix a real-valued function ® € C§°(R") so that

0<Pd<1, supp® C[0,1)", / O(z)dx = 1.

Recall that we denote
(3.90) Og(x) = QI7*(UQ) ™ (x — xq))

if @ € D and 2 € R". Thus suppPq C Q and |Q|1/2 [, Po(z)dz =1if Q € D. A
reflected paraproduct depends on m € {1,2,...,n — 1}, on the function ®, on the
(m + 1)-regular wavelets {5}, and on the reflection

Q— Q" :D—-D

associated with the given Whitney coplump domain € which is (Cy,41, B )-coplump;
see Remark 3.55. There is also a parameter 7 : D x £ — C involved that is more
variable than the fixed quantities before.

Definition 3.91. Let n > 2, 0 <m < n, and 7: D x £ — C satisty
7(Q,8)] < NQIY*™™, i (Q,e) € D XE,

where A > 0. Let f € Co(R™). Then the reflected paraproduct (of T and f) is the
function I, f : R® — C that is defined pointwise for x € R" by

(3.92) IL f(x) = o manrf(@) = > > 7(Q.0)|QI*0q(x)(f | ¥)-

QED ek

Let us then quantify the operator theoretic setting and properties of reflected
paraproducts. We show that the reflected paraproduct is well defined and it coin-
cides with a weakly singular integral operator that is associated with a standard ker-
nel of order —m. Accordingly we interprete reflected paraproducts as WSIO’s. One
of the important properties of a reflected paraproduct as a WSIO is that I[I71 = 7
in f72(R") and the dependence of II, on the (m + 1)-regular wavelets is a reflection
of this property.
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Theorem 3.93. Let § € (0,1), n>2, and 0 <m <n. Let 7: D x & — C be such
that |T(P,p)| < MP|Y/?+m/m if (P,p) € D x £. Then the series (3.92) converges
absolutely and 11, € SKg,""(6) is associated with a kernel

K=k, € C"THR" x R"\ {(x,2)})
that is defined by an absolutely convergent series
(3.94) wle,y) = Y m(Q,e)lQI PR ()i (y)
Q€D ce€
and satisfies the estimates
1020, k(2 y)| < Cla —y|m 1o

for every a, B € N§ with |o| + |G| < m + 1. Here the constant C' depends at most
on the parameters n,m, By, A\, @, Cri1. We also have 1IX1 = 7 and 11,1 = 0 in
fm2(R"™). To formulate this otherwise, we have

/ TLh(x)de = (P p), / I 0 () = 0,

n

if (P,p) € Dx & and Vg ’s are (m + 1)-regular wavelets.

Proof. Denote r = m + 1 and by C' we denote any constant that may depend at
most on n,m, B, \, ®,Cyiq. If v € Z we denote

Ro(y) = > Y 7(Q,0)|Q 1 gs (2) 1 (y).
QED, ec&
Fix v € Z and (Q,¢) € D, x €. Using (3.90) and Remark 3.55, we see that
supp P C Q° C B(zq, (2 + () diam(Q)).
Applying this relation and the property B4) of (m + 1)-regular wavelets yields
(3.95) supp @qs Usupp iy C B(rg,ydiam(Q)), v =2+ Bn + Cpia-

Fix x € R™. Assuming that z € supp ®gs, we have @ C B(z, (1 + ) diam(Q)).
Since the cubes in the family D, are disjoint and diam(P) = /nl(P) = /n27" if
P € D,, there are at most

|B(z, (1 +7)vn2™")|
271/71

cubes in the family
D,(x)={P €D, : x € supp Pp:}.
This upper bound is independent of ¥ € Z and x € R". Similar reasoning shows

that the number of cubes in the family D,(K) = {P € D, : K Nsupp ®ps # 0},
where K' C R" is a compact set, is finite depending essentially on diam(K) and v
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but also on other ambient parameters. This implies that x, € C™ ™ (R™ x R") and,
if z,y € R" and |a| + |3] < m+ 1, we have the estimate

OOk eyl < Y D IT(Q9)QIT 00 0o: (2)0) vy )]
Q€D, (x) €&
(3.96) < A27|0°® | oo () Con 1 Z @[/t lel/n=B1/m
QeDy(2)
< >\2n||aa(I)‘|LOO(Rn)Cm+102v(n+|a\+|,@|—m) = Cgv(ntlaHi=m)

Furthermore, if 0%0%k,(z,y) # 0, then there exists (Q,e) € D, x £ such that
x € supp Pps and y € supp . Using (3.95) we see that

|Z’ — yl —v
(3.97) T < 0Q)y=2".
Let d > 0 and denote Q; = {(z,y) : |r —y| > d} C R* x R". Fix vy € Z so that
that
24 < d (/) < 270

Assuming |a| + |8 < m+1, (x,y) € Q4 and using the (3.96) and (3.97), we get

00 vy
Z |a§85/<;l,(x7y)| <C Z 2V(n+|a\+|g|_m) < Cdm—n—|a\_|ﬁ|‘

V=—00 V=—00

The Weierstrass M—test shows that the left-hand side converges uniformly in €24 and,
since UgsoQg = R" XR"\ {(z,2)}, we have k = >~ _, k, € C"THR" xR"\{(z,2)})
and this series can be differentiated termwise. Assume that |a| + 5] < m + 1,
(z,y) € R*"xR"\{(z,2)}, and v,, € Z satisfies 27"v < |z —y|/(yy/n) < 27=vTL,
Then (3.96) and (3.97) yields

Yolosom@y)l < Y D D Im(Q,0)|Q1 0 dgs ()05 (v)]
(398> vEZL v=—00 Q€D,(z) e€E

< Clz — y|m—n—\a|—|ﬂ\'

A simple modification of later Proposition 4.6 shows that x € Kg.'(0) if 0 < 6 < 1.
Next we prove that the paraproduct is associated with kernel x. Indeed, if f €
Co(R™) and z € R™, then estimate (3.98) and local integrability of y — |z — y|™ ™"
yields

sy [ X L@l e 0wl <

vEZ QEDy(x) e€E

The dominated convergence theorem implies IL, f(x fRn y)dy. Further-
more, the series (3.92) converges absolutely.

Fix (P,p) € D x E. Applying the property B1) of wavelets to the definition of II,
we see that [, IL.4} = 7(P, p).
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Next we prove that [, IT#9)%, = 0. First notice that the family D, (P) = D, (supp ¢5)
is finite for every v € Z. Therefore we can apply the Fubini’s theorem and the iden-

tity [ g =0 for
(3.100) [ [ "ty =o

We claim that it suffices to verify that the function F': R™ — [0, 00),

(3.101) F(z)=Y" /nffw(y, z)¢p(y)d ‘

VEZL

is integrable. Indeed, assuming that F' € L'(R"), we apply the dominated conver-
gence theorem twice — first justified by (3.98) and then by F' € L'(R") — thereby
reaching the identity

/nH*wP /n/n“”y’ x) Y (y)dydz = 0.

Notice that we also used (3.100). It remains to prove that F € L'(R"). Using
(3.98) and (3.6) we see that F' € L>(R™). Assume then that |x —zp| > 2y diam(P).
Lemma B.2 shows that there exists a = a(p, m + 1) such that |o| = m + 1 and a
function ¢”™+! : R — C such that ¢¥%™"" satisfies B4) and B5) in Appendix B
and

w}% _ |P|(m+1)/naa¢$m+l'

Using these properties and integrating by parts, we have

Fz) = [P|+0m S | (—1ym+ / om0 () dy

VEZ

S C1m-|—1|P|(m+1)/n_l/2/> Z |ao¢ K\Y,x |dy

B(zp,ydiam(P)) ,

Using (3.98) with 8 = 0 and the estimate |y—z| > ]x—xp|/2 fory € B(xp,ydiam(P))
yields F(z) < C|P|}/?+m+D/n|3 — p|~"~!. Combining this with the boundedness
of F' we see that F' € L'(R™) as required. O

Boundedness of reflected paraproducts. From Definition 3.47 it follows that, if 7 €
fm2(R™), then

(3102) (@0 < IIrlljpen QT (Qie) €D xE.

Hence Definition 3.91 applies and the reflected paraproduct operator I, = Il ;. s 0.~

exists and it satisfies all the properties described in Theorem 3.93. Here we verify
the following additional boundedness property

7€ fMARY) = {0°IL,, 0°IT" : |a| =m} C L (L*(R")).

The main tool here is the following variant of the Carleson’s lemma, which is an
adaptation from [MC97, p. 59].
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Lemma 3.103. Let 7 € f72(R") and w : D x £ — [0,00) be a positive sequence.
Define w(x) = sup{w(Q,e) : € Q € D ande € E} if v € R". Then

> S I rQu e el @.) < il [ wlalds

QeD ec&

Proof. Denote p(Q,¢) = |Q|72™/"7(Q,¢)|? if (Q,e) € D x €. Define y : D x & x
[0,00) = Rby x(Q,e,t) =1,if 0 <t <w(Q,e), and x(Q,¢,t) = 0 otherwise. Then

(3.104) SN (@)l / > p(@ (@ e t)dt

QED €& QED e€&

Fix t > 0. Denote D, = {z € R" : w(z) > t}. Then using the Chebyshev’s
inequality, we have

|Dy| < tl/ w(z)dz.

If [o, w(z)dz = oo then we are done. Hence we can assume that |D;| < co. Assume
that (@, 6) C D x & satisfies x (@, e,t) # 0. Then w(Q, <) > t and therefore @ C D;.
Applying the estimate |D;| < oo we see that there exists a unique maximal cube
Q™(Q) € D satistying @ C Q™(Q) C D,. The family M, of these maximal cubes is
disjoint and Q™ C D, if Q™ € M,. Taking the discussion above into consideration
and using Definition 3.47, we have

YD p@eax@et) < Y > D pQe)

Q€D ee€ QmMEM: QED: QCQ™ €&
Nl 3 1@ < 7l g Dl
QmeM;
Combining this estimate with the identities [;* |Dy|dt = [;, w(z)dz and (3.104) we
reach the required estimate. 0

We prove a boundedness result for the reflected paraproduct operators. Analogous
treatment in the limiting case m = 0 is in [MC97, p. 58-59].

Theorem 3.105. Let n > 2 and 0 < m < n. Assume that 7 € f™2(R"). Then
O°1L,, 0°I* € L (L*(R™))

for every a € Ny satisfying |a| =

Proof. First of all, the reflected paraproduct I, is well defined because of the es-

timate (3.102). Theorem 3.93 implies that II, € SKg.*(d) and therefore the basic

estimates (3.6) and (3.7), along with other properties related to weakly singular

integral operators, are at our disposal. Fix a € N such that |a| = m. First we
prove that

0°11, € Z(LA(RM)).
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For this purpose we fix f € Cy(R") and g € CJ*(R™). Using the definition on weak
derivative and properties of weakly singular integral operators, we have

(3.106) (O°IL-f | g) = (=1)"™(f | TI;0%9).

Applying (3.7) we see that II*0%g € L4(R™) for some 1 < ¢ < 0o. Since the wavelet
approximation converges unconditionally in L (R"), see B2), we have

([ TE0%g) ) = [ D0 (F o) (g | TT20%g)
(3.107) Q€D eef
<SS TN T I | %) < 11 fllz2@n G

QED €&

In the last inequality we used the Cauchy—Schwarz inequality and the term G is
quantified below. Indeed, using Definition (3.91) and Lemma 3.103, we have

= 3 Y@l (e | 70
QED ec&

= 3 SR HQ PRI K@ @) | ) < s [ wla)da
QeD e -

Here w(z) = sup{w(Q,e) : r € Q€D andec € £} if v € R" and
W(@,2) = QI (@ @) | )2, i (Qu2) €D X £,
Fix z € R" and (Q,¢) € D x & such that x € Q). According to Remark 3.55 we have
x € supp(0°®)g: UQ C QU Q C B(xg, (2+ 5,) diam(Q)).

Using this we have the estimate

Vel@) < liorellel | 9)ldy < CinaMo(z).

B(xQ 7(2+ﬁm) diam(Q))

where Mg is the (non-centered) Hardy—Littlewood maximal function of g. Hence
w(z) < CF,, maMg(x)? and, combining the estimates above, we get

G2 S O‘r,fb,n,m,QHMgHg S CM,T,CD,n,m,QHgH%
This combined with the identity (3.106) and the estimate (3.107) shows that 0*IL, €
ZL(L*(R™)).
Then we study the operator 0°II7. If f, g are as above then reasoning as in
connection with (3.107), we have

(3.108)
(=)™@°TLf | g) = > > (ILf [ 4g) (WG | 0%)

QED e€&

=) D 1RITT(Q.9)|QI VA (f | Do) |QI™ ™ (W | 0%g).

QeD ec&
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Applying the Cauchy—Schwarz inequality and estimating as in the first part of this
proof, we get the estimate

1/2
(3.109) [(O°TI3f | g)] < OM,T,n,QIIsz( SN IRPM Mg | 0ag>l2) :

QED ec&
Because g, (0°¢°)g € L*(R"™) we have

Q™™ (W5, | 0%g) = (=1)™QI™™(0°v | g)
1)) N 1QIM MO | vh) (W | g).

PeD pek
Example 3.31 and Lemma 3.36 show that

M = Myejgm = {‘Q’m/n@awé | w%”

is bounded on ¢*(D x £). Combining this fact with the inequality (3.109), we get
the desired estimate

(O“IILf, 9)] < Crsrinmocll fll2]lgl]2-
Hence we have 0°IT* € Z(L*(R™)) as required. O

Interior and residual paraproducts. Here we split the reflected paraproduct into
interior and residual parts and collect their important properties. We keep the
setting described above, that is, reflected paraproducts depend on the sequence 7,
on the function ®, on the (m + 1)-regular wavelets, and on the reflection @ — Q*
associated with the Whitney coplump domain . Also the family D}*(2) of dyadic
cubes, defined in 3.45, plays a significant role.

Definition 3.110. Let T' € SKg."(0). We pose the following definitions

o If ¢ € £ we define 7(Q, ¢) = [, Ty (v)dx, if Q € DF*(2), and 7(Q, ) = 0,
if @ € D\ D/ (). The mtemor paraproduct associated with T is defined by
I =1I1,.

o If6 € £ wedefine 0(Q, ) = [, T*V5(x)dx, if Q € D\D{(Q), and 0(Q, €) =

0, if @ € D*(Q2). The residual paraproduct associated with T is defined by

Ry =11,.

e The full paraproduct associated with T is defined by mpr = I+ + Ry.

Remark 3.111. Let T € SKgz*(d). Combining Corollary 3.11 and Theorem 3.93 we
see that Ip, Ry € SKgi"(6). The residual paraproduct Ry is associated with a kernel
satisfying

Kol x Q\ {(z,2)} = 0.
To see this apply the presentation (3.94) and use Remark 3.55 for supp ®o: C Q° C
R\ Qif Q@ € D\ D7*(N2). In particular, we have the important equivalence

T ~T—Ry—Rjy

if M, N € SKg."(0). This allows us to normalize operators by using residual para-
products.



WEAKLY SINGULAR INTEGRAL OPERATORS ON DOMAINS 59

The following boundedness result provides a step towards the Ty theorem. The
earlier tail lemma for globally defined kernels turns out to be useful here.

Lemma 3.112. Assume that § # Q C R" is a Whitney coplump domain and
T € SKg*(9) satisfies Txq € f™3(Q). Then 0°Ip,0°T; € L(L*(R™)) if |a| =

Proof. In this proof C' is a generic constant whose value may depend at most on
the parameters n,m, C,,+1,T. Applying Corollary 3.11 and Theorem 3.105 we see
that it suffices to prove that 7 € f72(R") where 7 is as in Definition 3.110, so that
Ir =1I,. By Lemma 3.49 we are reduced to showing that

(3.113) 2oy = s ZZ!QI (@) <

QCP ce€

For this purpose, if @ € DJ*(Q2), we denote 5(Q) = > |7(Q,¢)|* and

TQ(Qvg) = TXQ<Q7€) = /QT*¢6Q7 TR”\Q<Q7€) = T(Qv ) - TQ(Qv ) = (XR"\Q)(Qu )7
Q)= [m(Q.0)°, fana(@Q) = |Immal@.2)

ee€ eef

Fix an interior cube P € D*(2) and denote Xp = |P|™' 7, p |Q|72™/"3(Q). This
is well defined since, if @) € D is such that @ C P, then we have @ € D7 (Q).
Applying the triangle-inequality, we get

Yp < 7l Z Q2™ Ba(Q + T Z Q™" Brma(@Q)

QCP QCP

S QI Q).

QCP

(3.114)

In order to estimate the tail series we fix a dyadic cube ) C P and index ¢ € &.
Recall that P € D/ () and, using Definition 3.45, we have dist(R" \ Q, P) >
CmHﬁ(P). Invoking Lemma 3.64 with B = R" \ €, we get the estimate

B115) o 371 Benal@) = o 3 S IR () (@) < o
| QCP | QCP ec&

Here the constant C < oo is independent of the cube P € D7*(Q2). Now combining
the estimates (3.115) and (3.114) above, we obtain

sup Yp < 3\|TXQH2m2 +3C) < 0.
PeDT(0)

This is the required estimate (3.113). O
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Difficult direction of T'xq theorem. Now we are able to prove the difficult direction
of the T'xq theorem. Ultimately we rely on the reduced 71 theorem but also on the
reflected paraproduct operators which enable us to extend the restricted operator
to a bounded operator on the whole space.

Theorem 3.116. Assume that ) # Q C R™ is a Whitney coplump domain and
T € SKgi'(0) satisfies Txqa, T*xa € f1*(Q). Then there exists S € SKgi* () such
that S ~ T and

{0°S,0°5* : |a| = m} C L(L*(R™)).
In particular, 9°T,0°T* € L (L*(Q)) if |a] = m.
Proof. Fix v € Nj such that [a| = m. Theorem 3.93 and Corollary 3.11 combined
show that M = T — 7« — 7 € SKgi'(0) satisfies M1 = M*1 = 0 € fm™?(R").
Theorem 3.37 shows that 9*M, 0°M* € £ (L*(R"™)). Define

S =M + Ip- + 17 € SKga"(9).
Using the assumptions and Theorem 3.112 yields 95, 9*S* € £ (L*(R™)). On the
other hand, we have the identity
S=M+1Ip +1=T—Rp — Ri.

Taking also the Remark 3.111 into account we see that S ~ T and S* ~ T™*. Based
on the discussion in connection with (3.59), we see that 9°T, 9°T* € £(L*(Q2)). O

Combining Theorem 3.116 and Theorem 3.68, we obtain the following bounded-
ness result complementing Theorem 3.68.

Corollary 3.117. Assume that ) # Q C R" is a Whitney coplump domain and
T € SKz™(6) satisfies Txa, T*xa € f™2(Q). Then there exists S € SKz™(0) such
that S ~ T and _

S € Z(L*(R"), f3*(R")).
In particular, if b € Cy(Q), there exists Sb € F*(R") such that Sb|Q = Tb|Q
pointwise and |[Sbl| zm2gay < C|b][Le () with C" independent of b.

Formulation of the Txq theorem. Finally we obtain the Ty theorem. Its proof
follows by combining Theorem 3.116 and Theorem 3.68.

Theorem 3.118. Let ) # Q C R™ be a Whitney coplump domain and T € SKg.*(9),
where 0 <m <mn and 0 < < 1. Then the following two conditions are equivalent
® Txa,T*xq € f2*(Q),
e 0°T,0°T* € Z(L*(Q)) if |a] = m.
Furthermore, if these conditions hold true, then there exists S € SKgn'(9) such that
S ~ T and the operator S satisfies the conditions above with {2 = R"™.

Remark 3.119. e We strengthen the Ty theorem in later Theorem 6.12. Therein
we show that the condition
(3.120) {0°T, 0°T* : |a| = m} C L(LP(Q)), ifl<p< oo,

is equivalent with the two conditions occuring in the 7'y theorem.
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e The characterizing conditions in the Ty theorem are intrinsic to the domain
) C R™ and they are invariant under the equivalence relation ~. This applies
also to the condition (3.120).

The proof of our main result, Theorem 6.19, relies on these intrincity or
invariance properties. In this so called T'1 theorem for WSIO’s on admissible
domains 2 C R™ we begin with an operator 7' € SK,," () and in the proof
we extend the associated kernel K € K™ (0) to a global kernel K € Kg(8).
This defines an extension of the original operator 7" and we apply the T'xq
theorem to this extension. However, as a consequence of the intrincity, the
required conditions now depend only on 7.

e Here are some results that are related to the Ty theorem:

In the formal limiting case 2 = R™ and m = 0 the Ty theorem coincides
with the T'1 theorem of David and Journé, formulated in Theorem 1.12. This
limiting case is not included in our treatment. There are further results for
Calderon—Zygmund type operators on more general spaces. As an example,
F. Nazarov, S. Treil, and A. Volberg have proved a Tb theorem on non-
homogeneous spaces [NTV03|. A theory of Calderén-Zygmund operators
on Euclidean domains 2 C R” follows as a special case if we consider the
space (R™, i), where the Borel measure p is defined in terms of the Lebesgue
measure by u(A) = m, (2N A) for every Borel set A C R™.

The treatment [Tor91| of R. H. Torres deals with Calderon-Zygmund type
singular integral operators but also with integral operators associated with
kernels of different order. These include operators resembling the global
WSIO’s [Tor91, Theorem 4.3.12.]. The function spaces involved in Torres’
work are the global Triebel-Lizorkin spaces. In our work the emphasis is in
the boundedness properties of WSIO’s on domains.
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4. REGULARITY OF STANDARD KERNELS

Finding a solution to certain kernel extension problem in a uniform domain 2 C R”
is our last major topic. We will prove that a standard kernel K € K;™(d) has an
extension to a globally defined kernel of the class Kgi'(d') if 0" < §. This result
complements the Ty theorem, where the kernels need to be globally defined. Our
solution to this kernel extension problem is divided in two parts as follows:

e The first part consists of a regularity result for standard kernels, formally
(4.1) Ka™(8) € Kg™(0) € Kg™(0"),

where the kernel space K™ consists of certain smooth kernels of the class
C™ and whose order m derivatives are Calderén-Zygmund standard kernels
if 2 = R™. The second inclusion in (4.1) is the main result in this section. It
follows from certain almost diagonality estimates combined with a so called
dyadic resolution of unity that we will construct by utilizing the geometry
of uniform domains.

e The second part consists of an extension result for the smooth kernels K™ (6)
and this is the main result in the following Section 5.

4.1. Kernel spaces. We define various kernel spaces and collect those inclusions
between these spaces that are somewhat easy to verify. The standard kernel space
Kq™(0) is defined in the Introduction. Next we define the Holder-Zygmund kernels
k() and the smooth kernels Kg™(6).

loc

Definition 4.2. Let ) # Q C R", n > 2, be a domain. Assume that m € N,
m < n,and 0 < § < 1. The space of Holder—Zygmund kernels, denoted by kl’gj‘s(Q),
consists of complex-valued functions K € C(Q2 x Q\ {(z,z)}) satisfying

e size-estimate | K (z,y)| < Cklx —y|™ ™, if x,y € Q,
e (m + 0)-Holder-Zygmund condition

’AZL—H(K(xv )>Qay)| < OK|h’|m+6‘x - y‘—n—6

if v,y € Q, Q CC Nis a cube, and 2(m + 1)|h| < |z —y|. We also assume
the same estimate but with K (x,-) replaced by K(-, ).

Definition 4.3. Let ) # Q C R", n > 2, be a domain. Assume that m € N,
m < n, and 0 < § < 1. The space of smooth kernels, denoted by K" (9), consists
of complex-valued functions K € C™(2 x Q\ {(x, x)}) satisfying

e size-estimate, given o, 8 € N} so that |a| + |3] < m,
050 K (2, y)| < Cicla — g1

if x,y € €,
e Holder-regularity estimate, given «, 5 € Ni so that |a| + |3] = m,

020K (2 + hyy) = 020 K (. y)| < Ci|hl’|lz —y| "
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if z,y,z + h € Q satisfy 2|h| < |x — y|. We also assume the same estimate
with h-difference placed to the y-variable and z,y,y + h € ) satisfying
2h| < |z —yl.

Remark 4.4. o Let K € Kg'(9), || 4 |B| = m. Then 9307 K is a Calderon-
Zygmund standard kernel as defined in connection with (1.9). Hence WSIO’s
with smooth kernels and Calderén-Zygmund type operators are related to
each other.

e There are analogous function spaces. The kernel space K™ () corresponds
to so called local smoothness space €*(£2). Smooth kernel space Ky (6)
corresponds to a Holder space C™9(2). Both of these function spaces are
defined in Section 5.

First inclusions between kernel spaces. In this section we will show the following
inclusions

(4.5) K3™(6) C ko (Q) C Kg™(9) € Kg™ (9,

loc

where €2 C R” is a uniform domain. We begin with the first two inclusions because
these are easier to prove. The difficulties lie in the later verification of the last
inclusion, where the uniformity is utilized.

Proposition 4.6. Let ) # Q C R", n > 2, be a domain. Assume that m € N,
0<m<mn, and 0 < < 1. Then we have the inclusions

Kq™(6) € E™H(Q) € Kg™(6).

loc

Proof. The size-estimates are valid. Due to symmetry it suffices to prove the regu-
larity estimates with respect to the y-variable only. First we verify that 5™ (d) C
k() and, for this purpose, let K € Kg™(d), @ CC Q2 be a cube, z,y € 2, and

loc

h € R" be so that 2(m + 1)|h| < |z —y| and {y,y + h,...,y + (m+ 1)h} C Q. It
suffices to show that

(4.7) AT K (2,0), Q. y)| < Corel ™l —y| "7

Denoting f = K(x,-) and using the integral presentation (A.1) for the first m
differences, we are reduced to proving the estimate

(4.8) [ALOFE (), y + (61 + -+ + O ) R)| < Cp el b — y|7"°
if |o| =m and 0 € [0, 1]™. Notice that
2|h| < 2(m + 1)[h[ = m[h| < |x —y| =m|h| <z = (Y + (O + -+ On)h)].

Hence we can apply the Holder-regularity estimate, satisfied by the smooth kernel
K. After doing so we use the estimate 2|z — (y + (61 + -+ -+ 0,,)h)| > |x — y|. This
gives us

[ALOYE (2, ),y + (0y + - + 0 )| < 27 Cel B |2 — |77,
and this is the estimate (4.8). Hence (4.7) holds and therefore K € k™ (Q).

loc
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Next we prove that k™(Q) € Kg™(0). Let K € k™™(2) and denote by Cx
the associated constant. Let z € Q and fix a cube Q = Q(z9,7) CcC Q, r <
|z — 29|/8y/n. Let y € Q and h € R™. If (m + 1)|h| > diam(Q), then {y,y +
h,...,y+ (m+1)h} ¢ Q and therefore AT (K(z,-),Q,y) = 0. Next assume that
(m + 1)|h] < diam(Q). Then, since r < |x — 29|/8y/n and |z — 29| < 2|z — y|, we
have
(m 4 1)|h| < diam(Q) = 2v/nr < |z — 2°9]/4 < |z — y|/2.
Thus 2(m + 1)|h| < |z — y| and, using the assumptions, we get
AT E (2,),Quy)| < Cx|h|™ e —y[ 770 < O x| Q"M — 2?7772,

Combining the estimates above, we obtain

1 . N
sup WTW/Q|Ah+1(K(37?')’Q7y)|dy§Cn,K|ac—ng| 5

|h|<diam(Q)
We assumed that Q(z%,r) CC Q satisfies 4diam(Q) = 8/nr < |z — 29|. As a
consquence, K € K™ (d) with constant max{Cp, C, k,4}. O

4.2. Dyadic resolution of unity. In order to prove the last inclusion in (4.5) we
first construct a so called dyadic resolution of unity in uniform domains. This is a
generalization of a similar construction on special Lipschitz domains [Ryc99|.

Let us explain what we mean by a dyadic resolution. If f : 2 — C is continuous,
then f(x) = (f,0,), where §, is the Dirac’s delta located at the point x € 2. This
identity gives rise to a dyadic resolution of f as follows. First we approximate the
Dirac’s delta with a bump function ¢, ps. Then we expand this bump function as a
sum of a fixed coarse scale bump function and a telescoping series of differences of
two consecutive bump functions. That is,

M
@9 @~ [ foenwidrt 3 [ F6)en - o)Wy

Q j=t+17%
where the integrands are smooth for every fixed y, as functions of x. For instance,
if O = R™, then we can fix one bump function ¢ € C§°(R") so that [, ¢(x)dzr =1
and define p;, = 2"@(2/(- — x)) for j € Z. Decompositions like (4.9) allow us to
connect to cancellation properties of f as we will see.

In proper domains the difficulties lie in ensuring that we can do this construction
so that the supports of the bump functions are included in the domain. To indicate
some of the difficulties, one expects vanishing moments from the difference of two
consecutive bump functions in order to induce cancellation. There are also certain
geometric properties that the construction should possess. We show that these
difficulties can be overcome in the case of uniform domains.

Bump functions. Our construction requires special bump functions which we first
describe. Here we follow Triebel [Tri92, p. 173-174] until we reach the bump
functions supported in rotated cones, see Lemma 4.13 below. We begin with one-
dimensional bump functions.
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Lemma 4.10. Let m € N, € > 0, and p € R. There exists a function g = g, €
Ci°(R) such that supp g C B(p,e) and

/Mﬂﬁ:L /}%@mzq k=1,2,...,m.
R R

Proof. Choose m + 1 points pg < p1 < -+ < pn € R such that p —e/2 < pg
and p, < p+¢/2. Fix § > 0 and let ¢3,9,...,9°, € C(R) be such that, if
j=0,2,...,m, we have [, g?(t)dt = 1 and supp gf C B(p;,0). Then consider the
linear system

(4.11) Z,uj/g?(t)dtzl; Zuj/tkgg(t)dtzo, k=1,2,....m
=0 j=0

of the variable p = (o, ft1, . . . , ) € R™L. This linear system has the equivalent

matrix form
m

%uzﬂ&&~wm6wmhl%={/ﬂﬁmﬁ} € RUmH)x(m+1),
R

J,k=0

Due to properties of Vandermonde determinants,
6—0 m
det A; = det AT det{pf}j’kzo =1IL2k(pj — pi) # 0.

In particular, for some § = &y < £/2, the linear system of equations (4.11) has a
solution 1 € R™*1. Then we can choose g(t) = > " g (t) if t € R. O

Multivariate bump functions are then obtained as tensor products of correspond-
ing one-dimensional bump functions. For later purposes we need the supports to be
contained in a small neighborhood of the point e, € R™.

Lemma 4.12. Let m € N and € > 0. Then there exists ¢ € C°(B(en,€)), e, € R
being the n’th base vector, such that

/ p(x)dx = 1; / r%p(x)dr =0, 0<|a] <m.

Proof. Fix g,h € C{°(R) provided by Lemma 4.10 with suppg C B(0,¢/2n) and
supph C B(1,¢/2n). Define p(z) = g(z1)g(x2) - - - g(zn_1)h(x,), v € R™. Assume
that x € R" is such that ¢(z) # 0. Then zy,...,2,-1 € B(0,¢/2n) and z, €
B(1,e/2n). Thus |z — e,| < ¢/2 and we have z € B(e,,e/2). In particular,
supp ¢ C C3°(B(en, €)). The Fubini’s theorem yields

/n o(x)dx = /Rg(xl)d:cl . -/Rg(xnl)dxnl/Rh(ccn)dxn =1.

Assume that 0 < |a| < m. Then 0 < a; < m for some j and the Fubini’s theorem
with the identities
/xo‘ﬂjg(m)dm =0= / Y h(z)dz
R R
yields [p, %¢(x)dx = 0 in any case. O
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Then we define multivariate bump functions that are supported in rotated cones.
For this purpose we need notation regarding rotation and dilatation.

Let n > 2 and ¢ be as in Lemma 4.12 with parameters m and €. Let 0 € S =
{r € R" : |z| = 1}. We denote by T,, : R" — R" arbitrary but fixed rotation about
the origin such that 7, (e,) = o; in the special case 0 = e,, we choose T,, = id.
Denote ¢, = @ o T, 1. If o0 € R™\ {0} then we denote ¢, = |o| "¢y /0)(lo] 7).

Lemma 4.13. Functions ¢,, as defined above, satisfy the following

1) supp ¢, C B(o, |ole), if o € R" \ {0},

) [ on(e)dr = 1, if 0 € B\ {0},
3)  Jgn %0 ( )dm—O if 0 < |a] <m and o € R™\ {0},
4) Let « € Ny and o € S*™'. Then

0°0o(@) < Y capl@@)(T;'2)l, = €R™
1B1=al

In particular, if p € R™\ {0}, we have ||0%p,||r~ < Ca7¢|p|*n*\a|,

Proof. We prove 1)-3) under the assumption that o € S*~!. General cases follow.
1) We have supp ¢, = suppp o T, ! C T, supp ¢ C T,B(e,,e) = B(o,¢).
2) Recall that T, is a rotation and change the variables.
3) To(y™) = 2 512 o cpy? and therefore

/naco‘goc,(x)dx:/n(T Py =Y caﬁ/ ~0.

181=lal

4) Denote the matrix of T,' by {c;x}7;—,. Apply the chain rule for

n

(4.14) Oi(po T, 1) (x) = ch’j(ﬁkgp)(Tg_lx), j=12,...,n.

k=1

Note that 0% = 97" 052 - - - 9%*. Denoting a € {n}** x {n —1}* -1 x - x {1}** and
iterating (4.14), we have

aa<90 o Ta'_:l)(x) - Z Ck‘1,a1 T Z Ck“a‘,am‘ (a/ﬂa‘ e a’ﬂlgp)(T(r_lx)’
k1=1 k:‘a|=1

if x € R™. Observe that |c;i| = |e; - T, tex| <1 for every 1 < j k < n and

0o ()| = 0% (0o T, ) (@) < D cagl@@)(T, 0)], xR
181=1a

If p € R™\ {0}, use the chain rule. O
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Special Lipschitz domains. Having the bump functions at our disposal, we are ready
to illustrate the ideas behind the construction of a dyadic resolution of unity on
domains. The relevant ideas are best demonstrated in the context of so called
special Lipschitz domains.

Definition 4.15. Let n > 2. A special Lipschitz domain is a domain 2 C R” lying
above the graph of a Lipschitz function w : R"! — R satisfying w(0) = 0. More
precisely,

Q={(z,) eR" : 2, >w(a)}
and there exists a constant L > 0 such that |w(2')—w(y')| < L|z'—y/| if ',y € R

It is straightforward to show that any special Lipschitz domain is an image of the
half space {(2/,z,) : x, > 0} C R" under a bi-Lipschitz mapping of R™ onto itself.
Thus, according to later Theorem 6.4, special Lipschitz domains are uniform (even
admissible).

The following construction of a dyadic resolution of unity is due to Rychkov
[Ryc99|. It also serves as a starting point for our construction. Let © C R™ be a
special Lipschitz domain with constant L. Consider the following cone

K=K, ={,z,) : x, > L|2'|} C Q.

This cone is convex and positively homogeneous so that AK = K if A > 0. Its
translations satisfy © + K C € for every x € ). The core of the translated cone
r+ K, z €€, is the image 0,[0,00) = {o,(t) : t > 0} of the path

0 [0,00) = x+ K, o0.(t) =x+te,.

We call o, the arc length parametrization of the core.

Fix m € N and € > 0 so that B(e,,c) C K. Let p € C5°(B(en,¢)) denote the
bump function associated with the parameters m and € as in Lemma 4.12. Using
the homogeneity and translation properties of K, we have

supp(¢(A\ (- —2))) Cz+ AB(en,e) Cx+AK =2+ K C Q

for every A > 0 and = € Q. Notice that the center o,(\) = = + Ae,, of the ball
x + AB(ep, €) lies in the core 0,[0,00) of the translated cone xz + K and ¢ = ¢, =

Plow(1)—2)-
If j € Ny and z € (), define

oy Jely—a), 7=0
Vu () {2jngp(2j(y — 7)) — 207 Dnp(20(y — 7)), § > 0.

Notice that, if 7 € N and x € €2, then supp,; C € and its diameter is roughly
277, If M € N, then Z;\io Uy = 2M"p(2M (- —x)) approximates the Dirac’s delta at

x € Q. Furthermore, if z € Q, then we have [, 9, 0(y)dy = 1 and [, 2%, ;(y)dy = 0
in the case || < m and j > 0.
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Quasihyperbolic geodesics in uniform domains. The previous construction of a dyadic
resolution of unity in special Lipschitz domains admits a generalization to uniform
domains. The translation z + K of a convex cone is, in this general case, replaced
with a cone like object that is implicitly defined via its core. Recall that the core
of z + K is the geodesic 0,[0,00) = {x + te, : t > 0}. In uniform domains a core
is given by a quasihyperbolic geodesic joining two given points x,y € €.
We invoke the quasihyperbolic geodesics from [GOT79|. Assume that Q@ C R™ is

a uniform domain and z,y € ). There exists a path o : [0,4(c)] — Q that is
parametrized by the arc length and satisfies the following:

e 0(0) =z, 0(l(0)) =,

e if 0 <s<t</(o), then

t ()
/ dist(o(x),0Q) 'dx = inf/ dist(y(x), 0Q) du,
s 0

”
where the infimum is taken over all of the rectifiable paths « : [0,4(v)] —
Q2 that are parametrized by the arc length and satisfy v(0) = o(s) and
v(l()) = o(t). This infimum is the quasihyperbolic distance between o(s)
and o(t) in Q.

The path o is (the arc length parametrization of ) a quasihyperbolic geodesic joining

the two points x,y € 2. Such paths are denoted by o : © ~ y. The following useful

result is proven by Gehring and Osgood.

Lemma 4.16. Let Q) C R"™ be a uniform domain with uniformity constant a > 1.
There is a constant b, depending on ) and satisfying b > a, so that the following
holds. Let x,y € € and o : x ~ y be a quasihyperbolic geodesic joining the two
points x and y. Then we have a)-b) below
a) |s—t| <blo(s) —a(t)] if 0 < s,t <o),
b) min(t, {(o) —t) < bdist(o(t),00) if t € [0,¢(0)].
As a consequence of b) above and the arc length parametrization of o, we have for
every t € [07 |J] - y|/2] - [O7€(0)/2]7
c) t < 2bdist(o(t) + (z — x),00) if z € B(x,dist(x,092)/4b).
Proof. Both a) and b) are stated in [GO79, Corollary 2| and the proofs can be found
therein. It remains to verify c¢). Denote R(x) = dist(z, 02).
Assume first that ¢ € [0, R(x)/2). Then using the arc length parametrization of
o:x Ny, we have
(o(t)+2z—2)—z| <|o(t) — x|+ |z —z| < R(z)/2 + R(z)/4b < 3R(x)/4.
Therefore B(o(t) + z — x,t/2b) C B(o(t) + 2 — z, R(z)/4) C Q.
Next we assume that t € [R(z)/2, |r—y|/2]. Applying b), we get B(o(t),t/b) C
We also have
|(o(t) + 2z —z) —o(t)] = |z — x| < R(z)/4b < t/2b.
When combined, these estimates imply that B(o(t) + z — x,t/2b) C €. O
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Dyadic resolution of unity in uniform domains. Let m € N and 2 C R” be a
uniform domain. Let b > 1 be a constant depending on the domain €2 as in Lemma
4.16. Let

¢ € C3°(B(en, 1/8bv/n))

be a bump function as in Lemma 4.12 with vanishing moments for o, 0 < |a| < m.

Let p € N be such that
8by/n +1 > p > 8by/n.

Given j € N we divide the interval [277,277] into p similar pieces and denote the
division points by

277 =1(j,1) <t(j,2) < - <t(j,p) =277

The aforementioned parameters depend at most on €2 and m (and possibly on j but
we only worry about the number p of division points and the norm bounds for the
derivatives 0“p because these quantities occur as constants in later estimates).

If z € Q we denote R(x) = dist(x,00) and r(x) = R(x)/4b. Let zg,yo € € be
distinct points and £ = £(x¢, yo) be determined by 27¢ < |zg — yo|/16 < 271, Let
o To N Yo be a quasihyperbolic geodesic satisfying a)—c) in Lemma 4.16. Denote

Pot = P(o(t)—z0)> te (07 |.Z’0 - yO’/2]7

so that the function y — @ (o(t)—20) (¥ — o) is supported in the ball B(o(t),t/8by/n)
whose center o(t) lies in the core o]0, ¢(c)]. Finally denote

07 j <£:€<$an0)>
w(f,j = 900'2 j) j — 67
ZZ 1 (<Pat(1 a) — ¢a,t(j,q+1)), j >4

Then {¢, ;};>¢ is an m-regular dyadic resolution of unity along the quasihyperbolic
geodesic 0 : Xy M Y.

The expansion related to the indexing scheme {t(j,q)}, 7 > ¢, is used to ensure
that there is a cube CC (2 containing the support of ¢, (jq) — ©o(j,g+1), J > £. This
property is later required by the Whitney approximation theorem.

In what follows we collect properties that a dyadic resolution of unity satisfies.
Denote by Q(z,7) C R"™ the unique open cube whose sides are parallel to the
coordinate axes and which satisfies B(z,r) C Q(x,r) C B(z,/nr). Hence Q(z,r)
is centered at the point x and has side-length 2r.

Lemma 4.17. Let Q C R be a uniform domain and xo,yo € 2. Let {1y ;}j>s be the
m-reqular dyadic resolution of unity along the quasihyperbolic geodesic o : xo M Y.
Let x € B(zg,7(20)), o« € Ny, t € (0,]|z0 — yo|/2], 7 > ¢, and g € {1,2,...,p — 1}.
Then we have 1)—4) below

1) supp poi(- — ) C Q(o(t) + & — x0,t/8by/n) CC Q,

2) 1109 (oi(- = @)z < Cogmat "1, .

3) SUPP(Po,1(.q) (=) = Potig+n) (- —2)) C Qo (t(j, @) +a—z0,277/2by/n) CC Q,

4) |10 (SOUt(] Q)( —x) — @o,t(J,qul)( )|z < Ca,m,92j(n+|a|)'
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Proof. 1) Using 4.13.1), the arc length parametrization of o, and 4.16.c), we have

SUPP Yot (- — ) = SUPP P(o(t)—a0) (- — @) C B(o(t) + x — xo, t/8by/n)
C Q(o(t) +x — mo,t/8b\/n) C B(o(t) + x — xo,t/8b) CC Q.
2) Applying 4.13.4) and 4.16.a) with s = 0, we get
105 (@0t (- = )| Lo = [(0%P(o(t)—20)) (- — )| s
< Copla(t) — xo| 7101 < O ot ™10

3) The inequalities 277 < ¢(j,q) < t(j,q + 1) < 2791 < |z — yo|/2 show that
the difference is well defined and 1) is applicable to the individual terms. These
estimates are also used below. We continue with the estimate

o(t(j, g+ 1)) —o(t(, a))| < [0, g +1) =15, 9)]
_ p71(27j+1 _ 273‘) — pflzfj < 27”1/86\/%.
Using this estimate, we get
o(t(j,q+ 1)) +x — x5 € B(o(t(],q)) + 2 — 20,277 /8b\/n).
Applying also the proof of 1) above and using 4.16.c), we get
supp(©oia) (- — ) = ouarn (- — )
C Q(a(t(4,q)) +x — 20,277 /2by/n) C B(o(t(j,q)) +x — 39,277 /2b) CC Q.

4) We have t(j,q) < t(j,q +1) < 27971 < |zg — yo|/16. Therefore, applying 2)
above, we have the following estimate for the left-hand side of 4) from above

105 (Potia) (- — )| zoe + 107 (Lo tiiqrn) (- — )| Lo
S Ca,m,Qt(ja q)—n—|a| + Ca,m,Qt(j, q + 1>_TL—|04"

Taking also the inequality 277 < #(j,¢) A t(j,q + 1) into account, we are able to
estimate the right-hand side by Cl, ,, 027 (n+lel) from above. U

Lemma 4.18. Let Q C R™ be a uniform domain and xo,yo € Q0. Let {1y ;};>¢ be the
m-reqular dyadic resolution of unity along the quasihyperbolic geodesic o : xog ™ Yq.
Let x € B(xzo,7(x0)), o, 8 € N§ with || <m, j > ¥, andg e {1,2,...,p—1}. Then
/ aa (Spatjq)(y_w)_wot( q+1)< ))dy—O
Q
Proof. Applying 4.17.3) and integrating by parts in R", we get

| =0 [ (0 pnis) 5= 0) = 0 asiasn)lo = ) dy

= (~1)® / (4 + )20 (o) — Pottiarn) W)y

/R (Y + 2)* (o) — Potiarn)y)dy.
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Using Lemma 4.13, 2) and 3) therein, and that 0 (y + 2)* € P (R") (2 is treated
as a constant here) we see that the last integral vanishes. U

Remark 4.19. Let Q C R™ be a uniform domain, z, yo € €2 be distinct, and {15 ; };>¢
be an m-regular dyadic resolution of unity along a quasihyperbolic geodesic o : xg
yo. Due to cancellation of terms, we have 1), ; = @y0-i — @y 2-i+1 for j > £. Also,
if M > ¢, further cancellation occurs so that Zj\ie Voj = Poo-m. Let v € B =
B(x,r(z9)) CC . Then, using 4.17.1) and 4.13.2), we get supp @, - (- — ) C
Bz, 27M) N Q and [, @y0-m(y — 2)dy = 1. In particular, if f € Lj () is
continuous at x € B, then

(420)  f(z) = lim wﬂﬂdy—@fwﬂyzE:/%%Ay—@f@ﬂy
— Jo — Ja
=L
4.3. Regularity of kernels in uniform domains. We prove the following regu-
larity result for standard kernels

(4.21) Ko™ (0) Cc Kg™(d), if0<d <d<1,

where (2 C R” is a uniform domain and 0 < m < n. This result is a step towards
the atomic decomposition of standard kernels which, in turn, leads to the extension
of these kernels. Certain almost diagonality estimates turn out to be useful here.
Such estimates were crucial also for the boundedness properties of WSIO’s as was
seen in connection with the Ty theorem.

Parts of the estimates here originate in [HLO03| for a proof that an almost diagonal
operator has a kernel representation as a CZO.

A wvariant of a result of Gehring and Martio. Here is a useful local-to-global type
Holder estimate which is based on computations due to Gehring and Martio [GMS85,
pp. 206-207]. This result is useful in many occasions. For instance, while proving
Holder estimates for standard kernels the special formulation below is convenient.

Theorem 4.22. Let 2 C R” be a uniform domain and 0 < § < 1. Denote by
a = agq the uniformity constant as in Definition 1.13. Let x,y € § be distinct and
v [0, €(7y)] — Q be a path joining these two points as in the Definition 1.13. Assume
that f : Q@ — C is such that f o~y :[0,£(y)] — C is continuous and

(4.23) [f(y(t) + k) = fF(Y ()] < [k

for every t € [0,(~)] and y(t) + k € B(y(t),min(t,¢(y) —t)/c) C Q for a fived
¢ > aq. Then we have the endpoint-estimate

(@) = f(y)] < Clz =y,

where C' depends at most on the parameters a,c, 0.
Proof. Denote by z = v(£()/2) the midpoint. Because
[f (@) = FW < 1 (2) = f(@)| + [f(y) = f(2)]
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it suffices to prove that |f(z) — f(z)] < Clz — y|°. Indeed, the corresponding
estimate for |f(y) — f(2)| is symmetric to this. Let 0 < to < ¢(7)/2. This should
be thought to be close to zero so that f(y(to)) is close to f(y(0)) = f(z) due to
continuity. Assume that ¢y,...,¢,_1 are chosen. If ¢;_; < £(y)/2 then we choose
t; = min(¢(v)/2, (14 1/2¢)t;_1). This procedure ends after a finite number of steps
when we reach t,, = ¢()/2 with m € N. Using the triangle inequality, we have the
estimate

(4.24)  |f(2) = fOV (k)] = 1F (3 (Em)) = FO D] < D 1F(1(E5) = f((t5-1)]-

Write

(V&) = FOr G-I = [f (V&) + k) = FOy(t-))l g =1,om,

where |k;| = |y(t;) = v(t-1)] < |t; — 1] < tj1/2¢ <min(t;—1, £(y) — t;-1)/c by
the arc-length parametrization of v. Hence, using (4.24) and (4.23), we obtain the
estimate |f(z) — f(v(t0))| < >_0%, |k;]°. In the sequel we estimate the sum on the
right-hand side. First of all, we have |k,,|° < (£(7)/c)? < |z —y[°. If m > 1, we also
need the estimate

m—1 m—1 m—1
Dok e =l = 7 = (1420070 Y o =t
j=1 j=1 j=1

tin—

27 ds < (1+20)'7%0 7l |z — y)°.

<1 +2c)15/

to

Combining the estimates beginning from (4.24) we get

(425)  |f(2) = f(y(t))] < (1 4+ (1 +20)" 707 a)|w =y, 0 <ty < €(7)/2.
Using the continuity of f o~ we let {y — 0 and obtain the desired estimate as

7(0) = = and the right-hand side of (4.25) is independent of . O

A dyadic resolution of kernel. We continue with a dyadic resolution of a standard
kernel K € K™ (9), where Q C R"™ is a uniform domain. Let xg,yo € § be distinct
points and let {1, ;};>e, {tpktk>e be m-regular dyadic resolutions of unity along
quasihyperbolic geodesics o : g ~ o and p = o~ ! : yg ~ x0, respectively, see
Section 4.2. Denote

Q(x0,y0) = B(wo, (o) A (|20 — yo|/4D)),  7(x0) = dist(wo, O8) /4,

where the constant b > 1 is defined in Lemma 4.16. Then, if j,k > ¢ = {(xq, yo)
and (z,y) € Q(zg, yo) X Qyo, o) C Q x Q, we denote

(4.26) KZ}f(x,y) = /Qzﬂm(a — ) /Q K(a,w)y,p(w — y)dwde.
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Now have the following decomposition of the kernel

(4.27) K(z,y) = ZZKZ}S)(%?J% (z,y) € Qzo, yo) X (¥, To)-

To prove (4.27), let us fix x € Q(zo,y0) and y € Q(yo, zo). Then, using the identity
(4.20), we have

(4.28) K(z,y) = lim [ @po-u(a—2)K(o,y)da =Y / Vo i(a — ) K (o, y)da
M=oo Jo = Jo
Expanding the quantities K (v, y) on the right-hand side of (4.28) we are lead to

Ko =3 | drsta=a) > | Koyt = yhdeda.

The dominated convergence theorem applies to the inner summation and this es-

tablishes (4.27). Indeed, if M > ¢ and o € Q \ {y}, we have

Z/QK(O"WWP”“(W —y)dw

- ‘ / K(a,w)p,s-u(w —y)dw| < Cla — y| ™
Q

with C' independent of M, o, y. This follows from a case study with |a —y| < 27M+2
and | — y| > 27M+2. Within these cases we apply Lemma 4.17 and the kernel size
estimate | K (o,w)| < Ckla — w| ™.

Proving regularity of kernels using dyadic resolution. Using the dyadic resolution of
a standard kernel K € K;™(d) we prove that this kernel has continuous derivatives
up to oder m and Holder continuous derivatives of order m, that is, we have K €
Ka™(6"). We rely on almost diagonality estimates that appear also in connection
with the T'yq theorem.

First we establish molecule-like estimates for images of certain atoms under weakly
singular integral operators. Analogous estimates were already obtained in Lemma
3.8 but here the atoms are understood as differences of bump functions composing
the m-regular dyadic resolution of unity.

Lemma 4.29. Let Q C R" be a uniform domain and T' € SK,™(0) be associated
with a kernel K € Kq™(0) that is decomposed as in (4.27). Let k > € = {(yo, xo),
y € QUyo, o), 2 € Q, and § € Nj. Then

T (o = y)))(2)] < C2HIT(L 4 28]z —y )72,
where the constant C' depends at most on the parameters n,m, 3, K, Q.
Proof. Denote ¢(w) = 9 (1, x(w — y)) if w € R™. It suffices to prove the following
(4.30)  [Ty(z)] < C2HHP=m),
(431)  [T(z)] < C2HOHPImm(2K )z —y )70 if |2 —y| > (2 + Cx )27,
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where C denotes the constant in (1.17). First we prove the inequality (4.30). A
trivial modification of the inequality (3.6) and Lemma 4.17 combined show that

Tw(2)| < CM@)()' [ < G2,
Then we prove (4.31). For this purpose we denote

Qq = Q(p(t<k> Q)) + Y — Yo, 27]6/26\/5) ccC Q? if qe {17 27 e P 1}
Then, applying Lemma 4.17, we get

1T)(2) /sz

)05 (0 p i) (W — Y) — Ppihgrn(w — y))dw|.

Lemma 4.18 and Lemma 4.17 combined allows us to continue as follows

p—1
T = f K - P,
TV =2t | f G~ B
X 85(90p,t(k,q) (w—y)— Spp,t(k,qul)(w —y))dw
< C'Zk(”ﬂm) inf / |K (z,w) — Py(w)|dw.
Pqum (R")

Let ¢ € {1,2,...,p—1}. Usmg the inequality t(k,q) < 27%*1 it is simple to verify
that
(4.32)  max{|z —y[/2,Cx diam(Qq)} < |z —¢*], y* = p(t(k,q)) +y — vo.

Applying Theorem 3.5 and utilizing the estimate (1.17) with the aid of (4.32), we
get

Ty (z)| < Ok Z sup |APHH(K (2, ), Qqyw)|dw

= Ihi<diam(Qq) J/Q,
S ng(lﬂ\—m 6)|Z o y| n—3a — C2k(n+‘ﬁ|—m)<2k|z i y|>—n—§
This is the required estimate (4.31). 0

We continue in the spirit of almost diagonality, Lemma 3.26 to be more precise.
One important difference is that the cancellation conditions 71 = 0 = T*1 are not
needed. This is because of the restriction j, k > ¢ below.

Lemma 4.33. Let Q@ C R" be a uniform domain and T' € SK,™(0) be associated
with a kernel K € K3™(0) that is decomposed as in (4.27). Let j,k > € = {(xo, yo)-
Then the summands in this decomposition enjoy the reqularity

Kjg’kp € C(Qzo, yo) X Q2yo, o))
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and, if o, B € Ny and (x,y) € Q(zo,v0) X Qyo, x0), they satisfy the estimate

(4.34) [050) KT (w,y)| < C27 00 KanGAR=(m=lal=IBNGYR) (1 4 (29 A 2F) 2 — )"

where the constant C' depends at most on n,m, a, 3, K, €.

Proof. Differentiating (4.26) under the integral signs we obtain the identity
050 K7 (w,y) = (07 (Yo (- — 2)), T(0) (o (- = y))))-

Assume first that £k = j = £. Then, applying Lemma 4.17 and computing as in the
proof of the inequality (4.30), we get

020 KT ()| < C2UHEgem),

This is as desired because 2f|z — y| < 22y — yo| < 64. Then we assume that
k> j >/ k # { and note that remaining case, where j > k > ¢ and j # (, is
completely symmetric because the transpose kernel K* = (z,y) — K(y,z) belongs
also to the class K, (0). Denote

Tps 1 R" = C 120 T (ol = )))(2)xa(2).

Then we do a change of variables

LKL (2, y) = (~1) / (0% )z — )T (2)dz
(4.35) — (—1)lelgnk / (o) — 1~ 2Ty — 2 2)i

= (—1)'“2"j_mk/ F(R (20 — 2))g(2)dz,
where R = 2877, 25 = 2%(y — ),
f(2) =279 (0%sy)(2772),  g(z) = 27T, (y — 2702).
Lemma 4.29 implies the estimate |g(z)| < C2*91(1 4 |2|)™7? if 2 € R". Applying
Lemma 4.17, we have
supp f C 27 supp(0“¢,;) C 22B(0,277%%) = B(0, 4)

and || f]|z®ny < C271°1. Taking also the inequality 4R < |z|/2 into account we
have supp f(R (20 — -)) C B(z0,4R) C B(zo,|20|/2). Using these estimates, we
have

/ F(R7M(z = 20)) g(2)dz| < C2NFHB g 7m0 R = 0270 RIHINRRIBl (97 — )7,

This combined with (4.35) and the inequalities
jlal <klal,  2]e —y| > 27w — yo| > 2 o — yo| > 8
implies the desired estimate (4.34). O

In addition to the almost diagonality estimates we need the following simple
lemma which is used later with the Weierstrass M —test.
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Lemma 4.36. Let 5 > a >0 and \,e > 0. Then
37N orelitkialAb (1 4 (28 A 29)0) T < oA,
JEL kEL

where the constant C' depends at most on the parameters «, 3, €.

Proof. Denote s; = Q*EU*’“HQUM)(l + (28 A Qj))\)fﬂ. Notice that s;, = sy; if
J,k € Z. Therefore

PIHILEDOID I EEDIPILTED D ILEL) DY ILVS
JEL kEL JEL k<j  k>j JET k<j JEL k<j JEL k<j
It remains to estimate the sum on the right hand side; we have
DD sp=> Y 2 iR 2k )T < 0y ok (14 280)
JET k<j JEL k<j keZ
Now choose ko € Z such that 20 < \=! < 2Fo+1 Next we write
Soke(14 20 = (43 )2+ 2N =5+ T
keZ k<kg k>ko

For the first term we have the estimate

S <Y 2k = ghoa 37 glhko)e — ¢ g < AT
k<ko k<ko

Note that we used the inequality o > 0. For the second term we have

Y, < Z ok(a=P)(=k 4 \)=F < AP Z ok(a—p)
k>ko k>ko

< \~Pgko(a=h) Z ok—ko)(a=F) < Caﬂ)\—[ﬁrﬁ—a = Cop\™".
k>ko

Note that we used the inequality 5 > a. Combining the estimates above for ¥; and
Y5 we find that the desired conclusion holds true. O

We are ready for the proof of kernel regularity.

Theorem 4.37. Let @ C R"™ be a uniform domain and K € K;™(0) be a standard
kernel so that 0 <m <mn and 0 < 6 < 1. Then K is smooth, that is,

K e Kg™(8), if0<d <8.
As a consequence, if Q = R™ and o, 3 € N} satisfy |a| + |3] = m, then
OSO0K : R* x R*\ {(z,2)} - C

is a Calderon—Zygmund standard kernel. These are defined in connection with (1.9).
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Proof. Throughout the proof C' denotes a constant depending on m,n,d,d’, K, Q.
Let zg,yo € 2 be distinct and ¢ = ¢(zg,y0). We use the decomposition (4.27)
extensively. Let (z,y) € Q(xo,v0) X Q(yo, 7o) and || + |5] < m. Then |z — y| >
|zo — yo|/2 and, combining this estimate with Lemma 4.33 and Lemma 4.36, we

obtain
o0

> D 100K ()

i—0 k=

< CZ Z 9—0lj—k[+n(iAk)—(m—|al—|B])(5VE) (1 + <2j A 2k)|:13 _ y|)7"*5
(4.38) j:E ]

<C Z Z 275|17k|+(n+\a|+\ﬁ\fm)(jAk)(1 + (27 A2 |2 — y0|)—"—5

Jj=—00 k=—o00

< Clzy — y0|mfnf|alf\ﬁl.

<

The Weierstrass M—test, combined with the identity (4.27), shows that

(4.39)  K[(Qzo, yo) x Qyo, x0)) ZZK;; e C™(Qxo, yo) X Uyo, T0))

= k=¢

and the series can be differentiated termwise up to the order m. As a consequence
of this identity we have the regularity K € C™(22x Q\ {(z, z)} and, by using (4.38),
we also have the estimate

(4.40) |3§35K($0’yo)| < Clzo — yo|™ 711 ol + 18] < m,

which is the required size-estimate for smooth kernels.

We turn to Holder-regularity estimates which are required for smooth kernels.
Due to symmetry it suffices to consider differences in the first R™-variable only. To
begin with consider the situation, where ¢, yo € 2 are distinct points, |a|+|3| = m,
and h € R" is close to xy so that g + h € Q(xg,y0). Fix j,k > € = {(x0,yo) and
denote

Ailz(agafK;}f(', Yo); To) = 82‘85[(2;5(9;0 +h,yo) — 8;155[(;}5(%, Yo)-
Applying the mean value theorem and Lemma 4.33 we see that there is a point

¢ € R", belonging to the line segment [xg,zo + h] C Q(xg,yo), so that [£ — yo| >
|zo — yo|/2 and
(4.41)
AL@2OPKTL (-, y0), 1)| < |BI[V(20PKTL (€, o))
< C|h|2~ dli— k|+n(]/\k:)+(jvk)(1 4 <2j A 21@)|$0 B yo|)7n75

Using the triangle inequality and Lemma 4.33, we also have the estimate

(442)  [ALDROTKTL (- 90), w0)| < C27VHENGM (1 4 (27 A 2F) g — o)
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Multiplying suitable powers of these two estimates (4.41) and (4.42), we get
(4 43) |Ailz(a(wlayﬁK;,kp(7y0)ax0)|
' < C«lh‘5’275|j7k\+n(j/\k)+5’(jvk)(1 + (29 A 28|z — yo‘)—n—57

where
—Olj =kl +n(GAk)+8GVE)===8)—kl+n+d)GAk).
Summing the estimates (4.43) and applying Lemma 4.36 we have

Z Z 0200 K7 (g + h, o) — 020K (w0, o))

=0 k={

< C|h|5’ Z Z 27(676’)|j7k|+(n+6’)(j/\k) (1 + (2j A 2k)|l’0 _ y(]’)—”—‘s
j=—00 k=—o00
< Clh) |20 — yo| 7.
Combining (4.39) and (4.44) it follows that
(4.45)
|8:?85K($0 +h,yo) — 8?85K(x0,y0)| < Ol [wo —yol ™%, w0+ h € Q(z0,y0).
Due to limitations on A this does not suffice for the Holder estimate which is required
for smooth kernels. We prove the full Hélder-estimate with the aid of (4.45) and
geometric properties of uniform domains, captured in Theorem 4.22. Fix h € R”
such that |h| < |zg — yo|/4b and zo + h € Q. Join xy and xy + h with a path
v as in Definition 1.13. Tt is straightforward to verify that, if ¢ € [0,£(y)] and
k € B(0,min(t, £(y) —t)/4b*), we have
1(1) + k€ (1), ), |

o [y(t) —yol " < Chlwo — yo| 7

Thus, applying (4.45), we get the estimate

‘agafK(W(t) -+ ]{7, yo) — 8;“85}((7(75)’ yO)‘ S C|]{Z|5/|x0 . yol—nf(s/
for ¢ € [0,£(7)] and k € B(0,min(t, £() — t)/4b%). Also, the function
s 9202 K (7(s),50) : [0,6(7)] — C

is continuous. Therefore we can invoke Theorem 4.22 to conclude that (4.45) holds
true if zg, yo, zo+h € Q and |h| < |xg—yo|/4b. In the remaining case |zq — yo|/4b <
|h] <'|zo — yo|/2 we use (4.40). O

Combining Proposition 4.6 and Theorem 4.37, we get the following corollary.

(4.44)

Corollary 4.46. Let Q) C R™ be a uniform domain and 0 < m < n. Then

U "= k1@ = J K" ()

0<é<1 0<é<1 0<é<1
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5. EXTENSION OF SMOOTH KERNELS

We arrive at the second part of our solution to the kernel extension problem. This
part consists of an extension result for the smooth kernels K,™(6). Decomposing
these kernels using a partition of unity, subordinate to the Whitney decomposition
of the open set

R™ x R™\ {(z,z)} c R*,

yields a characterization of smooth kernels in terms of so called kernel atoms. The
purpose of this characterization is that it can be used to reduce the kernel extension
problem to the Holder extension of individual kernel atoms.

We begin with the definition of Holder spaces and formulate the required Holder
extension results when the underlying domain is uniform.

5.1. Holder spaces. Here we define Hélder spaces on general domains and then
establish extension results for these spaces on uniform domains via certain pointwise
error estimates in polynomial approximation. We also consider a measure theoretical
polynomial approximation, leading to the so called local smoothness spaces. These
spaces are useful in showing inclusions of Holder spaces to BMO-type spaces.

Definition 5.1. Let () # Q C R" be a domain and 0 < § < 1. Define the §-Holder
seminorm of f: Q) — C by

|f(x) = fy)]

|z —yl°

meDzwm{ :xwefhx#y}
Define the local 0-Holder seminorm of f : Q2 — C by
= su ,
|f\q{m(9) chﬂ |fles)

where the supremum is over all of the open cubes ) compactly contained in 2.

Definition 5.2. Let () # Q C R" be a domain. Let m € Ny and 0 < 6 < 1.

The local Hélder space Cf:c’é(Q) is the Banach space of complex-valued functions
f € C™(Q) satistying

1 llmoy = 2 10 fllzs@ + D 10 Fleg () < oo

loc
laf<m laf=m

Definition 5.3. Let () # 2 C R" be a domain and m € Ny. Denote by C™(Q) the
space of continuous complex-valued functions f : 2 — C so that f|Q2 € C™(£2) and

the derivatives 0%(f[$2), [a| < m, have extensions to continuous functions @ — C
that are also denoted by 9°f. Let 0 < § < 1. The Hélder space C™°(Q) is the

Banach space of functions f € C™(f2) satisfying
Hchm,a@) = Z HaafHLw(Q) + Z |3af\06(9) < 0.

la]<m laf=m
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Remark 5.4. Let f € C™°(Q). Then ||0%f]||p=(q) = [[0%f|| oo @) if [ < m by using
the continuity of 9% f : 0 — C. Using the continuity of order m derivatives, we also
have their 0-Holder continuity up to the boundary, that is, if o] = m then

0°f (@) =" fW)] < [Ifllems@le =yl ifz,y el

Extension of Holder functions. Let  C R™ be a domain and f € CQC’J(Q). Let also
a e Ng, Jal <m,and y € Q CC 2, where @ is an open cube. Then 0*f admits
a polynomial approximation by the Taylor polynomials P, f(-,y) € Pp—jo(R") so

that, if x € ), we have
(55) aaf(m> = Paf(a:a y) + Raf('ru y)? ’Raf(‘ra y>| S CHfHCI’ZC‘S(Q)lx - y|m+57|a|'

These estimates follow by using the Taylor formula along the line-segment joining
x and y in the cube Q).

It turns out that, in the case of uniform domains, these local estimates bootstrap
the corresponding non-local estimates so that (5.5) holds true for every « € §2. These
non-local estimates serve as a starting point for the following results: assuming that
) C R" is a uniform domain, there are bounded extension operators

Ci(6) - C™@), CmI@) - CTI(R?),

loc

First we define the Taylor polynomials and the corresponding error terms.

Definition 5.6. Let () # Q C R” be a domain and f € C’fgf(Q). Let o € N satisfy

|a] < m. Then the Taylor polynomial P, f and the error term R,f are defined in
terms of the identity

(67) 0°f(x)= )

la4-8]<m

a+3
a—f(y)(x _ y)ﬁ + Raf(x7y) = Paf(x,y) + Raf<x7y)a

where x,y € Q. Assuming that f € C™9(Q) and |« < m, the Taylor polynomial
P, f and error term R, f are defined by (5.7) if z,y € Q.

Let f € C™(Q). Then, if |a| < m and z,y € Q, we have the identity P, f(z,y) =

loc

.....

are related to the error terms as follows
Ra-{-,@f(aa b)
68)  Puf(ea) = Paf(eb) = Y el
la+B8|<m '

The identity (5.8) is the Taylor expansion of the polynomial P,f(-,a) — P,f(-,b)
about the point a. Indeed, if |a + (| < m, we have

Reaipf(a,b) = 8P f(a) — Paysf(a,b)
= Parpf(a,a) — Porpf(a,b) = 32 (Pof(x,a) — Puf(z,0))] .

For f € C™9(Q) the identity (5.8) holds true if z,a,b € Q. The following lemma
provides semilocal control for the error terms.

(x—a)’, z,a,b€Q.
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Lemma 5.9. Let ) # Q) C R™ be a domain and [ € C’QC";(Q). Assume that x,y € Q
are two points in an open cube ) CC Q. Then, assuming that o € N satisfies

la| < m, the error term R, f(x,y) defined in (5.7) satisfies
| Ba.f (z,9)| < 2/ fllgma e — y|rHe-lel,

Proof. Looking at real and imaginary parts separately we can assume that f is real-
valued. The line-segment L, joining the points x, ¥, is cointained in the cube () CC
). Hence the multivariate Taylor’s formula, applied to the real-valued function
0°f € C™1°l(Q), implies that there exists a point ¢ € L C () such that

e - Y TGy TOG

atbigmr P atpien D
oots — pots
= Pof(z,y) + Z ( e 3l f<y)) (z — y)ﬁ'
jaBl=m
As a consequence, we have
|Rof (2, y)| = 10" f(z) = Paf(z,y)|
aa—i-ﬁ o aa—i—ﬁ
latBl=m
anrB _ anrB
S Z | f(g) B' f(y)| |I‘ . y||ﬁ| S ||f||cl’;lc6(Q)|‘r o y|m+5—|a|‘
ja+Bl=m

This is as required. 0

In case of uniform domains these semilocal error estimates imply the correspond-
ing error estimates uniformly in the whole the domain. This result, which is formu-
lated and proven below, can be interpreted as a higher order analogue of that the
identity operator maps

loc Lips(€2) — Lips(€2)

boundedly if 0 < ¢ < 1. This latter result is due to Gehring and Martio [GMS85].
We omit the formal definition of the local spaces loc Lips(€2) but later we define the
non-local spaces Lips(F') on general closed sets F' C R™.

To prepare for the following proof we denote by Q(z,r) C R™ the unique open
cube, sides parallel to the coordinate axes, and satisfying

(5.10) B(z,r) C Q(z,r) C B(z,+/nr).
Hence Q(z,7) is centered at the point z and has side-length 2r.

Theorem 5.11. Let Q C R"™ be a uniform domain and denote by ag > 1 the
uniformity constant as in Definition 1.13. Let f € CI"°(Q), |a| < m € Ny, and
z,y € Q. Then the error term R, f(x,y) satisfies

(5'12) |Raf(x,y)| < CHchl’gf(Q)’x - y’m+5_‘a|7
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where the constant C' depends at most on the parameters n,m,d,aq. As a conse-
quence, if f € C™9(Q), |a| < m, and z,y € Q, then the error estimate

(5.13) |Rof (2, 9)| < C[f||gmosmylz — y|™ 071
holds true with the same constant C as above.

Proof. We verify (5.12) assuming that f € Cf:f(Q) and z,y € €. The estimate
(5.13) for C™°(Q) and x,y € Q then follows from (5.12) by continuity.

Let v : [0,€(y)] — €2 be a path as in Definition 1.13 with v(0) = z and v(¢(7)) = y.
Define

g:Q—C:g(z)=Rof(x,2) =0"f(x) — P f(x,2).

Clearly the composition g oy : [0,€(7)] — C is continuous. Let ¢t € [0,
consider any k € R"™ with the property [y(t)+k € B(~v(t), min(¢, £(v)—t)/(
According to (5.10) and the Definition 1.13 of uniformity, we have

¥(t) + & € Q(y(t), min(t, £(y) — )/ (2a0v/n)) C B(y(t), min(t, (y) — t)/2aq) C Q.

Furthermore, applying the identity (5.8) and Lemma 5.9, we have the estimate

lg(v(t) + k) = g(v(1)] =

((~y)] and
2a0+/1)).

Rospf(7(), (1) + K
Z +4 ( (ﬁ)‘ ( ) )(Qf . ’Y(t))ﬁ
la+4|<m '
<M fllepoay 3o RIme(3) 1 < Gy ™| | s g — 9181

lo+B|<m

Applying Theorem 4.22 with ¢ = 2aq\/n > aq, we get the required estimate

|Raf(,9)| = |Raf (2, 2) = Raf (2. y)| = 1g(x) = g()| < Cl|fllgms ol —y™*71,

where the constant C' depends at most on the parameters n,m,d, aq. 0
The uniform error estimates above imply the first extension result.

Theorem 5.14. Let 2 C R™ be a untform domain with uniformity constant ag > 1.
Let f € C°(Q), where m € Ny and 0 < § < 1. There is g € C™%(Q) such that

loc

912 = f and ||gllcms@) < C||f”clm,§(ﬂ), where the constant C' depends at most on
the parameters n,m,d, aq.

Proof. Let a € Njj be such that |a] < m. Assume that x,y € Q satisfy |z —y| < 1.
Then using Theorem 5.11, we get the following estimate

o+
) —orfl < S IO e R, ey

l
al<iarbicn D
< C||f||C{§;5(Q)(|5‘7 — y| + |5(; — y|m+5—|a\)7

Hence 0% f : 2 — C is uniformly continuous and, as such, it has a unique extension
to a continuous function {2 — C. Denote by g the extension of f to a continuous
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function  — C. Using Theorem 5.11, we see that order m derivatives of ¢ satisfy
the non-local Holder estimate. Indeed, if z,y € Q and |a| = m, we have

0%g(x) — 0%g(y)| = 10° f(x) = 0 f(y)| = |Raf(z,y)| < ClIfllomsoyle =yl
The required properties of g follow easily from this estimate and the definitions. [

Theorem 5.11 combined with the classical Whitney extension implies the existence
of a bounded and linear extension operator C™?(Q)) — C™°(R") if Q C R" is a
uniform domain. We will prove this next. The following Whitney extension results
for Lipschitz functions are from Stein [Ste70, pp. 166-180] but the original work is
that of Whitney [Whi34].

The Lipschitz space Lip,, . s(F'), where m € Ny, 0 < § < 1, and F' C R" is closed,
consists of f : F' — C for which there are functions {f* : F' — C} <y, with f* = f
and

(5.15) F@= Y 00 ),
la+B|<m ’

where

(5.16) 7°(@)] < M and Jra(z,y)| < Mz — |+

if z,y € I and |a] < m. The norm ||f||Lip,, ,7) is taken to be the infimum
over M for which (5.16) holds for some functions { f* : ' — C}|4<m as above. The
extension result of Whitney is that there is a bounded and linear extension operator

(5.17) &nf : Lip,, s(F) — Lip,,,s(R")

whose operator norm is independent of the closed set F. See [Ste70, Theorem 4].
Assume that f € Lip,, s(R"). In this case f € C™(R") so that the associated

functions {f* : R® — C}4<mm are unique and they are given by f* = 0 f. Further-

more, the order m derivatives f* = 0%f are 6-Holder continuous. To summarize
Lip,,,s(R™) € C™°(R™) and we have the norm estimate

(5.18) [ fllems@ny < Coml|fltipgnss@®), [ € Lipys(R").

For the converse, assume that 0 C R" is a uniform domain and F' = Q. Fix
f € C™%(Q) and denote f& = 9%f : Q — C if |a] < m. Then, using Definition 5.3

and the estimate (5.13) in Theorem 5.11, we see that f € Lip,,,5(£2) and
(5.19) fllLip,, ;@ < Crmsaallflloms@)-

Finally, using the extension operator (5.17) and the norm-estimates (5.18) and
(5.19), we finish the proof of the following extension result.

Theorem 5.20. Let 2 C R" be a uniform domain with uniformity constant ag > 1.
Let m € No, 0 < 6 <1, and [ € C™%(Q). There is a function &,f : R* — C
satisfying Enf1Q = f, Emf € C™(R™), and

(5.21) 1€ lloms@ny < Cllflloms@ys
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where C' depends at most on the parameters n,m,d,aq. The induced relation f —
Enf is a bounded and linear extension operator €, : C™°(Q) — C™°(R").

Remark 5.22. We need another local-to-global type estimate for Holder seminorms.
Let 2 C R"™ be a uniform domain and 0 < § < 1. Assume that f : @ — C.
Proceeding as in the proof of Theorem 5.11, we have |f|csq) < C\f]cfsoc(m, where
the constant C' depends at most on the parameters 9, €2.

Local smoothness spaces. Measure theoretical approach to Hoélder spaces is furnished
by the so called local smoothness spaces €79(Q) of DeVore and Sharpley [DS84].
These spaces are based on a generalization of the sharp maximal function which
measures the error in local polynomial approximation. Local smoothness spaces
emerge naturally while proving inclusions of the form

(5.23) CIM(Q) € Fm3(Q).

loc

Such inclusions are convenient since the spaces F72(Q), or their sequence coun-
terparts, appear in the assumptions of our main result which is a 7'1 theorem on
admissible domains. In some cases these assumptions can be verified by using (5.23),
see later Example 6.21.

If Q C R"is a cube and f € L'(Q), we denote

E.(f,Q) = inf /|f z)|dz, m € N.

PEPy (R™)
The local smoothness spaces are defined in terms of these error measurements.

Definition 5.24. Let ) # Q C R” be a domain, m € Ny, and 0 < 6 < 1. Let
f € LL.(Q) and define a seminorm

| Flgm+s = sup Q"M /M B (f,Q),

where the supremum is taken over all cubes (), compactly contained in 2. Define
@ (- The local smoothness space EmHI(Q)

consists of f c Ll () for which ||f||%m+5 < 00.

loc

We use the following relation between the local smoothness and Hélder spaces.

Theorem 5.25. Let ) # Q C R™ be a domain, m € Ny, and 0 < § < 1. Then we
have a bounded inclusion
Cio’ (Q) C 6L(Q),

where the implicit constant depends at most on the parameters n,m.

Proof. We invoke the Whitney approximation theorem 3.5. It implies that there
exists a constant C' depending at most on m and n such that, for each open cube

Q C R" and each f € L'(Q),
(5.26) En(f,Q) < Coml|Ql  sup AR, Q,)[z=@)

|h|<diam(Q)
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Let f € CI?C‘S(Q). Fix an open cube Q CC Q and z, h € R" so that A" (f,Q, x) #

0. Then it must be that {z,z + h,--- ;2 + (m + 1)h} C @Q, and the convexity of @
implies that the line-segment connecting = to x 4+ (m + 1)k is contained in ). This

allows us to iterate the identity f(z + h) — f(z) = fol h -V f(x + 6h)d for
(5.27)

AmeQJ? Z Zhﬁ N A

a=l  jm=1
..... / / Ay (Oy, 05 frx+ (014 -+ 0,,)h)dOy -+ - dB,,.
Taking the absolute values, we obtain the norm-estimate

sp 1877 (£,Q, Mty < 1070 37 ol ey, e < o1l

laj=m

Using also (5.26), we see that the inclusion C!™°(Q) € €™+9(Q) is bounded. O

loc

Remark 5.28. If Q) is a uniform domain, then the dyadic resolution of unity can be
utilized to show that the spaces €7+9(€) and C]2*(Q) are isomorphic. This result
corresponds to the kernel regularity result given in Section 4.

The extension problem for local smoothness spaces is treated in [DS84, DS93,
Miy93| some of which are based on Sobolev extension techniques developed by
Jones [Jon81]. By using those results, the theory of local smoothness spaces can be
utilized to establish extension results for Holder functions on uniform domains. But
this approach to the Holder extension leads to a more technical treatment than the
previously described approach based on Lipschitz extension.

Ezample 5.29. The space BMO(2), defined in 3.48, is also related to the local
smoothness spaces. First of all, the inclusions €7+°(Q) C L>®(Q2) € BMO(Q) are
trivially bounded if m € Ny and 0 < § < 1. But there is more to this relation.
Assume that f € Lj,.(Q), @ CC Qis a cube, and fo = |Q|™" [, . Then

QI Bl @) < 1017 [ 17(0) ~ faldr < 2101 Ey(f.Q).
Hence, if Q2 C R" is bounded, we have || f||zmo) < 2diam(Q)5|f|g§o(Q) ifo0<do<1
and f € L} _(Q).
Here is a modification of Example 5.29.

Theorem 5.30. Let ) # Q C R", n > 2, be a domain. Let m € N and 0 < § < 1.
Then, assuming that f € Li..(Q), we have

(5.31) 1120y < Comnsll fllagzzs oy



86 ANTTI V. VAHAKANGAS

Hence the inclusion €70(Q) C E™2(Q) is bounded. Assuming also that Q is
bounded, we then have the estimate

(5.32) Hf|’F£’2(Q) < Cinns diam(Q)é‘f’agy&(Q)-

Proof. We only verify (5.31); the verification of (5.32) is similar to this. Fix f €
C0(Q). Let (Q,e) € DP(Q) x £ and denote f(Q,e) = (f | ¥§). Using B3) in
Appendix B and Remark 3.46, stating that supp ¢, C Cy,11Q CC (2, we get

[f(Q,€)] = inf

PePm(R™)

/Q (f(z) - ()05 @)dz

Taking also the estimate B5) into account, that is [[¢§]| e@n) < Crnsa|Q7Y2, we
reach the following estimate after elementary manipulations

(5:33)  [f(Q,8)] < Cms x min{|Q2FTH 2 £l vis o Q12| f] oo (e }-

Fix P € Dm(Q) and consider the following summations

Z 1R Q)P

QCP&EE
= 17 5SS QP + i 5SSl @ e
QeA ecf QEB €&

where we have partitioned {Q € D : @ C P} as follows: A={Q C P : ¢(Q) < 1}
and B={Q C P : {(Q) > 1}. To estimate the sum over the family A, apply the
first estimate in (5.33). To estimate the sum over the family B, apply the second
estimate in (5.33). Then we obtain the estimate ¥p < Cm,n,éHfH;ggw(Qy where the
right-hand side is independent of P € D7*(€2). According to Definition 3.47 we have
established (5.31). O

Combining Theorem 5.25 and Theorem 5.30, we get the following corollary.
Corollary 5.34. Let ) # Q C R™, n > 2, be a domain. Let m € N and 0 < § < 1.

Then we have the following bounded restriction and inclusion, respectively,

C™0(Q) — CI(Q) € E™3(Q).

loc

The implicit constant in the inclusion depends at most on the parameters n,m,Jd.

5.2. Uniformity and products. In order to extend standard kernels we need to
extend so called kernel atoms which are Holder regular functions defined in the
product domain €2 x €). The extension of such functions is possible in the case of
uniform product domains and for this reason we prove that a domain 2 C R" is
uniform if, and only if, Q x Q C R?*" is uniform.

The proof relies on the following characterization from [V&i88| involving certain
continua that are referred to as distance cigars.



WEAKLY SINGULAR INTEGRAL OPERATORS ON DOMAINS 87

Theorem 5.35. Let n > 2 and ) # Q C R™ be a domain, that is, an open and
connected set in R™. Then Q is uniform if, and only if, it satisfies the following
condition: There is a constant ¢ > 1 so that for every pair x,y € €2 there exists a
continuum E C Q, a connected and compact set, containing these two points such
that diam(F) < c|z — y| and that every point z € E satisfies

min{|z — z|, |z — y|} < cdist(z, 09Q).

The following proof is ours but there are similar results in the literature when €2
is bounded and uniformity is replaced by inner uniformity [BSO01].

Theorem 5.36. Let ) # Q C R™, n > 2, be a domain. Then Q is uniform if, and
only if, the product domain Q x Q C R?*" is uniform.

Proof. First assume that € x Q is uniform. Let z1,y; € Q. Denote z = (x1,27) €
QxQand y = (y1,71) € Q x Q. Applying Theorem 5.35 to the points z,y € Q x Q
we obtain a continuum E C €2 x ) containing these two points with the associated
constant ¢ independent of them. Denote F; = m(E) C Q where m; : R — R"
denotes the projection to the first n coordinates. Then Fj is a continuum containing
the points x1,y; and diam(E;) < diam(F) < c¢|x — y| = ¢|z; — w1|. If z; € E; then
z1 = m(z) for some z € E, and we have

min{|z1 — a1, |21 — 1|} < minflz — 2|, [z — yl}
< cedist(z,0(2 x ) < cdist(z,09).

Since the constant c¢ is independent of the points x1,y; € 2 we can invoke Theorem
5.35 to conclude that €2 is uniform.

Then we assume that € is uniform. Let z = (21,25) € Q@ x Q and y = (y1,92) €
Q x Q. We will invoke Theorem 5.35 and for this purpose we need to construct
distance cigars containing these two points  and y. Without loss of generality we
can assume that |1 — yi| > |22 — y2|. Fix a path v : [0,4(y1)] — 2 joining z4
to y; as in the Definition 1.13 of uniform domains. There is z € {z1,11} C Q so
that |7 — y1|/2 < |z — z|. Let 7, : [0,4(7,)] — € be a path joining x5 to z as
in Definition 1.13. Let ¢, = |z — y1]/4 < €(7.)/2 and w = 7,(t,) € Q. Denote
by Y : [0, 4(7w)] — © a path joining w to y as in Definition 1.13. We record the
following useful facts for later purposes:

a) The properties of 7, imply that |21 — y;|/4a < dist(w, 09),
b) Let t € [0, |x1 — y1|/8a] N[0, €(7)/2]. Then |y, (t) — w| < |21 — y1|/8a and,
combining this with a), we have |21 — y1]/8a < dist(y.,(t), 092),
c) Let t € [|x1 — y1|/8a,00) N[0, 4(7,)/2] (if such exists). Then the properties
of 7, imply that |z; — y|/8a* < dist(v,(t), Q).
Let 72 : [0,¢, 4+ €(7w)] — € be the path joining x5 to y, that is defined by the rule

yo(t) = {vz(t), t €10,t.],

’Yw(t - tz)a le [tza tz + E('Yw)]
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Then 7, is parametrized by the arc length measured from z, and |27 — y1]/4 <
U(y2) =t + Uvw) < (a/4+a+ 1/4)|xy — y1|. Using b) and c) above, properties of
v, and 7,, and the definition of 5, we get

(5.37) min(t, {(y,) — t) < C, dist(12(t),00), t € [0,4(72)].

Denote ¢ = £(y2)l(71)"" and o(t) = ot € [0,(72)] if t € [0,4(71)]. Using this we
define

FzrlXFQZ"}/lX(’}/QOO’)I[O,g(’}/l)]—)QXQ.

Now E =T0,4(v1)] C Q x © is a continuum containing the points z and y.

We verify that E satisfies the conditions of Theorem 5.35 with constant depending
at most on the domain Q. The diameter of E is estimated as follows. If t € [0, £()]
then

[z = L(t)] < oy = a()] + 22 — To(t)] < £m) + e + L)
< alzy —yi| + (a/4+ a + 1/4) [y — | < dafzy — | < dafz —y|.

Hence diam(F) < 8alz — y|.
We verify the cigar condition. Let ¢ € [0, ¢(v;)] and

m = min{ls — D(8), |y — )]},
Then, using the arc length parametrization of v, and -, we have the estimate
m < Jo = T(0)] < oy — Ty (8)] + o2 — To(6)] < (1 + o)1,
implying that m/(1 + o) < t. In a similar fashion, we have
m < |y —TE)] < |yr = Ti(®)| + [y2 — Ta(t)] < () —t+ o(l(n) — 1),

implying that m/(1 4+ ¢) < ¢(y1) —t. Combining these estimates for ¢ with the
inequality (5.37) and the properties of 71, we get the following

m/(1+ ¢) < min(t, () — t) < adist(y(t), 09),
om/(1+ o) < min(ot, {(72) — ot) < Cydist(y2(0t), 9).

Note that min(1/a(1+ ), 0/Ca(1+0)) > ¢, for some ¢, > 0 which depends at most
on the uniformity constant a. Using also that m = min{|z — I'(¢)|, |y — ['(¢)|}, we
have

dist(T(£), (2 x Q) = dist((71(£), 1 (at)), A(Q x Q))
> comin{|z — T'(t)], [y — T'(¢)[}.

It follows that, if x,y € Q x 2, there is a continuum E C 2 X ) containing these two
points and satisfying the diameter and distance cigar conditions in Theorem 5.35
with constant ¢ = max{8a, 1/c,} independent of the points z,y. As a consequence,
Q) x 1 is a uniform domain. U
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5.3. Atomic decomposition and kernel extension. We come to a characteriza-
tion of smooth kernels in terms of an atomic decomposition. This characterization,
combined with Holder extension results, is then applied to show an extension result
for the smooth kernels. This section is based on our research but we strongly rely
on the previous extension results for Holder functions.

Kernel atoms and their extension. Here we define the kernel atoms and establish
their extension properties on uniform domains. We begin with notation. Denote
r = (x1,29) € R?", where 1,75 € R™ and n > 2. The diagonal set is denoted by

A={(z,r) : z € R"} C R*™.
Notice that A C R?" is closed, d(R?" \ A) = A, and R?*" \ A is a domain. Let Fa
be the Whitney decomposition of R** \ A as described in Appendix C. Recall the

properties of the associated partition of unity {¢g }ger, and the definition of cubes
Q C Q* C Q™ therein. All the references C1)-C14) are to Appendix C.

Definition 5.38. Let ) # Q C R", n > 2, be a domain. Let m € N, 0 < § < 1,
Q€ Fa,and R € {Q*,Q*}. Then Kg: Q2 xQ — Cisan (R,Q,m,0) kernel atom,
if it satisfies A1)-A4) below

Al) suppg.q Kq C R,

A2) Ko e C™ (2 x Q),

A3) [|0°Kg||r=@xa) < diam(Q)™ "1l if « € N2, |a| < m,

Ad) |0°Kqles axa) < diam(Q) ™" if a € N2, |a| = m.

In Al) suppg,q stands for the closure of {z € Q@ x Q : Kg(x) # 0} in Q x (L
Notice also that it is possible that R C 2. Here is an extension result regarding
kernel atoms in uniform domains.

Theorem 5.39. Let 2 C R" be a uniform domain. Assume that Q) € Fa and Kg
is an (Q*,Q,m,d) kernel atom for m € N and 0 < § < 1. Then there exists an

(Q™,R™ m,d) kernel atom KQ satisfying
Kq = (kKq)|Q x Q,

where the constant kK > 0 depends at most on the parameters n,m,d and the unifor-
mity constant agxq of the uniform domain Q x Q C R?".

Proof. Theorem 5.36 implies that the domain Q x Q C R?*" is uniform. Denote by
aoxo > 1 its uniformity constant. It easy to verify that this uniformity constant is
invariant under dilatations and, in particular, the dilatated domain

w = diam(Q) (2 x Q) = {diam(Q) 'z : z € Q x Q}

is uniform in R?" with the constant a, = agxq. In what follows we use the con-
vention that C' denotes a constant that depends at most on the parameters n,m,d,
and a, = aqxq.

First we define certain auxiliary functions. Define f : w — C by

f(x) = diam(Q)" ™ Ko(diam(Q)x),



90 ANTTI V. VAHAKANGAS

Then using the estimates A2)-A4) for K it is straightforward to verify that f €
Cgé‘s(w) and ||f HC(SC"S(W) < 1. In what follows we extend f twice. First of all,
using Theorem 5.14, we infer that f has a continuous extension to the closure of
the domain and the order m derivatives of this extension are Holder regular in the
whole closed set @. To put this otherwise, there is g € C™?(©) such that glw = f

and

(5.40) lgllcms < ClIS ey

Applying Theorem 5.20 and (5.40), we obtain G = &,,g € C™°(R?") satisfying the
identity G|w = g|w = f and the norm-estimate

|Gllems@eny < Cllgllems@ < Cllfllgmew,) = C-
Define h : R?*™ — C by h(x) = ¢g(diam(Q)x)G(z), where 1g : R* — R satisfies
the properties C13)-C14) for Q € Fa. Using C14), we get
(5.41) ||h]|gmsmeny < Cllthg(diam(Q)-)[|gm.smen ||Gllomsgen) < &,

where the constant x depends at most on the parameters n,m,d, and a,, = agxq.
Now we define the function K¢ : R* — C by the rule
. _ diam(Q)™ "h(diam(Q) ')

Kg(x) - , T ER™

Then using C13) and the norm-estimate (5.41), it is straightforward to verify that

Kg is an (Q*,R", m, ) kernel atom. Furthermore, if x €  x Q, then using Al)
for Kg and C13), we have

KKo(x) = Po(x) diam(Q)™"G(diam(Q) 'x) = to(x)Kq(z) = Ko(z).

All in all, KQ is as required. O

Atomic decomposition of smooth kernels. Here we establish the so called atomic
decomposition of the smooth kernels. The proof of this characterization of smooth
kernels involves technicalities and to clarify we outline an argument first, showing
how such decompositions arise.

It is natural to treat a given smooth kernel K € IC;™(9) as of being defined in
the domain w = Q x Q\ {(x,z)} C R*". Let us indicate this shift in the viewpoint
even further. Notice that

(‘3’7K(ac) = 0% 6’6 K(Z’l, l’g),

1 -T2

if = (21,79) € wand v = (a, 3) € N2" satisfies |y| = |a| + |3| < m. This notation
is utilized in the sequel. Assume a regular situation: K € C™H(R" x R*\ {(z, )}
satisfies the homogeneity estimates

(5.42) 07K (2)| < Cxlay — 2™ "M |y <m+1<n.
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Fix Q € Fa. Then, according to later Lemma 5.45, |7 — x| > C, diam(Q) if
x € Q*. Also the function g, defined in Appendix C, satisfies supp g C @* and

1070l < Cn diam(Q) 1.
Combining these facts and using (5.42), we get the following for v € N2", |y| < m+1,
||87(§0QK> | |L°°(]Rn><R") S Z Coy

o<y

< Cognc diam(Q) ™71 diam (@)™ ~"~17) = €y diam (@)1,

1077 0q|| L) |07 K| Lo (@)

This indicates that the summands ¢ K in the decomposition K = ZQE 7\ P are
constant multiples of kernel atoms. To advance in the general situation, we need a
simple Fubini type argument.

Lemma 5.43. Let ) # Q C R", n > 2, be a domain, 0 < m <n, and 0 < § < 1.
Let K € K3™(9). Assume that P CC Q x § is an open cube and z,x + h € P
satisfy 4|h| < |xy — z3|. Then

ALK, P x)| = |0"K(x + h) — K (2)| < Cp k| h|°|z1 — 20| "2,
if v € N2" is such that |y| = m.

Proof. Denote P = P, X P,, where P, P, C () are cubes. Then z1, 21+ h; € P; and
X9, Ty + ho € Py. In particular,

(I1,$2+h2>€P1XP2:PCQXQ,
and we can estimate as follows
ALK, Pya)| < |Af, 007K, P, (21,25 + hy))| + |Afg 1, (07K, P, z)|.

Use 4 max{|hi|, |ha|} < |21 — 22| for the estimates 2|hy| < |z —25]/2 < |x; — 29— ho|
and 2|hs| < |z1 — x2|. Hence we are allowed to apply the Holder-regularity estimate
satisfied by K to reach the following

|A}L(8A’/K, P, [L’)| S CK|h1|5|J]1 — L9 — h2|_n_6 + CK|]'L2|§|ZE1 — J]2|_n_6
S Cn’K|h,|6|$1 - $2|_n_5.
This is the required estimate. 0

We also need a certain geometric connection between the diagonal set and cubes in
the Whitney decomposition Fa. Here is the first ingredient towards this connection.

Lemma 5.44. Let x € R*". Then — x| < dist(z, A) < |y — 4.

i
Proof. First of all, we have |(x1, z5) — (71, 21)| = |x1 — 22| and dist(x, A) < |z — x5

Next we assume that ANB(z,7) # (. Then it suffices to verify that |z, — x| < v/2r.
According to the assumption there is a point z,

Z:.’L'—i‘h:(xl—i‘hl,iﬂg—i—hg)GAQB(%’,’/’).
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Notice that |h; — ha| = |x; — 29| because 0 = z; — 29 = 1 + hy — x93 — hy. Also,
|(h1, hg)‘ = ’(hg, h1)| = ‘h‘ <r and therefore \/§‘h1 —h2| = ‘(hg—hl, hl —hg)’ < 2r.
The estimates above prove that |z, — x| = |hy — h| < V/2r. O

The geometric connection between the diagonal set and the cubes in the Whitney
decomposition is as follows.

Lemma 5.45. Let Q € Fa and © € Q™. Then C;'diam(Q*™) < |z — 29 <
C,, diam(Q).

Proof. Recall that (R?" \ A) = A. By using Lemma 5.44, we see that
dist(Q™, A) < dist(z, A) < |z1 — x9].

This together with C6) shows the estimate C;; ! diam(Q**) < |x; —x5]. On the other
hand, using C6), we have

dist(z, A) < dist(Q™, A) + diam(Q™) < (1 + C,,) diam(Q™).

Lemma 5.44 implies that |z, — 25| < v2dist(z, A) < v2(14C,,) diam(Q**). At the
end it suffices to use C5) for diam(Q™) < C,, diam(Q). O

We are ready for the atomic decomposition of smooth kernels.

Theorem 5.46. Let €2 C R™ be a uniform domain, 0 < m < n, and 0 < § < 1.
Then we have 1)-2) below

1) Assume that K : Q x Q\ A — C has the atomic decomposition

(5.47) K(z)=X ) Kq(z), z€QxQ\A,
QEFA
where A € C and Kg is an (Q*,Q,m,0) kernel atom if Q € Fa. Then
K e K5™(6).

2) Assume that K € K3™(6). Then K has the atomic decomposition (5.47),
where X > 0 and K¢ is an (Q*,$2,m,0) kernel atom if QQ € Fa.

Proof. Notice that, according to Theorem 5.36, the domain  x  C R?" is uniform.
First we prove 1). Without loss of generality we can assume that A = 1. Fix Q € Fa
and z,z + h € Q x Q\ A so that |h| < |z1 — x2|/4. Applying Lemma 5.45 and
A1)-A3) in Definition 5.38, we have

(5.48) 10°Ko(2)] < Cplzy — zo/™ 7 o] < m.

Using Lemma 5.45 and both A1) and A4) in Definition 5.38, but also the uniformity
of 2 x €2 with Remark 5.22, we have

(5.49) 0°Kq(z 4 h) — 0°Ko(x)| < Chsalhl’|zy — 20| ™%, |a| =m.
According to C8), there are at most C), cubes in

N(@)={Q e Fa: xeQ).
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Applying A1) in Definition 5.38 and the estimate (5.48), we get

(30 K@< Y 0 Ko@) < Caler — " o] <m.
QEN (z)

In a similar way, summing over the cubes in N'(z) UN (x + h) and using (5.49), we
get

(5.51) 10°K (z + h) — 0°K ()| < 2C,s0lh|’|z1 — 20| ™%, |a| = m.

The remaining estimate (5.51) with z,x +h € Q x Q and 2|h| < |21 — 22| < 4|h]
follows from the kernel size estimate (5.50). All in all, we have shown that K €
Ka™(6).

Then we prove 2). First recall that {pg}oer, is a partition of unity in R**\ A,
see Appendix C. Fix a cube @) € Fa and define Kq(x) = po(z)K(x) if z € Q2 x Q.
Hence, using C10), we have

K(z)=K(z) Y ¢olz)= Y Kgolz), z€QxQ\A
QEFA QEFA
It suffices to verify that there exists A > 0 such that A\™' K¢ is an (Q*, 2, m, d) kernel
atom if @ € Fa. Fix Q € Fa. The condition Al) holds since, according to C11),
we have
SUPPoxa Ko C suppoxq wo C supp o C Q"

It remains to verify A2)-A4). First of all, the condition A2) holds since pg €
Co(int(Q*)), dist(Q*,A) > 0, and K € C™(2 x 2\ A). Next we verify the
condition A3). Fix a € N2, |a|] < m. If z € Q x Q\ QF, then 9*Kg(z) = 0.
Assuming z € Q* N Q x 2, we have

(5.52) 0" Kq(z) =Y capd’pq(z)0* K (z).
B<a
Fix 3 € NZ" satisfying 8 < a. Use C12) and estimates about K, combined with
Lemma 5.45, for
10%00(2)0° P K (z)| < C, pdiam(Q)PI1C,, x diam(Q)™ " le+1dl
< Cp g1 diam(Q)m "1l
Combining this with the identity (5.52) we get A3) for \;' Ko with A3 depending

at most on n, K. Then we prove A4). According to the Definition 5.1 we need an
estimate for

|AL(0°Kq, P.x)| = [0*Kq(x + h) — 9" Ko(z)],

where |a| = m and P CC 2 x ) is an open cube so that z,x+h € P. First consider
the case © € Q*, |x; — x2] < 4|h|. Using the proof of A3) from above, we get

AL (0°Kq, P,x)| < |0"Kq(z + h)| + |0 Kqo(x)]

(553) . —n S 7: —n—4
< 2)\3diam(Q) ™" < C), k|h|° diam(Q) :
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In the last inequality we used the estimate diam(Q) < C,|h|, which follows from
Lemma 5.45 and the estimate |z7 —x5| < 4|h| with x € Q* C @**. Next we consider
the case © € Q*, 4]h| < |z; — x3|. Fix f € NZ" satisfying 5 < «. Then, using
Lemma 5.45, the mean value theorem, and Lemma 5.43 if |5| = 0, we get the
following estimate

9% pq(x + MK (@ + h) = 9 po(a) K ()
< [0%pq(x + NP PK(x + h) = Ppqlx + W) IK 2)
+10%q(x + 1)K () — 0% po(x)0° " K (x)|
< O, diam(Q) 11y, 5 x| h)° diam Q)" lel+181=0
+ C 55|h[° diam(Q)~PI2C,, k diam(Q)™ eI +18I
< Cpps.xc|h|® diam(Q) ™",

Combining this with (5.52) and (5.53) shows that the estimate
(5.54) AL (07K, P,x)| < Cy 5 |h]’ diam(Q) ™",

holds true if z,x + h € P and z € QQ*. It remains to consider the case x + h € Q*.
But this reduces to the estimate (5.54) since, denoting k = —h and y = x + h, we
have y,y +k € P, y € ¥, and

(5.55)  |AL(Kq, P.2)| = |Ay (Ko, P,y)| < Cpielkl’ diam(Q) ™", |k| = |hl.

The estimates (5.54) and (5.55) imply that there exists Ay > 0, depending at most
on n,d, K, such that )\ZlKQ satisfies A4). Denoting A = A3 + Ay, A1 K satisfies
Al)-A4). O

Kernel extension via atomic decomposition. The atomic decomposition of smooth
kernels is a powerful tool. Indeed, combined with the atomic extension, it provides
us the desired kernel extension result.

Theorem 5.56. Let 2 C R™ be a uniform domain, 0 <m <n, 0 <46 <1, and
K € K3™(6) be a smooth kernel. Then there exists K € Kgi'(0) such that

KIQxQ\A=K.
That is, K has an extension to a smooth kernel K : R" x R"\ A — C.

Proof. Applying 2) in Theorem 5.47 implies that K has the atomic decomposition
K(z)=X Y Koz), z€QxQ\A,
QEFa

where A > 0 and K¢ is an (Q*, 2, m,§) kernel atom if Q) € Fa. Fix @ € Fa. Then
applying Theorem 5.39 to K¢ gives an (Q**,R",m, ) kernel atom K satisfying
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Kq = (/ﬂ}f(@)’ﬂ x €, where k independent of (). As a consequence, we have the
representation

(5.57) K(r)=Xs Y Kg(z), 2€QxQ\A.

QeFa
On the other hand, applying 1) in Theorem 5.47, we see that the right-hand side of
(5.57) defines a kernel K € Kg."(6). O

Remark 5.58. According to Corollary 4.46 this extension result applies to
K € Kg™(0) U k™H(Q) U Kg™ (),

loc
given that {2 C R” is uniform. Such kernels admit also an atomic decomposition as
in Theorem 5.46. When extending kernels in the two other classes, besides smooth
kernels, the Holder-regularity decreases but this is most likely an artifact caused by
our proof of the kernel regularity result.

We formulate the following most useful extension result as a corollary. It follows
by combining Theorem 4.37, Theorem 5.56, and Proposition 4.6.

Corollary 5.59. Let @ C R™ be a uniform domain, 0 < m <mn, 0 < §y <0 <1,
and K € Kq™(0) be a standard kernel. Then there exists K € Kgi'(0') such that

KIQxQ\{(z,2)} = K.
In words, K has an extension to a standard kernel K : R" x R"\ {(z,2)} — C.

Remark 5.60. e In a similar fashion one can also extend Calderéon—Zygmund
standard kernels (strictly speaking, we haven’t defined these kernels on do-
mains). However, in this case there will be no canonical way to associate an
operator to this extension of the singular kernel unless the (original) kernel is,
say, antisymmetric. Therefore the current approach to the boundedness via
extension of the kernel does not apply to Calderén—Zygmund type operators
on domains in its full generality.

e The pointwise properties of kernels are easier to establish than the bounded-
ness properties of the corresponding WSIO’s. The difference between these
is that the norm estimates involved in the pointwise properties are more
simple. For instance, this allows us to circumvent Calderén reproducing for-
mulae in the context of kernel regularity and apply the dyadic resolution of
unity instead. As a matter of fact, we do not know how to construct suitable
Calderon reproducing formulae on domains. The standard formulae, as in
[HL03, HS94|, do not apply because we need further moments aside from
the zeroth.
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6. WSIO’Ss ON DOMAINS

The topic here is a formulation and proof of our main result in this monograph,
which is a boundedness result for WSIO’s on admissible domains. We begin with
discussing the properties of admissible domains like invariance under quasiconformal
mappings of R™ onto itself. Then we strengthen the Ty theorem by utilizing kernel
regularity results and the 7'1 theorem of David and Journé. Next we verify that
the T'xq theorem, combined with the kernel extension, leads to the proof of our
main result: 7'1 theorem on admissible domains. Given 7' € SKg™(6), this result
describes the boundedness of

0°T, |al =m,
on the spaces LP(Q2) for 1 < p < co. There are also endpoint boundedness results.

6.1. Admissible domains. We discuss the properties of so called admissible do-
mains where our main result applies. These domains are, according to Definition
1.15, both uniform and Whitney coplump. The main observation here is the invari-
ance of admissible domains under quasiconformal mappings f : R” — R™. These
mappings generalize conformal mappings of one complex variable to higher dimen-
sional real spaces.

The class of uniform domains was introduced by Martio and Sarvas in late 70’s
in their work [MS79], where the invariance of such domains under quasiconformal
mappings f : R" — R" is also established: if 2 C R™ is a uniform, then the image
fQ € R™ is uniform. The definition for uniform domains given in [MS79] is different
from the Definition 1.13, but the equivalence of these (and other) definitions was
established by Martio [Mar80]. For further characterizations of uniformity see the
references [V&i88, Geh87|.

A domain 2 C R" is Whitney coplump if either Q = R™ or R™ \ 2 is unbounded
and c-plump for some ¢ > 1 in the sense of Definition 1.14. These domains were
studied by Martio and Viiséld [MV93] in connection with the .A-harmonic measure
and passability. Whitney coplump domains are invariant under quasiconformal map-
pings f : R" — R™ if ) C R™ is a Whitney coplump domain, then the image f(2 is
also Whitney coplump. We prove this in Theorem 6.6. Convex domains are Whit-
ney coplump — this follows from the definitions and existence certain hyperplanes
[Roc70, p. 100]:

Theorem 6.1. Let ) # Q C R™ be a conver domain and b € R™\ Q. Then there

exists an affine hyperplane P C R™ so that b € P and P does not separate the points

n §2.

Corollary 6.2. A convex domain ) # Q C R", n > 2, is Whitney coplump.
Uniformity of the domain does not imply the Whitney coplumpness of the do-

main: removing an inward cusp from the unit ball B(0,1) C R* does not affect

the uniformity but the Whitney coplumpness of the resulting domain fails. On
the other hand, Whitney coplumpness does not suffice for the uniformity which is
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seen by looking at exterior cusps. Thus, in general, both uniformity and Whitney
coplumpness need to be verified to ensure admissibility of the domain.

Next we turn to the quasiconformal invariance of admissible domains. Useful
references for quasiconformal mappings are [AIM09, V&i71|.

Definition 6.3. A homeomorphism f : R” — R", n > 2, is a K-quasiconformal
mapping if, for every x € R”,

L(x, f,r)

li — <K<
g K<

where L(z, f,r) = maxjy_y— | f(2) — f(y)| and l(z, f,7) = min,_y -, [ f(z) — f(y)|.

Theorem 6.4. Let Q0 C R™, n > 2, be an admissible domain and f : R™ — R™ be
a K-quasiconformal mapping. Then the image fQ C R™ is admissible.

Next we prove Theorem 6.4 and it suffices to verify the invariance of both uni-
formity and Whitney coplumpness under quasiconformal mappings R” — R"™. The
invariance of uniformity is established in [MS79, Theorem 2.15] and we omit the
proof which is based on the following quasisymmetry type estimate

(65) L(SC, f, T2) S Cn,K(TQ/T1>K1/(n_1)l('T7 f? Tl)u

where x € R", 0 < ry < 19 < o0, and f : R* — R" is a K-quasiconformal
mapping. The estimate (6.5) implies also the remaining invariance of Whitney
coplump domains.

Theorem 6.6. Let Q) C R™, n > 2, be a Whitney coplump domain and f : R — R"
be a K-quasiconformal mapping. Then there exists ¢ = ¢, ko > 1 such that for all

z €R™\ fQ and 0 < r < oo there exists 2 € B(z,r) such that B(z,r/c) C R™\ Q.
As a consequence, diam(R™ \ fQ) = oo and fQ C R"™ is Whitney coplump.

Proof. This proof relies on the estimate (6.5) applied to the K-quasiconformal map-
pings f and f7!. Fix z € R*"\ fQ and 0 < r < oo. Denote I' = I(z, f~1, 1),
L' = L(z, f',r), and 2/ = f~'(z) € R"\ Q. Because Q C R" is a Whitney
coplump domain, there exists 2z’ € B(z/,1’/2) and a constant cq > 1 such that
(6.7) B(Z',l'/(2¢cq)) C R™\ Q.

Denote z = f(z). Now 2’ € B(«',l'/2) C B(2/,lI') C f~'B(z,r) and, as a conse-
quence,

(6.8) z = f(¢) € B(z,r) C B(z,7).
We also have f~'B(z,r) C B(x',L') C B(z',2L') and therefore
(6.9) B(z,r) C fB(#,2L").

Denote | = (2, f,1'/(2¢q)) and L = L(Z, f,2L"). Using the relation (6.9), we find
two points by, by € R" satisfying |b; — bg| > 2r and

bi,by € O[fB(7',2L")] = fO[B(#, 2L = {f(¥) : |' = ¥| =2L"}.
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Applying the triangle-inequality and the definition of L we see that there is b €
{b1,b2} such that r < |z —b| < L. Applying this and the estimate (6.5) twice, we
get

(6.10) r<L< ch(éLcQL’/l’)KI/(nil)l < can(4chn7K)Kl/<n71>l.
Using the estimate (6.10) and the relation (6.7), we get
(6.11) B(z,7/cnk0) C B(z,1) C fB(Z',l'/(2¢cq)) CR"™\ fQ,

where ¢, g0 = cn,K(4Can,K)K1/(nfl) depends at most on n, K, ). Combining the
relations (6.8) and (6.11) we find that z € B(z,r) and B(z,r/cpx0) C R™\ fQ as
required. U

6.2. Txqo theorem revisited. We strengthen the T'yq theorem for restricted op-
erators, formulated in Theorem 3.118. For the notation we refer to the notation in
the sections 3.1 and 3.3.

Theorem 6.12. Let Q2 C R™, n > 2, be a Whitney coplump domain and T €
SKg'(6), where 0 < m < n and 0 < § < 1. Then the following conditions are
equivalent

e 0°T, 0°T* € L (L*(Q)) if |a] =m,

e 0°T, 0°T* € Z(LP(Q)) if 1 <p < oo and |a| = m.

Proof. The second condition implies the first. Assume the first condition. Then,
due to symmetry, it suffices to consider the operator T. Theorem 3.118 shows that
there exists S € SKgi*(d) such that S ~ T and 9°S € Z(L*(R")) if |a| = m.
Fix o € Ny satisfying |« = m. Assuming that S is associated with a kernel
k € Kgn'(0), Theorem 4.37 implies that x € Kg,"(8') if 0 < ¢’ < §. In particular,
ke C™(R" xR"\ {(z,x)}) and

Bk :R" x R"\ {(z,2)} = C

is a Calderén—Zygmund standard kernel. Let f,g € C3°(R™) be test functions such
that their supports are disjoint. Applying Fubini’s theorem and integrating by parts
gives

(0°Sf,g) = (—1)N(Sf | 0°g) = (—1)l / ) / ) k(z, y)0%g(x)dx f (y)dy
- /n /n O%k(z,y)g(x)dx f(y)dy.

Applying the Fubini’s theorem to the right-hand side we see that the continuous
operator 9°S : S(R") — S'(R™), induced by the bounded extension 9°S : L*(R") —
L*(R"), is associated with the Calderén-Zygmund standard kernel 9%x. Hence
0“S € SK(¢') and the T'1 theorem of David and Journé, Theorem 1.12, shows that
0°S € Z(LP(R™)) if 1 < p < oco. Because S ~ T, we also have 0°T € Z(LP(R)) if
1<p<oo. O
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6.3. T'1 theorem on admissible domains. We come to the formulation and proof
of our main result: a T'1 theorem for WSIO’s on admissible domains.

Let us first set up the stage. Fix n > 2 and m € N, 0 < m < n. Fix (m + 1)-
regular wavelets {¢22} that are defined in Appendix B. Let 2 C R" be an admissible

domain and let T' € SK;™(0), 0 < § < 1, be associated with a kernel K € K™ (9),
that is,

/ny y)dy, x € Qand f e Cy(N).

The adjoint operator T € SK;™ () is associated with the kernel (z,y) — K(y, z).
See Introduction for further details about the classes K™ (d) and SKg™(6).

Ezxtension of the operator. Our strategy is to apply boundedness results obtained in
Section 3. For this purpose we need to extend the operator 17" and establish various
compatibility results. To begin with, we extend the associated kernel K € K;™(0)
that is defined in Q x Q\ {(z, x)}. This extension is obtained by applying Corollary
5.59 which gives a kernel K € Kz7"(8') so that

(6.13) K|Qx Q\ {(z,2)} = K.
Define 7' € SKz(¢') to be the corresponding operator such that

Tfx)= | Kz fy)dy, ifzeR”and fe Co(R).

RTL
The adjoint operator T* = (T)* is associated with the adjoint kernel (z,y) —
K(y,z). The estimate (3.6) shows that 7' and T* induce linear operators Cy(R") —
(Co(R™))*. Let id : Co(Q2) — Co(R™) and id* : (Co(R™))* — (Cp(€2))* denote the
canonical inclusions. Fix f,g € Cy(€2). Then, applying (6.13) and the relation
supp f Usupp g C €2, we get

(6.14) /Tf dx_//ny yg(x)dz = (id* o T oid(f) | ¢).

This identifies T as the operator id*oT oid : Co(2) — (Co())* and T* as the
operator id* o T* o id : Co(Q) — (Co(Q))*. Hence, if || = m, then according to
Definition (3.59) we have 8T € Z(L*(Q)) if, and only if, 9*T € Z(LP(Q)). Same
holds for T* and T*.

WSIO’s and the space BMO(2). We extend the domain of definition of T" to the
space BMO(f2), see Definition 3.48. Then we establish compatibility relations to
the extended operator which is already defined in the space BMO(R™).

First recall Definition 3.45 for the cubes D*(2) C D. We define Th: D x € — C
for b € BMO(Q2) by the rule T70(Q,¢) =0 if Q € D\ Dy*(2) and

(6.15)
1(Q.5) = [ WaT0gtade = [ ba) [ Kiy)igludduds, Q € DF(@).
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The sequence T*b : D x £ — C is defined similarly. The definition (6.15) induces a
linear operator

T:BMO(Q) - {7:Dx €& — C}
given that the integrals in (6.15) are defined. To verify this, let b € BMO(f2) and
(Q,e) € D(2) x €. Then T(bxq) : D x &€ — C is defined in connection with
(3.61). Remark 3.55 implies that supp ¢, CC €2. Therefore, using also (6.13) and
the definition (6.15), we get

~

(6.16) T(Q,e) = T(bxa)(@.e), if (Q,¢) € Df'(Q) x £.
As a consequence (6.15) is well defined. Another implication of (6.16) is that T'b =
T'(bxq) and T*b = T*(bxq) in f2*(Q) if b € BMO(Q).

We denote T' € Z(L>(Q), fm2(Q)) if

(6.17) 1T 20y < ClIBl| o=

with C independent of b € L>(Q). Also, we denote T' € .Z(BMO(Q), f2(Q)) if
(6.18) || T]] 2y < Cl1b][BMO(0R)

holds with C' independent of b € BMO(f2). The identity Txq = 0 in f7-%(Q) is nec-
essary for (6.18) to hold because ||xa||lsmo) = 0. Comparing definitions (3.60) and
(6.17), we see that T € Z(L>(Q), f™2(Q)) if, and only if, T € L(L®(Q), f72(2)).
Comparing definitions (6.18) and (3.61), we also have T' € .Z(BMO(Q), f™2(Q)) if,
and only if, T € .Z(BMO(Q), f™2(Q)).

Main results and an application. Combining the preparations above with Theorem
3.118 and Theorem 6.12 we reach our main result in this monograph.

Theorem 6.19. Let Q C R", n > 2, be an admissible domain and T € SK5™(6),
where 0 <m < n and 0 < 0 < 1. Then the following conditions are equivalent

i TXQ7T*XQ € f£’2(9)7
e 0°T,0°T* € L(L*(Q)) if « € NI satisfies || = m,
o 0°T,0°T* € L(LP()) if 1 < p < oo and a € N} satisfies |a| = m.

We also record the following asymmetric endpoint boundedness result, which
follows by combining the preparations above with Theorem 3.68 and Theorem 3.76.

Theorem 6.20. Let 2 C R™, n > 2, be an admissible domain, 0 < m < n, and
0<d<1. Let T € SK;™(0) be such that 0°T € L (L*(Q)) if |a| = m. Then
o T € L(L™(Q), f12(Q), ,
o T'xq =0 1in f2(Q) if, and only if, T € L (BMO(Q), f™*(Q)).
There are other results based on Corollary 3.117 but we omit their formulation
here. We finish our treatment with a simple application related to potential theory.
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Ezample 6.21. Recall the operator G € SK3;*(6) in the ball B = B(0,1) C R™,
n > 3, which is an admissible domain. This operator is defined in (1.4) and its basic
properties are also established in that connection. The purpose of this example is
to show that the T'1 theorem combined with the Holder regularity estimate

(6.22) Gl =GypeC*(B), if0<d<l,
which is proven in the Introduction, can be used to deduce certain boundedness
properties of 0°G for |o| = 2. Estimate (6.22), combined with Corollary 5.34,
shows that
G1=Gyp € C*(B) c F**(B).

The operator G is associated with a symmetric and real-valued standard kernel
so that we also have G*1 € F22(B). Then, using Fubini’s theorem and defini-
tion (6.15), we see that the weak versions of these inclusions hold true so that
G1,G*1 € f2?(B). Theorem 6.19 and Theorem 6.20 imply the following bounded-
ness properties

e {0°G : |o| =2} Cc Z(L*(B))if 1 < p < o0,

o G € Z(L®(B), f22(B)).
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APPENDIX A. NOTATION

N ={1,2,...}, the natural numbers,

Ny = NU {0},

a A'b = min{a, b},

a Vb= max{a,b},

B(x,r), the open ball in R” with radius » > 0 and center at = € R",

B(x,r), the closed ball in R",

E={0,1}"\{(0,0,...,0)}, indices associated with wavelets,

0(Q), the side-length of a cube @ C R™,

Q(z,7), the open cube centered at x € R™ and with ¢(Q(z,r)) = 2r > 0,

Qu ={x eR" : k; <2"x; < k;+1ifi =1,...,n} a dyadic cube indexed by
veZand keZm,

2@, the centerpoint of a cube QQ C R”,

zq, the lower left-corner 27"k of a dyadic cube Q) = Q,x,

Q?, reflection of a dyadic cube @) = @), in a Whitney coplump domain,

D= {ka cveZand ke Z"}, the family of all dyadic cubes in R",

D, ={Q.x : k € Z™}, the family of dyadic cubes @ € D satisfying ¢(Q)) = 27,
Di(a, Q) ={Q €D : Q C Q and dist(Q,09) > adiam(Q)}, a-interior cubes,
D7 (Q) = Dr(Crot1, ), where Cyiq > 0 is the constant defined in Appendix B
for which B4)-B5) holds true in the case of (m + 1)-regular wavelets {95},

Dp(a, Q) ={Q €D : QN Q # 0} \ Di(a,Q), a-boundary cubes,

e D5(Q) =D\ (Dr(a, Q) UDp(a, Q) ={Q € D : QNQ =D}, exterior cubes,

® 0% = Og1---0n, partial differential operator associated with the multi-index

a=(a1,ay,...,a,) € Ny of order |a| =377 aj,

e supp f, the support of a function f: R" — C,
o f,(x)=2""f(2"x), the L'-normalization of a function f: R" — C,
e 75, the h-translation operator acting on functions f : R" — C so that 7, f(z) =

f(z —h). We also denote 7,(z) = 7, id(z) = = — h,
AP(f, ) = (rop —id)™ f = 3o (=)™ () f(- + k‘h) the difference operator of
order m in R™. If f € C™(R™) and x, h € R, then we have the representation

Amfx Z Zhh' Jm

(A.1) n=l gmel

1 1
></ ---/(6]-1---8jmf)(x+(01+---+9m)h)d01~--d6m,
0 0

AY(f,Q,+), the difference operator of order m in a domain 2 C R”" is acting on
functions f : 2 — C so that, if z € R,

S (=)™ f(x + kh), if {z,z+h,...,x+mh} CQ,

0, otherwise.

AWLQ@Z{

Notice that A7(f,R™,.) = A(f,-),
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o Pl { E\al cm CaT® 1 Cq € (C}, the vector space of multivariate polynomials
of total degree at most m € Ny. We also denote P_; = {0},

e P, f(-,y), the Taylor approximation of 0% f with basepoint v,

e R.f(-,y), the error in Taylor approximation of 0*f with basepoint y,

e (A, ), the linear form defined by [, A(z)p(x)dx if A, p € L*(R"),

o (A | ), the sesquilinear form defined by [, A(z)p(z)dz if A, € L*(R"),

e S = S(R"), the Schwartz class of test functions equipped with the usual locally
convex vector space topology,

S' = S'(R™), the space of tempered distributions, that is, the vector space of
linear and continuous functionals A : S — C equipped with the weak*-topology,
Sk = Sp(R™), the closed subspace of the Schwartz class consisting of functions
¢ € S satisfying [, 2*p(z)dz = 0 if |a| < k € Ny U {oo},

S'/P = 8 /P(R"), the tempered distributions modulo polynomials, that is, the
topological dual space of S, equipped with the weak*-topology,

Bg’q(R”), the homogeneous Besov space in R,

e H'(R"), the real Hardy space in R",

e [7(Q), the space of p-integrable, 1 < p < oo, functions in a domain 2 C R
equipped with the norm || f]|zr) = (Jo | f(z |pdx )1/P (modification if p = oo),
BMO(2), the space of bounded mean oscillation in a domain 2 C R", consisting
of those f € Li..(f2) that satisfy

1
nggg{’Q‘ / |f(x fQ|d£B} < 00, where fg = @/Qf@)dx

F£2(Q), the homogeneous BMO-type Sobolev space on a domain 2 C R",
fm2(Q), the space of sequences 7 : D x £ — C satisfying

1 —zm/n
1712y = sup 4 QI (Q,e)* ¢ < o0,
fR @) 1P|

PeD(Q) QCP cc€

C™(£2), the space of functions f : 2 — C which have continuous (partial) deriva-
tives 0%f : Q — C for |a| < m € Ny U {0},

o C(N2) = C%9Q), the space of continuous functions in 2,

e C™(Q), the space of continuous functions f : Q — C such that f|Q € C™(Q) and
the derivatives 9°(f|{2) extend to continuous functions 2 — C for |a| < m,

C% (R™), the space of polynomially bounded smooth functions, that is, functions
[ € C°°(R") satisfying | f| < C(1+|-])" for some C, N > 0,

o C'(£2), the space of functions f € C™(§2) with compact support contained in €,
e (4(Q) = CJ(), the space of continuous compactly supported functions in €,

o (C'(£2))*, the algebraic dual of C§*(£2) consisting of conjugate-linear functionals
AC () = Crom AMe)=(Aly),

C™°(Q), the space of functions f € C™(1Q) satisfying > ta<m 10 Lo () < 00
and whose order m derivatives satisfy a Holder estimate in 2 with exponent

d€(0,1),
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) C’fgj(Q), the space of functions f € C™ () satisfying >, <,, [10° f|[=(@) < o0
and whose order m derivatives satisfy a uniform Holder estimate in every open
cube Q CC Q) with exponent ¢ € (0, 1),

e Lip,, . 5(©), the space of (m + §)-Lipschitz functions in Q,

o En(f,Q) = infpep,,&n) { fQ |f(z)—P(z)|dz} if f € L'(Q) and Q C R™ is a cube,

e 6(Q), the local smoothness space consisting of f € LL () for which

1120 + sup {|QI "W E, (f,Q)} < oo,
Where the supremum is taken over all cubes ) CC (Q,
o ={be LL (R") : [o.[b(2)|(1+ Q) z — zg|) " dx < 00 if Q € D},
° SKQ (0), the space of weakly singular integral operators of order —m, consisting
of linear integral operators T of the form

/ny y)dy, x € R"™and f € Cy(Q),

where K € K;™(0),
o K;,"(9), the space of standard kernels K € C(2 x Q\ {(z,2)}) which satisfy the
estimates |K(z,y)| < Cklz —y|™ ™", if z,y € Q, and

1 / 1 Q|-n—s
v o [T ). Quldy | < Cido - 29
|h|<diam(Q) { Q1 Fim+o)/ Q "
if z € Qand Q CC Qis a cube, Cx diam(Q) < |z — 2%|. The integral estimate
is also assumed with K (z,-) replaced by K (-, z),
e k"(Q), the space of Holder-Zygmund kernels K € C(Q x Q\ {(x,2)}) which

loc

satisfy | K (z,y)| < Cklz —y|™ ", if 2,y € , and
AT K (2, ), Q,y)] < C[h|™ e —y[ "7,

if x,y € Q, Q CC Qs a cube, and 2(m + 1)|h| < | — y|. The estimate on
differences is also assumed also with K(z,-) replaced by K (-, x),
o 5™ (0), the space of smooth kernels K € C™ (2 x Q\ {(x, x)}) which satisfy

0205 K (2, y)| < Cclar —y|™ o=V,
if z,y € Q and |a| + |3 < m, and
020, K (x + h,y) — 070K (z,y)| < Ck|h|’|z —y|™"°
if |a|+[6] = m and z,y,x+h € Q satisfy 2|h| < |x—y|. This is also assumed with
h-difference placed to the y-variable and z,y,y + h € Q satisfying 2|h| < |z — y|,
o Z(X,Y), the space of bounded linear operators from X to Y, where X and Y

are normed vector spaces,

e (X)=2(X,X).
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APPENDIX B. COMPACTLY SUPPORTED WAVELETS

We describe the relevant properties of compactly supported wavelets of regularity
r € N. Here we follow [Mey92] but other useful references are [Dau92, Woj97|.

A compactly supported r-regular basic wavelet is a function ¢ : R — C satisfying
the conditions 1)-3) below

1) ¥ € C§(R) so that 1 is compactly supported and it has continuous deriva-
tives up to order r,

2) Jpaf(x)de =0if 0 <k <r,

3) the set {27/2(27 - —k) : j, k € Z} is an orthonormal basis of L?(R).
We assume that 1) is associated with a so called r-regular multiresolution analysis.
The details are not important here but this implies that there is an r-reqular scaling
function, that is, a function ¢ : R — C satisfying 1) above, with ¢ replaced with ¢,
and also 3’) below

3’) the set
{o(-—k) : ke Z}U{2/2)(2 - —k) : j €Ny, k € Z}
is an orthonormal basis of L*(R).

Multi-dimensional compactly supported wavelets are obtained from the functions
above via tensor products. Let £ denote the set of 2" — 1 sequences

e =(e1,€2,...,6n) €4{0,1}"\ {0,0,...,0}.
Then, if z € R" and ¢ € &, define
Y (x) = P () - () = (V7 @ - @) (),
where 1% = ¢ and ¢! = 1) are the one-dimensional r-regular scaling function and

basic wavelet. By scaling and translating these tensor products we obtain r-regular
compactly supported wavelets in R™. For this purpose we denote

V(@) = ()o(x) = QI (U(Q) (& — xq)) = 2"*¢(2x — k)
if z € R" and (Q, €) € Dj; x £. These functions satisfy B1)-B5) and the properties

described in Lemma B.2 below. The constant C,. > 0 occuring in B4)-B5) is chosen
so that Lemma B.2 holds also true with the same constant.

B1) the set {¢§ : (Q,e) € D x £} is an orthonormal basis of L*(R"). If
f € L*(R™), then

(B.1) F= 30 10a00e, @ = D Y I [ va)P
QED e QED €&

where the first series converges unconditionally in L?(R™),
B2) if 1 < p < oo and f € LP(R"), then

F=Y3 (Flvoeg

QeD ec&

so that the series converges unconditionally in LP(R"™) [Woj97, p. 196],
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B3) v¥§’s have vanishing moments,

/n Y5 (z)dr =0

if (Q,e) € D x & and « € Nj} satisfies |a| < r,
B4) supp vy C C,Q, where C,Q is the cube with the same midpoint 2@ as Q
but whose sidelength is C,.4(Q),

B5) ¢g € Cj(R™) and [|0°¢g||poe@ny < Co|Q[7/271Vm if o € Ny, |af <7,

We also record the following lifting property which is useful in many occasions.
Lemma B.2. Let ¢ € £ and 0 < m < r, m € Ny. There exists a canonical
multi-indezr o = a(e, m) € Ny, |a| = m, and a function =™ : R* — C, depending
on Y, e,m, so that ¢ = 9%(¢°™). Furthermore, if Q € D, then g™ = (Y°")q
satisfies the moment conditions

| e @i =0, jal<r-m,
and also the properties B4)-B5) above with Vg replaced by wgm.

Proof. Consider the case n = 1. First we define functions ¥* : R — C, k =
0,1,...,m, inductively so that 10 = ¢)! =+ and

z/)““(x):/ VYN dy, k=1,2,... m.

Now (¢p1F) = p1+=1and (p1*)F) =4, k =1,2,...,m. Induct on k € {0,1,...,m}
and apply 2) with integration by parts at each step to show that the support of ¢)!*
is contained in the convex hull of supp and that

/ g (2)de =0, k=0,1,...,mand £=0,1,...,r — k.

[o@)
The one-dimensional result follows from these considerations. Then assume that
n > 1. Due to the definition of & there is the smallest j € {1,2,...,n} so that
gj = 1. Choose a = me;, where ¢; is the j'th base vector in R". Then the function

w&m :wfl ®...®w5j7m®...®w5n
satisfies the desired properties, where 1)%"™ = 9" is placed in the j’th position. [
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APPENDIX C. WHITNEY DECOMPOSITION

We collect the basic properties of the so called Whitney decomposition of an open
set ) # Q C R™. In addition to this, we invoke the partition of unity that is related
to this decomposition. We follow the treatment in [Ste70, 167-171].

There is a a Whitney decomposition of €2, that is, a family F of closed dyadic
cubes in R™ satisfying C1)-C3) below

Cl) UQG]—" Q = Qa

C2) the family of open cubes {int @ : @ € F} is disjoint,

C3) diam(Q) < dist(Q, 09Q) < 4diam(Q) if Q € F.

We expand the cubes in F twice. We will construct a partition of unity which
is subordinate to the first family {Q*} of expanded cubes. The second family of
larger expanded cubes {Q**} will serve as a starting point for certain reproducing
functions. Let Q € F and fix € > 0 be such that 1 +¢ < (1+¢)? < 5/4. Denote by
Q* the cube which has the same center as @) and side-length (1 + £)4(Q),

Q" = (1+e)(@Q—a%) +a®

where 29 is the center of the cube ). Also, denote by Q** the cube with the center
29 and side-length (1+¢)2((Q). In C4)-C8) below we collect the properties of these
expansions of a cube ) € F

C4) Q CintQ* C Q* C int Q™ C Q*,

C5) diam(Q™) < 5diam(Q)/4,

C6) 3diam(Q**)/5 < dist(Q**,092) < 5diam(Q**),

CT7) sup,eqs dist(x,982) < 10dist(Q**, 092),

C8) for every x € ) there is at most C,, cubes R € F such that x € R*.

Next we construct a partition of unity. Let Qo = [—1/2,1/2]". Fix ® € C*(R")
sothat 0 < ® <1, &(x) =1if 2 € Qp, and supp ® C int(Q);). Let @ denote the
function ® but adjusted to the cube @) € F so that

T — ZL‘Q>
do(x) = T2, zeRrm
o) ( Q)
Notice that ®g(x) = 1, if z € @, and supp g C int(Q*). We also have
10°®g| o0 < Cho diam(Q)~°1, o e N2
Define g € C3°(R"), Q € F, by
-1
@Q(iE) _ (I)Q(J:)(ZQG}' CDQ(x)) ) x €,
0, r e R\ Q.
Then ||0%00]|oe < Cp.o diam(Q)~1%!) supp g C int(Q*). The identity

Z@Q(x) =1, z€q,

QeF

is a justification for that {(q} is a partition of unity subordinate to {Q*}.
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The properties of this partition of unity are collected in C9)-C12) below

C9) 0<po <1lifQeF,

C10) Y perpo(z) =1if x € Q,

C11) supp g C int(Q*) if Q € F,

C12) [|0%00]lse < Cn.o diam(Q)~1 if o € Np.

We also use the following reproducing functions. Fix a function ¢ € C§°(R") so
that 0 < ¢ <1, ¢(z) = 1if x € Qf, and suppy C int(QF*). Let ¢g € C(R)
denote the function ¥ but adjusted to the cube @) € F so that

T — ZEQ)
xr) = , xeR"
Yo() ¢( =
Then, if Q € F, we have C13)-C14) below

C13) ¢g(z) =1if z € Q* and supp ¢g C int(Q**),
Cl14) |[0%Yg]| < Cra diam(Q)“o‘| if o € Nj.
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