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1. Introduction

The foundations for the modern treatment of singular integrals were provided by
Calderón and Zygmund in their seminal work [CZ52] and these operators have been
studied extensively in various settings [Chr90, HS94, NTV03, Tor91]. The principal
objective of this monograph is to explore certain weakly singular integral operators
which are related to singular integrals and originate in pseudodifferential operators
and PDE’s. To be more precise, assume that Ω ⊂ Rn is a domain andK : Ω×Ω→ C
is a kernel that defines a linear integral operator

(1.1) Tf(x) =

∫
Ω

K(x, y)f(y)dy, x ∈ Ω.

We establish conditions on this domain and kernel under which the weak derivatives

(1.2) ∂αT = f 7→ ∂α
∫

Ω

K(·, y)f(y)dy

of prescribed order |α| = m > 0 have bounded extension to the spaces Lp(Ω) for
1 < p <∞ or to some other natural function spaces on Ω. Results to this direction
are available in the case Ω = Rn [Tor91, p. 141] but apparently not in the context
of proper domains.

Inhomogeneous Dirichlet problem. Weakly singular integral operators (WSIO’s) as
in (1.1) arise naturally in connection with elliptic PDE’s on domains. In order to
illustrate our main result, consider the following inhomogeneous Dirichlet problem
in the ball B = B(0, 1) ⊂ Rn for n ≥ 3,

(1.3)

{
−∆u = f ∈ Lp(B),

u ∈ W 1,p
0 (B).

We restrict ourselves to the exponents 1 < p <∞. Then (1.3) has a unique solution
and it satisfies ||u||W 2,p(B) ≤ Cn,p||f ||Lp(B) [ADN59], [JK95, Theorem 0.3], [GT83,
Theorem 8.12]. Certain Hölder-regularity estimates combined with our main result
can be used to deduce this W 2,p(B)-regularity and we sketch this argument for
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illustration. The solution of (1.3) can be expressed in terms of a weakly singular
integral operator

(1.4) u(x) = Gf(x) =

∫
B

G(x, y)f(y)dy, x ∈ B.

Here G : B×B \{(x, x)} → R is the Green’s function, which is defined for y 6= 0 by

G(x, y) =
|y|2−n|x− ȳ|2−n − |x− y|2−n

ωn−1(2− n)
, ȳ = |y|−2y,

and G(x, 0) = (ωn−1(2 − n))−1(1 − |x|2−n), where ωn−1 is the (n − 1)-measure of
∂B = Sn−1. The Green’s function is symmetric so that G(x, y) = G(y, x) if x 6= y.
Using the definition it is straightforward to verify the estimate

(1.5) |∂αxG(x, y)| ≤ Cn,α|x− y|2−n−|α| if α ∈ Nn
0 and x 6= y.

As a consequence, the kernel G belongs to a certain class K−2
B of standard kernels

of order −2 which is defined in connection with our main result.
Let k ∈ N0 and 0 < δ < 1. Then Ck,δ(B̄) denotes the Hölder space of functions

f ∈ Ck(B̄) satisfying∑
|α|≤k

||∂αf ||L∞(B) +
∑
|α|=k

sup

{
|∂αf(x)− ∂αf(y)|

|x− y|δ
: x, y ∈ B, x 6= y

}
<∞.

We use the Hölder-regularity estimate that, if f ∈ C0,δ(B̄) ⊂ Lp(B), the solution
(1.4) satisfies u = Gf ∈ C2,δ(B̄) [GT83, Corollary 4.14]. This estimate is used for

(1.6) G1 = GχB ∈ C2,δ(B̄), if 0 < δ < 1.

Using the properties (1.5) and (1.6) with our main result, Theorem 1.20, it is possible
to verify that the operators ∂αG are bounded on Lp(B) if |α| = 2. As a consequence,
the solution (1.4) satisfies u ∈ W 2,p(B) and also the norm-estimate

||u||W 2,p(B) = ||Gf ||W 2,p(B) ≤ Cn,p||f ||Lp(B).

To recapitulate, the kernel size-estimates with the Hölder-regularity estimate on G1
imply W 2,p(B)-regularity for the solution of (1.3). For details, see Example 6.21.

Integral operators on Rn. Next we consider operators of convolution type on Rn.
These integral operators, treated in Section 2 and restricted to kernels of the form
K(x, y) = k(x− y), can be applied in solving the problem −∆u = f with data f in
homogeneous Triebel–Lizorkin or Besov spaces.

The basic ingredients of the following result are available in the literature but
the novelty lies in their combination, showing how concrete characterizations are
available in our situation. Here S∞ is the space of Schwartz functions with all
vanishing moments and S ′/P is its topological dual space; Ḃα,q

p ’s form the scale of
homogeneous Besov spaces, to be defined in Section 2.1.
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Theorem 1.7. Let α ∈ R, p ∈ {1,∞}, and 1 ≤ q ≤ ∞. Let k ∈ S ′/P. Then the
convolution operators f 7→ ∂αk ? f : S∞ → S ′/P, |α| = 1, have bounded extensions
to Ḃα,q

p if, and only if, k has an extension to a regular tempered distribution K ∈ S ′
satisfying the integral estimate

(1.8) sup
y 6=0

{
|y|−1

∫
Rn
|K(x− y) +K(x+ y)− 2K(x)|dx

}
<∞.

The endpoint spaces Ḃα,q
1 and Ḃα,q

∞ are classical in the following cases. If α > 0,
then Ḃα,∞

∞ ≈ Ċα is the homogeneous Hölder–Zygmund space. If 0 < α < 1, then
this space consists of complex-valued functions f on Rn, satisfying a modulus of
continuity estimate

|f(x)− f(y)| ≤ C|x− y|α, if x, y ∈ Rn.

The norm ||f ||Ċα is the infimum over all constants C > 0 for which the above
inequality holds and this space is defined modulo polynomials. If 1 ≤ α < 2, then
the first order difference is replaced with the second order difference, and so on.
In the other endpoint, the space Ḃ0,1

1 is a so called minimal Banach space that is
discussed later. Because Theorem 1.7 is a characterization for the boundedness in
the endpoint spaces, it can be used to obtain boundedness results on the whole scale
of Besov spaces via interpolation. In particular, if the condition (1.8) holds true,
then the convolution operators f 7→ ∂αk ? f , |α| = 1, have bounded extensions to
the space Ḃ0,2

2 ≈ L2(Rn). Further results about boundedness of weakly singular
integral operators on homogeneous Triebel–Lizorkin and Besov spaces can be found
in [Tor91, Väh08].

Then we advance beyond convolution operators. We assume that T is a WSIO
as in (1.1) with Ω = Rn. We also assume that the associated kernel K is a standard
kernel of order −m; this condition is quantified later. Then the operator ∂αT as
in (1.2) is a so called SK(δ)-type operator. These operators generalize the classical
singular integral operators and their Lp(Rn)-boundedness is characterized in the
seminal work of David and Journé [DJ84]. Cancellation properties captured by
the quantities T1 and T t1, along with certain weak boundedness property, play
a decisive role therein. Generalizations of the T1 theorem are numerous but the
conditions and conclusions often share the same spirit [Chr90, DJ84, HS94, NTV97,
NTV03, Tor91, Väh08, Wan99]. These include results about certain WSIO’s [Tor91,
Väh08]. There is also a very general Tb theorem about SK(δ)’s due to Nazarov,
Treil, and Volberg [NTV03]. This result is targeted at certain metric measure spaces
and, in particular, it applies in domains.

For the convenience of the reader we formulate the fundamental result of David
and Journé. Fix any m ∈ N and define the normalized bump functions consisting
of those smooth functions Φ : Rn → C, supported in the unit ball, that satisfy
||∂αΦ||∞ ≤ 1 if 0 ≤ |α| ≤ m. For each ball B(x0, R) ⊂ Rn we write

ΦR,x0(x) = Φ

(
x− x0

R

)
.
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A linear and continuous operator T : S(Rn) → S ′(Rn) has the weak boundedness
property, denoted T ∈WBP, if there exists a constant A > 0 such that for all pairs
of normalized bump functions Φ,Ψ, it satisfies

|〈TΦR,x0 ,ΨR,x0〉| ≤ ARn

for all R > 0 and x0 ∈ Rn. Here the constant A may not depend on the functions
ΦR,x0 or ΨR,x0 . The weak boundedness property is a natural condition since if T
has a bounded extension to L2(Rn) then T ∈WBP.

A function K : Rn × Rn \ {(x, x)} → C is a Calderón–Zygmund standard kernel
if there exists δ ∈ (0, 1) such that |K(x, y)| ≤ CK |x− y|−n and

(1.9) |K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| ≤ CK |x− x′|δ|x− y|−n−δ

if 2|x−x′| ≤ |x−y|. A continuous linear operator T : S(Rn)→ S ′(Rn) is associated
with a Calderón–Zygmund standard kernel K if

(1.10) 〈Tf, g〉 =

∫
Rn

∫
Rn
K(x, y)f(y)g(x)dydx

given that f, g ∈ C∞0 (Rn) ⊂ S(Rn) have disjoint supports. We denote this by T ∈
SK(δ). The transpose T t ∈ SK(δ) is defined by 〈T tf, g〉 = 〈f, Tg〉 for f, g ∈ S(Rn),
and it is associated with the transpose kernel (x, y) 7→ K(y, x).

For instance, if α ∈ Nn
0 , the operator f 7→ ∂αf belongs to the class SK(δ) since

the associated kernel is identically zero and other requirements are also satisfied.
The additional condition T ∈ WBP excludes such pathological cases for α 6= 0.
Intuitively, this condition states that

(1.11)
∣∣∣∣∫

B

TχB

∣∣∣∣ ≤ A

for every ball B ⊂ Rn. The integral (1.11) is not defined, a priori, but if T has a
bounded extension to L2(Ω), then the extension satisfies (1.11).

We define T1 as a continuous linear functional on S0∩C∞0 (S0 consists of Schwartz
functions satisfying

∫
ϕ = 0). For this purpose we assume that T ∈ SK(δ). Fix f ∈

S0 so that supp f ⊂ B(0, R), R = Rf > 0. Fix a cut-off function η = ηf ∈ C∞0 (Rn)
so that η(x) = 1 for every x ∈ B(0, 2R). Define 〈T1, f〉 = 〈Tη, f〉 + 〈1 − η, T tf〉.
The quantity 〈Tη, f〉 is defined because η, f ∈ S(Rn). Because

∫
f = 0, we have

T tf(y) =

∫
Rn

(K(x, y)−K(0, y))f(x)dx

for y 6∈ B(0, 2R). This allows us to define

〈1− η, T tf〉 =

∫
Rn

(1− η)(y)

∫
Rn

(K(x, y)−K(0, y))f(x)dxdy.

The Hölder–Zygmund-condition (1.9) shows that this integral converges absolutely.
Applying (1.10) it is simple to verify that the quantity 〈T1, f〉 is independent of the



WEAKLY SINGULAR INTEGRAL OPERATORS ON DOMAINS 9

cut-off function ηf . Because S0 ∩ C∞0 ⊂ H1(Rn) is dense it is reasonable to denote
T1 ∈ BMO(Rn) = (H1(Rn))∗ if

|〈T1, f〉| ≤ C||f ||H1(Rn), if f ∈ S0 ∩ C∞0
holds with C independent of f . Here is the T1 theorem of David and Journé [DJ84].

Theorem 1.12. Assume that T ∈ SK(δ). The following conditions are equivalent
• T1, T t1 ∈ BMO(Rn) and T ∈WBP,
• T ∈ CZO, that is, T has a bounded extension to L2(Rn),
• T has a bounded extension to Lp(Rn) for 1 < p <∞.

To indicate a possible usage of this theorem, let T be as in (1.1) such that ∂αT ∈
SK(δ) if |α| = m. The T1 theorem above applies and it provides a characterization
for the Lp-boundedness of ∂αT . However, the verification of the assumptions is
not necessarily feasible and in some cases it is more effective to work directly with
the operator T . The non-homogeneous Tb theorem of Nazarov, Treil, and Volberg
[NTV03] can be invoked to localize the situation to domains but the aforementioned
difficulties remain.

WSIO’s on domains. In this monograph we suggest a geometric approach to WSIO’s
on domains and the implied connection between integral operators and geometry is
apparently a new one. The main result of ours is somewhat reminiscent to the T1
theorem of David and Journé, but modified to the direction of Theorem 1.7 so that
the conditions involved concern T instead of, say, ∂αT .

In what follows, we confine ourselves to this main result of ours, applicable on so
called admissible domains. To define this class of domains, we use the notions of
uniformity and (co)plumpness.

A path γ : [0, L]→ Ω ⊂ Rn is rectifiable, if

`(γ) = sup

{ k∑
j=1

|γ(tj)− γ(tj−1)| : 0 = t0 < t1 < · · · < tk = L

}
<∞.

A rectifiable path γ : [0, L] → Ω is parametrized by the arc length if `(γ|[0, s]) = s
for every s ∈ [0, L]. In particular, L = `(γ). Next we pose the definition of uniform
domains [Mar80, p. 198] and the definition of (co)plumpness [MV93, p. 251].

Definition 1.13. Assume that n ≥ 2. A domain ∅ 6= Ω ⊂ Rn is uniform if there
exists a uniformity constant a ∈ [1,∞) with the following property. Each pair of
points x, y ∈ Ω can be joined by a path γ : [0, `(γ)] → Ω, parametrized by the arc
length, such that γ(0) = x, γ(`(γ)) = y‚ and

• `(γ) ≤ a|x− y|,
• min(t, `(γ)− t) ≤ a dist(γ(t), ∂Ω) for every t ∈ [0, `(γ)].

Definition 1.14. Assume that n ≥ 2 and c ≥ 1. A set A ⊂ Rn is c-plump if for all
x ∈ Ā and 0 < r < diam(A) there is z ∈ B̄(x, r) with B(z, r/c) ⊂ A. A set A ⊂ Rn

is c-coplump if Rn \ A is c-plump.
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Now we can define Whitney coplump and admissible domains.

Definition 1.15. Assume that n ≥ 2. A domain ∅ 6= Ω ( Rn is Whitney coplump
if diam(Rn \ Ω) = ∞ and Ω is c-coplump for c ≥ 1. The Euclidean space Ω = Rn

is Whitney coplump. A domain is admissible if it is both uniform and Whitney
coplump.

The family consisting of admissible domains is invariant under quasiconformal
mappings f : Rn → Rn as follows: if Ω ⊂ Rn is an admissible domain, then the
image fΩ ⊂ Rn is also admissible. The unit ball B(0, 1) ⊂ Rn is admissible and, as
a consequence, the images fB(0, 1) of the unit ball under quasiconformal mappings
f : Rn → Rn are admissible, see Section 6.

We make use of certain sequence spaces ḟm,2∞ (Ω) on domains; these sequence spaces
are defined later. However, if we formally set m = 0 and Ω = Rn then we recover
the space ḟ 0,2

∞ (Rn) that is related to the space BMO(Rn) [Ste93, pp. 140–141]. This
relation is established using the Carleson’s condition [Mey92, p. 151–156].

Next we define local kernel classes on domains by generalizing condition (1.9).
For this purpose we need certain difference operators y 7→ ∆`

h(f,D, y) : Rn → C
that are parametrized by ` ∈ N, h ∈ Rn, and D ⊂ Rn. These operate on functions
f : D → C according to the rule

∆`
h(f,D, y) =

{∑`
k=0(−1)`+k

(
`
k

)
f(y + kh), if {y, y + h, . . . , y + `h} ⊂ D,

0, otherwise.

Let ∅ 6= Ω ⊂ Rn, n ≥ 2, be a domain. Let m ∈ N, 0 < m < n, and 0 < δ < 1.
Consider a continuous kernel K : Ω× Ω \ {(x, x)} → C satisfying

• kernel size estimate

(1.16) |K(x, y)| ≤ CK |x− y|m−n, x, y ∈ Ω,

• semilocal integral estimate

(1.17) sup
|h|≤diam(Q)

1

|Q|1+(m+δ)/n

∫
Q

|∆m+1
h (K(x, ·), Q, y)|dy ≤ CK |x− xQ|−n−δ,

if x ∈ Ω and Q ⊂⊂ Ω is a cube1, centered at xQ and CK diam(Q) ≤ |x−xQ|.
We assume the same estimate with K(x, ·) replaced by K(·, x).

In the case that (1.16) and (1.17) hold true, we say that K is a standard kernel
of order −m and denote this by K ∈ K−mΩ (δ). It is simple to verify that (1.17) is
implied by the following semilocal condition

• estimate on the order (m+ 1) differences

(1.18) |∆m+1
h (K(x, ·), Q, y)| ≤ CK |h|m+δ|x− y|−n−δ

if x, y ∈ Ω, Q ⊂⊂ Ω is a cube, and 2(m + 1)|h| ≤ |x − y|. We also assume
the same estimate but with K(x, ·) replaced by K(·, x).

1In this work cubes have sides parallel to the coordinate axes.
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The motivation for these kernel classes is that, if we formally set m = 0 and
Ω = Rn, the conditions (1.16) and (1.18) reduce to the defining conditions for the
Calderón–Zygmund standard kernels. Thus the kernel classes K−mRn (δ) extend these
standard kernels in a natural fashion. Assume that K ∈ K−1

Rn(δ) satisfies (1.18) and
K(x, y) = k(x − y) for some k : Rn \ {0} → C. Then the size-condition (1.16)
reduces to

|k(x)| ≤ ck|x|−n+1

and (1.18) reduces to

|k(x+ 2h)− 2k(x+ h) + k(x)| ≤ ck|h|1+δ|x|−n−δ, if 4|h| ≤ |x|.

Applying these reduced conditions and changing the variables ω = x + h, we see
that k satisfies the integral condition (1.8). That is, if we consider operators of
convolution type, the resulting conditions here are stronger than in Theorem 1.7.

There is also technical motivation for the kernel classes above. Condition (1.17) re-
sembles the condition on certain local smoothness space Cm+δ

∞ (Ω), see Section 5.
Indeed, the kernel classes K−mΩ (δ) have a close connection to these and other Hölder-
type spaces, and such relations are exploited in solving a natural kernel extension
problem by reducing it to the Hölder extension on the product domain Ω × Ω.
These extension results, applicable on uniform domains, reflect the local-to-global
type function theoretic phenomenon that is emerging in connection with various
classes of functions defined on uniform domains [Geh87].

A weakly singular integral operator (abbreviated WSIO) of order −m on a domain
Ω ⊂ Rn, n ≥ 2, is defined for f ∈ C0(Ω) pointwise by

(1.19) Tf(x) =

∫
Ω

K(x, y)f(y)dy, x ∈ Ω,

where K ∈ K−mΩ (δ). We denote this by T ∈ SK−mΩ (δ), and we say that the operator
T is associated with the kernel K. The adjoint operator T ∗ ∈ SK−mΩ (δ) is the
uniquely defined operator which is associated with the adjoint kernel

K∗ = (x, y) 7→ K(y, x).

The adjoint operator satisfies 〈T ∗f | g〉 = 〈f | Tg〉 if f, g ∈ C0(Ω).
The integral (1.19) exists since the function y 7→ K(x, y) is locally integrable

for every x ∈ Rn. This is unlike with Calderón–Zygmund operators, where the
singularity causes the need to define T as a continuous operator S → S ′ with
the weak boundedness property. The order of standard kernels and corresponding
WSIO’s is related to the estimate (1.16). Indeed, if a kernel K satisfies K(x, y) =
|x−y|−n+m, then the corresponding integral operator T is −m homogeneous so that

T (f(λ·)) = λ−m(Tf)(λ·), λ > 0.

This justifies the terminology regarding the order of standard kernels and operators.
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T1 theorem on admissible domains. The following theorem is our main result. It is
similar in spirit to Theorem 1.12.

Theorem 1.20. Assume that Ω ⊂ Rn is an admissible domain and T ∈ SK−mΩ (δ),
where m ∈ {1, 2, . . . , n− 1}. Then the following conditions are equivalent

• TχΩ, T
∗χΩ ∈ ḟm,2∞ (Ω),

• ∂αT, ∂αT ∗ have a bounded extension to L2(Ω) if |α| = m,
• ∂αT, ∂αT ∗ have a bounded extension to Lp(Ω) if |α| = m and 1 < p <∞.

The derivatives are understood here in the weak sense.

This theorem is reformulated and proven in Section 6. Here we outline parts of
its proof: Assume that Ω ⊂ Rn is admissible, T ∈ SK−mΩ (δ) is associated with a
kernel K ∈ K−mΩ (δ), and

(1.21) TχΩ, T
∗χΩ ∈ ḟm,2∞ (Ω).

We wish to establish the L2(Ω)-boundedness of ∂αT, ∂αT ∗ for |α| = m. The proof
proceeds with a construction of an extension T̂ ∈ SK−mRn (δ′) so that ∂αT̂ and ∂αT̂ ∗
have a bounded extension to L2(Rn) if |α| = m, and also

(1.22) 〈f | T ∗g〉 = 〈Tf | g〉 = 〈T̂ f | g〉 = 〈f | T̂ ∗g〉,
if f, g ∈ C0(Ω) ⊂ C0(Rn). The existence of such an extension T̂ implies that ∂αT
and ∂αT ∗ both have a bounded extension to L2(Ω); this is seen by applying (1.22)
with g = (−1)|α|∂αh, h ∈ C∞0 (Ω), and using that C∞0 (Ω) ⊂ L2(Ω) is dense.

The extension T̂ is constructed as follows. First consider the corresponding kernel
extension problem. That is, how to construct a kernel K̂ ∈ K−mRn (δ′) so that

(1.23) K = K̂|Ω× Ω \ {(x, x)},
where T is associated with the kernel K ∈ K−mΩ (δ). For this purpose we establish
an atomic decomposition for kernels of the class K−mΩ (δ), where Ω ⊂ Rn is uniform.
Using this decomposition, the kernel extension reduces to Hölder extension on the
product domain Ω×Ω ⊂ R2n. The described kernel extension procedure, treated in
sections 4 and 5, immediately leads to the extension of the corresponding weakly
singular interal operator: the operator T̂ ∈ SK−mRn (δ′), associated with the extended
kernel K̂, satisfies the condition (1.22) because of (1.23).

There is no reason why ∂αT̂ and ∂αT̂ ∗ would now have a bounded extension to
L2(Rn) if |α| = m or, equivalently, T̂1, T̂ ∗1 ∈ ḟm,2∞ (Rn). We solve this problem by
modifying K̂ outside of Ω×Ω\{(x, x)} in order to obtain a bounded extension, still
satisfying (1.22). Within Section 3 we prove a TχΩ theorem which states that this
modification is possible if, and only if, the condition (1.21) holds. This modification
is established with the aid of so called reflected paraproduct operators which are
used, in addition to the standard reduction, in propagating certain error terms near
the boundary to the complement of the domain. This is the place where the Whitney
coplumpness of the domain is utilized.
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2. WSIO’s of convolution type

In this section we provide a proof for Theorem 1.7. That is, we obtain a concrete
integral characterization of the boundedness of f 7→ ∇k?f in terms of the convolving
kernel k and this characterization applies, for instance, in the homogeneous Hölder–
Zygmund spaces and in the so called minimal Banach space. The proof relies on the
Littlewood–Paley theory [FJW91]. We also construct unbounded operators that are
counterexamples to certain natural questions related to the themes of this work.

2.1. Homogeneous Besov spaces. Before the definition of homogeneous Besov
spaces, let us illustrate their connection to our problem and introduce the so called
minimal Banach space Ḃ0,1

1 . Consider a Banach space B that contains S0(Rn),
the Schwartz functions with zeroth vanishing moment, and that is continuously
embedded in S ′0(Rn). Assume also that the B-norm is translation and L1-dilatation
invariant. The Banach space B = Ḃ0,1

1 satisfies the aforementioned properties and it
is actually the minimal such space according to the following theorem, whose proof
can be found in [FJW91, pp. 25–32].

Theorem 2.1. Let (B, || · ||B) be a Banach space that is continuously embedded in
S ′0(Rn) and that contains S0(Rn). Assume that if f ∈ B, h ∈ Rn, and λ > 0, then
τhf = f(· − h), λnf(λ·) ∈ B and

||τhf ||B = ||f ||B, ||λnf(λ·)||B = ||f ||B.

Then Ḃ0,1
1 ⊂ B and this inclusion is bounded.

We take this result for granted and it gives a description of Ḃ0,1
1 (Rn) for the

purposes of the present discussion. The maximal characterization of Hardy spaces
[Ste93, p. 90–91] implies that H1(Rn) satisfies the assumptions of Theorem 2.1. As
a consequence, the following inclusions are bounded

Ḃ0,1
1 (Rn) ⊂ H1(Rn) ⊂ L1(Rn).

Theorem 1.7 characterizes the boundedness of f 7→ ∇k ? f in the minimal Banach
space. This result is somewhat anticipated as the boundedness of singular integrals
depend on delicate cancellations that manifest only if the function that we are
integrating has the zeroth vanishing moment. And this is true, in particular, for
functions in the minimal Banach space Ḃ0,1

1 (Rn) as a subspace of the Hardy space.
However, one should be careful here because the assumptions of Theorem 1.7 do
not suffice for the boundedness of f 7→ ∇k ? f in the Hardy space H1(Rn), let alone
in L1(Rn).

Next we justify the Ḃ0,1
1 (R) → L1(R) boundedness of those operators character-

ized in Theorem 1.7. This justification is not completely rigorous as is later indi-
cated. This one-dimensional heuristics, based on a special atom decomposition, pro-
vides insight how integrals associated with the second order differences emerge. The
following discussion regarding this decomposition is from [FJW91, pp. 25–32] and
details can also be found in [Mey92, pp. 192–197]. For a finite interval I = [a, b] ⊂ R



14 ANTTI V. VÄHÄKANGAS

we denote its left and right halves by Il = [a, (a + b)/2] and Ir = [(a + b)/2, b].
The special atom associated with I is the function hI = |I|−1(χIl − χIr). Clearly
||hI ||L1(R) = 1 and

(2.2)
d

dx
hJ = |a− b|−1(δa + δb − 2δ(a+b)/2)

in the sense of distributions, where δx is the Dirac’s delta located at the point x. Let
B consist of all those distributions f ∈ S ′0(R) having a special atom representation

(2.3) f =
∞∑
j=1

cjhIj

where the convergence is in S ′0(R), the complex coefficients satisfy
∑∞

j=1 |cj| < ∞,
and hIj ’s are special atoms as described above. If we let

||f ||B = inf

{ ∞∑
j=1

|cj| : f =
∞∑
j=1

cjhIj is a special atom representation
}
,

then (B, || · ||B) is a Banach space, known as the special atom space. Related spaces
are studied in [OSS86] but the following result is taken from [FJW91, p. 32].

Theorem 2.4. The special atom space (B, || · ||B) coincides with Ḃ0,1
1 (R) and there

exists a constant c > 0 so that

c−1||f ||B ≤ ||f ||Ḃ0,1
1 (R) ≤ c||f ||B, if f ∈ B0,1

1 (R).

Having this atomic decomposition at our disposal we can now proceed. Assume
that k satisfies the integral condition (1.8).2 Fix also f ∈ Ḃ0,1

1 (R) and apply (2.2)
and (2.3) in order to justify the following manipulations

d

dx
(k ? f)(x) =

∞∑
j=1

cj
d

dx
(k ? hIj)(x)

=
∞∑
j=1

cj|aj − bj|−1
(
k(x− aj) + k(x− bj)− 2k(x− (aj + bj)/2)

)
.

Integrating this identity with respect to the x-variable, yields∣∣∣∣∣∣ d
dx

(k ? f)
∣∣∣∣∣∣
L1(R)

≤ Ck

∞∑
j=1

|cj|

where Ck denotes the left-hand side of (1.8). Then infimizing the right-hand side
over all atomic decompositions (2.3) and applying Theorem 2.4 yields the bound-
edness of f 7→ d

dx
k ? f from Ḃ0,1

1 (R) to L1(R).

2This requires a more specific quantification. A trivial one is that k ∈ S0(R). Perhaps a more
realistic one is to assume that k can be approximated by a sequence (kj)j∈N ⊂ S0(R) satisfying
the integral estimates (1.8) uniformly.
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A rigorous proof of Theorem 1.7 is based on the Littlewood–Paley theory. This
is where we are heading from now on.

Definition of Besov spaces. The topic here is the scale of homogeneous Besov spaces
and our treatment follows [FJ90, FJW91], see also [Tri83, Chapter 5]. These spaces
allow us to measure the size and smoothness of a given distribution in high precision.

First we introduce some notation. The Fourier transform of f ∈ L1(Rn) is defined
pointwise by f̂(ξ) = Ff(ξ) =

∫
Rn f(x)e−2πix·ξdx if ξ ∈ Rn. The Fourier transform

extends to S ′ by the duality 〈FΛ, ϕ〉 = 〈Λ,Fϕ〉, where Λ ∈ S ′ is a tempered
distribution and ϕ ∈ S ⊂ L1(Rn) is a Schwartz function [Rud91, p. 192]. A
Schwartz function ϕ : Rn → C ∈ S is a Littlewood–Paley function if it satisfies:

• ϕ̂ is a real-valued function,
• supp ϕ̂ ⊂ {ξ ∈ Rn : 1/2 < |ξ| < 2}. In particular ϕ ∈ S∞, that is, ϕ is a
Schwartz function whose all moments vanish,
• |ϕ̂(ξ)| ≥ c > 0 if 3/5 ≤ |ξ| ≤ 5/3.

The function ψ, ψ̂ = ϕ̂/η, η =
∑

ν∈Z(ϕ̂(2−ν ·))2, is a Littlewood–Paley dual function
related to ϕ. It is a Littlewood–Paley function itself, satisfying

(2.5)
∑
ν∈Z

ϕ̂(2−νξ)ψ̂(2−νξ) = 1, if ξ 6= 0.

The topological dual of the closed subspace S∞ ⊂ S is isomorphic to S ′/P , the
space of tempered distributions modulo polynomials. The convolution of Λ ∈ S ′/P
and a test function ϕ ∈ S, denoted by Λ ? ϕ = ϕ ? Λ, is the element of S ′/P
defined by 〈Λ ? ϕ, ψ〉 = 〈Λ, ϕ̃ ? ψ〉 for ψ ∈ S∞. Here ϕ̃ = ϕ(−·) is the reflection
of ϕ. Furthermore, Λ ? ϕ is regular and it coincides with the smooth function
x 7→ Λ ? ϕ(x) = 〈Λ, ϕ(x − ·)〉. The identity (2.5) yields the following Calderón
reproducing formula for Λ ∈ S ′/P ,

(2.6) Λ =
∑
ν∈Z

ϕν ? ψν ? Λ

with convergence in the weak*-topology of S ′/P [FJW91, pp. 120–125]. Choose a
Littlewood–Paley function ρ, depending on a priori function ϕ, so that ρ̂(ξ) = 1 if
ξ ∈ supp ϕ̂. Then

(2.7) ϕν ? ρν = (ϕ ? ρ)ν = ϕν = 2νnϕ(2ν ·).
Having a fixed but arbitrary Littlewood–Paley function ϕ at our disposal, we define
the homogeneous Besov spaces as follows.

Definition 2.8. Let 1 ≤ p, q ≤ ∞ and α ∈ R. The homogeneous Besov space Ḃα,q
p

is the Banach space of all f ∈ S ′/P satisfying

||f ||Ḃα,qp
= ||f ||Ḃα,qp (ϕ) =

(∑
ν∈Z

(
2να||ϕν ? f ||Lp

)q)1/q

<∞.

If q =∞, we use sup-norm instead of `q-norm.
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The index α is related to regularity or smoothness and the indices p, q are re-
lated to size. Higher value of the regularity index α implies higher local regularity
properties. The size index p is more significant than the so called fine-index q.

The spaces Ḃα,q
p are included in S ′/P by definition. However, the convergence in

the Calderón reproducing formula (2.6) can be further analyzed to show that the
formula

f 7→
∑
ν∈Z

ϕν ? ψν ? f

defines a linear extension operator Ḃα,q
p → S ′k if k = max{[α − n/p],−1} [Kyr03].

Here S ′k, k ∈ N0, denotes the topological dual of Sk = {ϕ ∈ S :
∫
xσϕ = 0 if |σ| ≤

k}, which is a closed subspace of S. Denote also S ′−1 = S ′. Furthermore, [α− n/p]
denotes the greatest integer less than or equal to α− n/p.

A non-linear extension operator S ′/P → S ′ exists and it allows us to compute the
Fourier transform of Λ ∈ S ′/P . This Fourier transform is uniquely defined outside
the origin. There are also implications to regularity. Indeed, assume that α > 0,
1 ≤ p, q ≤ ∞, and f ∈ Ḃα,q

p . The Hahn–Banach theorem [Rud91, p. 61] allows us
to extend f to a Schwartz distribution, that is, there is Λ ∈ S ′ such that Λ|S∞ = f .
Let ϕ, ψ be a dual pair of Littlewood–Paley functions that are even (this is achieved
by choosing ϕ so that its Fourier transform is even). Define a Schwartz function Φ,

Φ̂(ξ) =

{
1, ξ = 0∑0

ν=−∞ ϕ̂(2−νξ)ψ̂(2−νξ), ξ 6= 0.

Then Λ = Φ ? Λ +
∑∞

ν=1 ϕν ? ψν ? Λ in the weak* topology of S ′. Here Φ ? Λ
is a smooth polynomially bounded function, according to Paley–Wiener theorem
[Rud91, pp. 199–202], and the series

∑∞
ν=1 ϕν ? ψν ? f converges absolutely in

Lp(Rn) since f ∈ Ḃα,∞
p and α > 0. Thus Λ is regular so that

(2.9) Λ ∈ C∞P (Rn) + Lp(Rn),

where C∞P (Rn) is the space of smooth polynomially bounded functions.
Definition 2.8 is ϕ-independent so that the resulting norms associated with two

different Littlewood–Paley functions are equivalent [FJ90, Remark 2.6.]. This pro-
vides the means to interprete Littlewood–Paley functions as eigenfunctions for el-
liptic partial differential operators. To illustrate this further consider powers of the
Laplacian

(−∆)mϕν = 22mν((−∆)mϕ)ν , m ∈ N.
Here (−∆)mϕ = F−1[(4π2)m|ξ|2mϕ̂] remains a Littlewood–Paley function. In this
sense the functions ϕν are eigenfunctions with corresponding eigenvalues 22mν . One
can consider more general homogeneous elliptic pseudodifferential operators like
fractional powers of the Laplacian provided by Riesz potentials,

(2.10) (
√
−∆)αϕ = I−αϕ = F−1[(2π|ξ|)αϕ̂], α ∈ R.

Hence the Littlewood–Paley functions are eigenfunctions whose eigenvalues are 2αν .
It is not difficult to show that Riesz potentials Iα map S∞ to itself continuously and
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they map S ′/P to itself when defined via the duality 〈IαΛ, ϕ〉 = 〈Λ, Iαϕ〉. Using
homogeneities of the Fourier transform it is easy to verify that, if 0 < β < n, then

(2.11) Iβϕ(x) = Cn,β

∫
Rn

ϕ(y)

|x− y|n−β
dy, if x ∈ Rn,

given that ϕ has some regularity, say, if ϕ ∈ C0(Rn). Hereby we are lead to weakly
singular integral operators as Im ∈ SK−mRn (δ) if m ∈ {1, 2, . . . , n− 1} and 0 < δ < 1.

The following result establishes the fact that different means to quantify the
boundedness of ∇k ? f on homogeneous Besov spaces are equivalent. Notice that
the distribution derivative ∂α, α ∈ Nn

0 , induces a linear operator, mapping S ′/P to
itself.

Proposition 2.12. Let α, s ∈ R and 1 ≤ p, q ≤ ∞. Then Is is an isomorphism of
Ḃα,q
p onto Ḃs+α,q

p and the Riesz transforms Rj = −I1∂j, j = 1, 2, . . . , n, are bounded
on Ḃα,q

p . In particular, if k ∈ S ′/P, the following are equivalent

• f 7→ k ? f is bounded Ḃα,q
p → Ḃ1+α,q

p ,
• f 7→ I−1k ? f =

∑n
j=1 Rj(∂jk ? f) is bounded on Ḃα,q

p ,
• f 7→ ∂jk ? f is bounded on Ḃα,q

p for every j = 1, 2, . . . , n.
That is, the initial domain of definition of these operators is S∞ and, in the positive
case, they admit a bounded extension to the corresponding Besov space. If 1 ≤ p, q <
∞, then this bounded extension is unique.

The verification of this result is straightforward by using the ϕ-independence and
the reproducing formula (2.7). The specific details are omitted.

Various homogeneous Besov spaces have a characterization in terms of relevant
and concrete function spaces [FJW91, Gra04]. The minimal Banach space Ḃ0,1

1 was
mentioned. The homogeneous Sobolev space Ḃα,2

2 ≈ Ẇα,2(Rn) consists of f ∈ S ′/P
with I−αf ∈ L2(Rn). This space is normed with

||f ||Ẇα,2 = ||I−αf ||L2 .

Furthermore, Ḃα,∞
∞ ≈ Ċα(Rn) is the homogeneous Hölder–Zygmund space. If α =

m + δ, where m ∈ N0 and 0 < δ < 1, this space consists of continuous functions
f : Rn → C such that

|∆m+1
h (f, x)| ≤ C|h|m+δ, x, h ∈ Rn,

where ∆m+1
h (f, ·) = (τ−h − id)m+1f is the order (m + 1) difference of f . These

differences provide a similar characterization of all those homogeneous Besov spaces
for which α > 0. This is what we study next and our focus is on the space Ḃ1,∞

1 .

2.2. Boundedness of convolution operators. The purpose of this section is to
provide a proof of Theorem 1.7. We begin with a characterization of Ḃ1,∞

1 in terms of
the integral condition (1.8). Then we characterize the boundedness of f 7→ I−1k ?f
in terms of test functions. Removing this test function dependence in the endpoint
exponents yields Theorem 1.7 as the resulting condition is precisely that k ∈ Ḃ1,∞

1 .
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Characterization of Ḃ1,∞
1 . Recall that ∆m

h (f, ·) = (τ−h − id)mf is the order m ∈ N
difference with offset h ∈ Rn of f : Rn → C. The difference operator extends to
S ′/P via duality

〈∆m
h (Λ, ·), ϕ〉 = 〈Λ,∆m

−h(ϕ, ·)〉, Λ ∈ S ′/P .

These difference operators yield a characterization of homogeneous Besov spaces
with positive regularity. To be more precise, we fix 1 ≤ p, q ≤ ∞ and α = m+δ > 0,
where m ∈ N0 and 0 ≤ δ < 1. Then m + 1 > m + δ and the following norm-
equivalence holds true [Tri83, p. 242]

(2.13) ||k||Ḃα,qp
≈


(∫

Rn |h|
−αq||∆m+1

h (k, ·)||qLp dh
|h|n

)1/q

, q <∞,
suph6=0 |h|−α||∆m+1

h (k, ·)||Lp , q =∞.

The restriction α > 0 in (2.13) is crucial. For instance, the Dirac’s delta satisfies
δ ∈ Ḃ0,∞

1 but ∆m+1
h (δ, ·) remains only a measure if m ∈ N0 and h 6= 0. However,

Proposition 2.12 implies that I1(δ) = Cn|x|−n+1 ∈ Ḃ1,∞
1 .

The right-hand side of (2.13) requires an interpretation. The series in the Calderón
reproducing formula (2.6) converges a priori in the weak* topology of S ′/P . But
there is more to this if we apply the formula to k ∈ Ḃα,q

p with indices as specified
above. Fix a Littlewood–Paley function ϕ and its dual function ψ. Then there
exists polynomials {PN : N ∈ N} ⊂ Pκ, where κ = max{[α − n/p],−1} ≤ m and
P−1 = {0}, and a tempered distribution K ∈ S ′ such that

(2.14) K = lim
N→∞

( ∞∑
ν=−N

ϕν ? ψν ? k + PN

)
,

with convergence in the weak* topology of S ′ [Kyr03]. The Calderón reproducing
formula states that K|S∞ = k and (2.9) shows that K ∈ C∞P (Rn) + Lp(Rn). In
particular, if h ∈ Rn, we define

||∆m+1
h (k, ·)||Lp = ||∆m+1

h (K, ·)||Lp

and these quantities are well-defined. We also have the identification

(2.15)
∫

Rn
∆m+1
h (K, x)ϕ(x)dx =

∞∑
ν=−∞

〈∆m+1
h (ϕν ? ψν ? k, ·), ϕ〉, ϕ ∈ S

by using (2.14) with the identity ∆m+1
h (P, ·) ≡ 0 if P ∈ Pm (this follows from the

representation (A.1) for the order m+ 1 difference). Using the identification (2.15)
with an approximation of the identity, we see that ∆m+1

h (K, ·) is independent of the
renormalizing polynomials.

We have settled the interpretation of (2.13) and then we continue the proof of
this norm-equivalence under the assumptions p = 1, q = ∞, and α = 1. The case
p =∞ is treated in the same manner but the general case requires further estimates
that we omit.
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Lemma 2.16. Let k ∈ Ḃ1,∞
1 and ϕ, ψ be a dual pair of Littlewood–Paley functions.

Then k satisfies the estimate

(2.17) sup
y 6=0

{
|y|−1

∑
ν∈Z

||∆2
y(ϕν ? ψν ? k, ·)||L1

}
<∞.

Proof. Fix y ∈ Rn \ {0} and choose ν0 ∈ Z so that 2ν0 ≤ |y|−1 < 2ν0+1. Split
the summation in (2.17) as

∑
ν∈Z =

∑
ν≥ν0

+
∑

ν<ν0
= Σ1 + Σ2. Applying the

triangle-inequality and Young’s inequality, we obtain

(2.18) |Σ1| ≤ 4
∑
ν≥ν0

||ψν ||L1||ϕν ? k||L1 ≤ Cψ
∑
ν≥ν0

2−ν2ν ||ϕν ? k||L1 ≤ Cψ||k||Ḃ1,∞
1
|y|.

Next we estimate |Σ2|. Applying the translation invariance and linearity of the
convolution, we obtain the identity

∆2
y(ϕν ? ψν ? k, x) = (∆2

y(ψν , ·)) ? ϕν ? k(x), x ∈ Rn.

Using this together with Young’s inequality, we get the estimate

|Σ2| ≤
∑
ν<ν0

||∆2
y(ψν , ·)||L1||ϕν ? k||L1 = ||k||Ḃ1,∞

1

∑
ν<ν0

2−ν ||∆2
(2νy)(ψ, ·)||L1 .(2.19)

To estimate further, we use the following integral representation

∆2
h(ψ, x) = (τ−h − id)2ψ(x)

=
n∑

j1=1

n∑
j2=1

hj1hj2

∫ 1

0

∫ 1

0

(∂j1∂j2ψ)(x+ (θ1 + θ2)h)dθ1dθ2,

which follows from applying the identity ψ(x + h) − ψ(x) =
∫ 1

0
h · ∇ψ(x + θh)dθ

twice for h ∈ Rn \{0}. Taking the absolute values in this representation, then using
triangle-inequality and Fubini’s theorem yields

||∆2
h(ψ, ·)||L1 ≤ |h|2

∑
|α|=2

cα||∂αψ||L1 .

Applying this estimate with h = 2νy allows us to continue the estimate (2.19) as
follows

(2.20) |Σ2| ≤ Cψ||k||Ḃ1,∞
1

∑
ν<ν0

2−ν(2ν |y|)2 ≤ Cψ||k||Ḃ1,∞
1
|y|.

The estimate (2.17) follows by combining (2.18) and (2.20). �

We are ready for the characterization of Ḃ1,∞
1 . Recall that, by definition, k ∈ Ḃ1,∞

1

means that k ∈ S ′/P satisfies the uniform estimate supν∈Z 2ν ||ϕν ? k||L1 <∞ for a
Littlewood–Paley function ϕ ∈ S∞.
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Theorem 2.21. Let k ∈ S ′/P. Then k extends to to a regular tempered distribution
K ∈ S ′ which satisfies the integral estimate

(2.22) sup
y 6=0

{
|y|−1

∫
Rn
|K(x− y) +K(x+ y)− 2K(x)|dx

}
= B <∞

if, and only if, k ∈ Ḃ1,∞
1 .

Proof. Fix a dual pair of Littlewood–Paley functions ϕ, ψ, satisfying ϕ(x) = ϕ(−x)
if x ∈ Rn. This is achieved by choosing ϕ so that its Fourier transform is even.
Assume first that k is a restriction of a regular tempered distribution K, satisfying
the integral condition (2.22). Fix ν ∈ Z. Because ϕ ∈ S∞ is even and

∫
ϕ = 0, we

obtain for almost every x ∈ Rn,

|ϕν ? k(x)| = |ϕν ? K(x)| ≤ 2−1

∫
Rn
|ϕν(y)||K(x− y) +K(x+ y)− 2K(x)|dy.

Integrating this estimate with Fubini’s theorem and (2.22), yields

||ϕν ? k||L1 ≤ B

∫
Rn
|ϕν(y)||y|dy = B2−ν

∫
Rn

2νn|ϕ(2νy)||2νy|dy = CϕB2−ν .

This implies that k ∈ Ḃ1,∞
1 as desired. Then assume that k ∈ Ḃ1,∞

1 . At this stage
we could apply (2.14) and (2.15) with Lemma 2.16 to reach K ∈ S ′ and identify
∆2
y(K, ·), y 6= 0, with the integrable function

∑
ν∈Z ∆2

y(ϕν ? ψν ? k, ·). We include
further details in the easy case n > 1. Fix ν ∈ Z. Then

||F(ϕν ? ψν ? k)||L∞ ≤ ||ϕν ? ψν ? k||L1 ≤ Cψ||ϕν ? k||L1 ≤ Cψ,k2
−ν

and properties of Littlewood-Paley functions imply that suppF(ϕν ? ψν ? k) is con-
tained in the annulus B(0, 2ν+1) \ B(0, 2ν−1). Combining the observations above
and using the assumption n > 1, we see that the formula

FK =
∞∑

ν=−∞

F(ϕν ? ψν ? k) ∈ L1
loc(Rn) ∩ L∞loc(Rn \ {0}) ⊂ S ′

defines a Fourier transform of K ∈ S ′ with K =
∑∞

ν=−∞ ϕν ? ψν ? k in the
weak* topology of S ′. The Calderón reproducing formula (2.6) implies that K
is an extension of k, that is K|S∞ = k. Estimating as in (2.9), we see that
K ∈ C∞P (Rn) + L1(Rn). Then, assuming that y ∈ Rn \ {0}, we apply Lemma
2.16 to see that ∆2

y(K, ·) ∈ L1(Rn) satisfies the estimate

||∆2
y(K, ·)||L1 ≤

∞∑
ν=−∞

||∆2
y(ϕν ? ψν ? k, ·)||L1 ≤ C|y|.

By the change of variables w = x + y we replace the integrand ∆2
y(K, ·) on the

left-hand side by the absolute value of the symmetric second order difference, which
yields the desired estimate (2.22). �
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Characterization of the boundedness. Next we characterize the boundedness of the
operator f 7→ ∇k ? f on homogenenous Besov spaces in terms of the convolving
kernel. In certain endpoints the condition is that k ∈ Ḃ1,∞

1 . Moreover, this function
space admits a concrete characterization given in Theorem 2.21.

Our proof is an adaptation of Peetre’s characterization of the boundedness of
f 7→ k ? f [Pee76, pp. 132–136] where the corresponding endpoint condition reads
as k ∈ Ḃ0,∞

1 . This function space does not have a concrete integral characterization
as was pointed out in connection with (2.13).

Theorem 2.23. Let α ∈ R, 1 ≤ p, q ≤ ∞, and k ∈ S ′/P. Then the convolution
operator f 7→ k ? f has a bounded extension Ḃα,q

p → Ḃ1+α,q
p if, and only if,

(2.24) sup
ν∈Z

2ν ||ϕν ? k ? f ||Lp ≤ Ck||f ||Lp , f ∈ S∞,

where ϕ is any Littlewood–Paley function.

Proof. We prove the case α = 0. The general case then follows from Proposition
2.12 and the identity Iα(k ? I−αf) = k ? f for f ∈ S∞. Fix Littlewood–Paley
functions ϕ, ρ as in (2.7), satisfying ϕ ? ρ = ϕ.

First we prove necessity. Fix f ∈ S∞ and ν ∈ Z. Using the assumption about
boundedness, we get

2ν ||ϕν ? k ? f ||Lp = 2ν ||ϕν ? k ? ρν ? f ||Lp ≤ ||k ? ρν ? f ||Ḃ1,q
p (ϕ)

≤ Ck||ρν ? f ||Ḃ0,q
p (ϕ) ≤ Ck||ρν ? f ||Ḃ0,1

p (ϕ).
(2.25)

In order to estimate further, notice that the supports of ϕ̂ and ρ̂ are contained
in {ξ ∈ Rn : 1/2 < |ξ| < 2}. Thus, using the Fourier transform, we see that
ϕµ ? ρν = 0 if |µ− ν| > 1. Applying this and the Young’s inequality, we obtain

(2.26) ||ρν ? f ||Ḃ0,1
p (ϕ) =

∑
µ:|µ−ν|≤1

||ϕµ ? ρν ? f ||Lp ≤ Cϕ,ρ||f ||Lp .

Combine estimates (2.25) and (2.26) in order to obtain the estimate (2.24).
Then we prove sufficiency. Let f ∈ S∞ and ν ∈ Z. Then using (2.24), we get

2ν ||ϕν ? k ? f ||Lp = 2ν ||ϕν ? k ? ρν ? f ||Lp ≤ Ck||ρν ? f ||Lp .
Taking the `q(Z)-norms we get the estimate ||k ? f ||Ḃ1,q

p (ϕ) ≤ Ck||f ||Ḃ0,q
p (ρ). The

boundedness result follows from this and the ϕ-independence. �

Theorem 2.23 has the following convenient interpretation in the case p ∈ {1,∞},
connecting the boundedness properties of f 7→ k ? f to the condition k ∈ Ḃ1,∞

1 .

Theorem 2.27. Let k ∈ S ′/P, α ∈ R, p ∈ {1,∞}, and 1 ≤ q ≤ ∞. Then the
convolution operator f 7→ k ? f has a bounded extension Ḃα,q

p → Ḃ1+α,q
p if, and only

if, k ∈ Ḃ1,∞
1 , that is, k ∈ S ′/P satisfies

sup
ν∈Z

2ν ||ϕν ? k||L1 <∞

for any Littlewood–Paley function ϕ.
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Proof. Fix Littlewood–Paley functions ϕ, ρ as in (2.7), satisfying ϕ ? ρ = ϕ. We
begin with sufficiency for p ∈ {1,∞}. For f ∈ S∞ and ν ∈ Z, apply Young’s
inequality to obtain the estimate

2ν ||ϕν ? k ? f ||Lp ≤ 2ν ||ϕν ? k||L1||f ||Lp ≤ C||f ||Lp .

Thus k satisfies (2.24) and Theorem 2.23 implies the boundedness result. Then we
prove necessity for p = 1. Applying Theorem 2.23 we obtain the following estimate

2ν ||ϕν ? k||L1 = 2ν ||ϕν ? k ? ρν ||L1 ≤ Ck||ρν ||L1 = Ck||ρ||L1 , ν ∈ Z.

The right-hand side is independent of ν and therefore we have k ∈ Ḃ1,∞
1 . Finally

we consider necessity for p = ∞. For a fixed ν ∈ Z it suffices to show the same
estimate as before,

(2.28) ||2νϕν ? k||L1 ≤ C||ρν ||L1 = C||ρ||L1

with C independent of ν. Fix R > 0 and choose a sequence of smooth functions
(gj)j∈N such that |gj| ≤ χB(0,R+1) and limj→∞ gj = exp(−i arg(2νϕν ? k))χB(0,R),
arg(0) = 0, pointwise almost everywhere. Denote also hj(x) = gj(−x) for every
j ∈ N. Now using the identity ϕ = ϕ ? ρ, the Dominated convergence theorem, and
Theorem 2.23 we have the estimate∫

B(0,R)

|2νϕν ? k(x)|dx = lim
j→∞

∣∣∣∣ ∫
Rn

(2νϕν ? k)(x)gj(x)dx

∣∣∣∣
≤ lim sup

j→∞
2ν ||ϕν ? k ? ρν ? hj||L∞ ≤ lim sup

j→∞
Ck||ρν ||L1||hj||L∞ ≤ Ck||ρ||L1 .

We inserted ρν to ensure that Theorem 2.23 applies. Indeed, it may be that hj 6∈ S∞
but in any case we have ρν ? hj ∈ S∞. The estimate (2.28) follows from Fatou’s
lemma and the estimate above as the right-hand side there is independent of R. �

The following concrete characterization for the boundedness of f 7→ k ? f follows
by combining Theorem 2.21 and Theorem 2.27.

Theorem 2.29. Let α ∈ R, p ∈ {1,∞}, and 1 ≤ q ≤ ∞. Assume that k ∈ S ′/P.
Then the operator f 7→ k?f : S∞ → S ′/P has a bounded extension Ḃα,q

p → Ḃ1+α,q
p if,

and only if, k has an extension to a regular tempered distribution K ∈ S ′ satisfying
the integral estimate

(2.30) sup
y 6=0

{
|y|−1

∫
Rn
|K(x− y) +K(x+ y)− 2K(x)|dx

}
<∞.

In Theorem 1.7 we proposed a somewhat different formulation; its proof follows
from Theorem 2.29 and Proposition 2.12.

Remark 2.31. (i) Let α, s ∈ R, 1 ≤ q ≤ ∞, and p ∈ {1,∞}. Using the Riesz
potentials and Theorem 2.27 it is simple to verify that the convolution op-
erator f 7→ k ? f has a bounded extension Ḃα,q

p → Ḃs+α,q
p if, and only if,
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k ∈ Ḃs,∞
1 . Assuming that m + 1 > s > 0 then, according to (2.13), the

condition k ∈ Ḃs,∞
1 is equivalent to the integral condition

sup
y 6=0

{
|y|−s

∫
Rn
|∆m+1

y (k, x)|dx
}
<∞;

(ii) Assuming that k ∈ Ḃs,∞
1 , the operator f 7→ k ? f has a bounded extension

Ḃα,q
p → Ḃs+α,q

p if α ∈ R and 1 ≤ p, q ≤ ∞. This follows from the Young’s
inequality and ϕ-independence of the homogeneous Besov norm;

(iii) An inhomogenous counterpart of Theorem 2.27 exists. That is, the corre-
sponding result holds within the scale of inhomogenous Besov spaces Bα,q

p .
For the definition of inhomogenous spaces, see [Tri92, p. 28]. For the proof
of the result, see [Tai65, p. 827].

2.3. Unbounded operators. Theorem 1.7 characterizes the boundedness of the
operator f 7→ ∇k ? f on spaces Ḃ0,1

1 and Ċα. The characterizing integral condition
(1.8), equivalent to that k ∈ Ḃ1,∞

1 , is also sufficient for the L2(Rn) boundedness
of the operator in question; this follows from (ii) in Remark 2.31. Here we give a
counterexample which implies the following negative result:

• The condition k ∈ Ḃ1,∞
1 is insufficient for the boundedness of the operator

f 7→ ∇k ? f in the Hardy space H1(Rn) or even in Lp(Rn), p ∈ (1,∞) \ {2}.
We don’t know if the Lp-boundedness holds with a kernel k ∈ Ḃ1,∞

1 satisfying the
pointwise size condition |k(x)| ≤ ck|x|−n+1. At least this size condition itself is
insufficient for the Lp-boundedness, as our second counterexample implies:

• The L2-boundedness of the operator f 7→ ∇k ? f can fail under the size
condition |k(x)| ≤ ck|x|−n+1. This is so even when combined with a natural
pointwise Lipschitz regularity condition.

To complement this negative result, let us also state a closely connected positive
result here. Assume that a locally integrable kernel satisfies the size condition
|k(x)| ≤ ck|x|−n+1 and the (1 + δ)-Hölder condition for 0 < δ < 1, that is,

|k(x+ 2h)− 2k(x+ h) + k(x)| ≤ ck|h|1+δ|x|−n−δ, 4|h| ≤ |x|.

Then we gain boundedness of the operator f 7→ ∇k ? f in the spaces Lp(Rn) for
p ∈ (1,∞). Indeed, Theorem 3.40 shows that the operator T = f 7→ k?f ∈ SK−1

Rn(δ)
satisfies the assumptions of Theorem 1.20. Further analysis yields boundedness also
in the Hardy space [Väh08]. It is also interesting to notice that k here satisfies (1.8).

Failure of the Lp-boundedness, p 6= 2. We show that the condition k ∈ Ḃ1,∞
1 itself

does not suffice for the boundedness of f 7→ ∇k ? f on Lp-spaces, p 6= 2. The
construction here is due to Triebel [Tri79] and it exploits certain intricate cancella-
tions captured by the Littlewood–Paley inequality. This inequality implies that the
relevant cancellation effects manifest already within dyadic frequency ranges and
two separate Littlewood–Paley projections ϕν ? f and ϕµ ? f , µ 6= ν, do not interact
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by producing significant cancellations. That is, if 1 < p <∞, we have

(2.32) C−1||f ||Lp ≤
∣∣∣∣∣∣(∑

ν∈Z

|ϕν ? f |2
)1/2∣∣∣∣∣∣

Lp
≤ C||f ||Lp ,

where ϕ is any Littlewood–Paley function and C is independent of f ∈ Lp(Rn)
[FJW91, p. 42]. Then consider the following functions GN , FN : Rn → C defined in
the Fourier variable

(A) F(GN)(ξ) =
∑N

m=1 π(ξ − 2me1) is the sum of translations of a fixed bump
function π ∈ C∞0 (Rn) at dyadic points 2me1 for m = 1, 2, . . . , N ,

(B) F(FN)(ξ) =
∑N

m=1 e
−2πi2mξ1π(ξ − 2me1) is as in (A) but with the m’th

translation modulated by ξ 7→ e−2πi2mξ1 .
The inequality (2.32) implies that the Lp-norm of the function GN is roughly N1/2.
To reach this estimate, it suffices to notice that

|ϕν ? GN | = |ϕµ ? GN |, if 1 ≤ µ, ν ≤ N.

The functions FN are uniformly bounded with respect to N ; indeed, due to modu-
lation in the Fourier variable, the m’th bump function is concentrated near to the
point 2me1 in the spatial variable. Interpolation between the endpoint spaces L2

and L∞ implies that the Lp-norm of the function FN is roughly N1/p if 2 < p <∞.
The punchline is as follows: an operator, transforming FN to GN independent of
N , is unbounded in Lp for 2 < p < ∞ because limN→∞N

1/2−1/p = ∞. We shall
realize the program above in what follows.

First we construct a kernel k ∈ Ḃ1,∞
1 . For this purpose, fix a Littlewood–Paley

function ϕ satisfying

(2.33) F(ϕ)|B(e1, ε) ≡ 1, F(ϕ−1)|B(e1, ε) ≡ 0 ≡ F(ϕ1)|B(e1, ε),

for some ε ∈ (0, 1). Let π 6= 0 be a real-valued Schwartz function satisfying suppπ ⊂
B(0, ε) and define f̂m(ξ) = e2πi2mξ1π(ξ − 2me1) for all m ∈ N. Using (2.33), we see
that F(ϕν)f̂m = δνmf̂m if m ∈ N and ν ∈ Z. Define g(ξ) =

∑∞
m=1 2−mf̂m(ξ). We

claim that k = F−1g has the desired properties. By the properties of ϕ, we have
ϕν ? k = 0 if ν < 1. For ν ≥ 1, we have

2ν ||ϕν ? k||L1 = ||fν ||L1 = ||τ−2νe1(e2πi2νx1F−1π)||L1 = ||F−1π||L1 <∞.

Thus k ∈ Ḃ1,∞
1 , as desired. In particular, according to Theorem 2.21, the kernel k

satisfies the integral condition (1.8). Applying the Fourier transform we see that,
in the sense of distributions,

k(x) =
∞∑
m=1

2−me2πi2me1·(x+2me1)(F−1π)(x+ 2me1), x ∈ Rn,

so it is immediate, for instance, that the integral
∫

Rn |k(x)|dx converges and therefore
the kernel has decay at the infinity. The following result shows that size+cancellation
is a delicate combination when understood as conditions that might or might not
imply the boundedness of f 7→ ∇k ? f on Lp.
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Proposition 2.34. Let k ∈ Ḃ1,∞
∞ be as constructed above. Then the convolution

operator f 7→ I−1k ? f =
∑n

j=1Rj(∂jk ? f) has no bounded extension to Lp(Rn) if
1 < p < ∞ and p 6= 2. In particular, the operator f 7→ ∇k ? f has no bounded
extension to these function spaces.

Proof. Let FN be given by its Fourier transform F(FN) =
∑N

m=1 f̂m. Then FN ∈ S∞
for all N ∈ N and using the basic properties of Fourier transform, we have the
explicit formula

FN(x) =
N∑
m=1

e2πi2me1·(x−2me1)(F−1π)(x− 2me1).

From this we can conclude that

||FN ||∞ ≤ sup
x∈Rn

{ ∞∑
m=1

|(F−1π)(x− 2me1)|
}
<∞

for all N ∈ N. Also ||FN ||L2 = ||F(FN)||L2 = CN1/2, where C is independent of N .
Thus, if 2 < p <∞, we have the inequality

(2.35) ||FN ||Lp ≤ ||FN ||1−2/p
∞ ||fN ||2/pL2 ≤ CN1/p,

where C is independent of N . On the other hand, applying the Littlewood–Paley
inequality (2.32) with ϕ-independence, yields the estimate

||I−1k ? FN ||Lp ≥ Cϕ

∣∣∣∣∣∣∣∣( N∑
ν=1

(2ν |ϕν ? k ? FN |)2

)1/2∣∣∣∣∣∣∣∣
Lp

= Cϕ

∣∣∣∣∣∣∣∣( N∑
ν=1

|e2πi2νx1(F−1π ? F−1π)|2
)1/2∣∣∣∣∣∣∣∣

Lp

= CϕN
1/2||F−1π ? F−1π||Lp .

(2.36)

Combining the estimates (2.35) and (2.36) we get the following estimate, with con-
stant C independent of N ,

N1/2 ≤ C||I−1k ? FN ||Lp ≤ C||FN ||Lp ≤ CN1/p.

Hence the operator f 7→ I−1k ? f is unbounded on Lp(Rn) if p > 2. This conclusion
for exponents 1 < p < 2 follows from duality. Unboundedness of f 7→ ∇k ?f follows
now from the boundedness of Riesz transforms Rj, j = 1, 2, . . . , n, on Lp-spaces for
1 < p <∞. �

Failure of the L2-boundedness. Here we show that natural size condition on k, com-
bined with Lipschitz regularity, does not suffice for the boundedness of f 7→ I−1k?f
on Lp(Rn) if 1 < p < ∞. Using the boundedness of the Riesz transforms on these
spaces, combined with the identity

I−1k ? f =
n∑
j=1

Rj(∂jk ? f), f ∈ S∞,
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we see that the boundedness of f 7→ ∇k ? f on Lp(Rn) does not either follow from
these size and smoothness conditions on k.

The following construction is joint work with M. A. Vähäkangas [Väh05]. Define
k : Rn \{0} → R by k(x) = sin(x1)|x|−n. We claim that f 7→ I−1k ?f is unbounded
on L2(Rn) and the kernel k satisfies

• the size condition

(2.37) |k(x)| ≤ ck|x|1−n for all x ∈ Rn,

• the Lipschitz condition

(2.38) |k(x+ h)− k(x)| ≤ ck|h||x|−n for |x| ≥ 2|h|.
Clearly k satisfies (2.37) and it is continuously differentiable outside the origin with

∂1k(x) =
cos(x1)

|x|n
− n sin(x1)x1

|x|n+2
; ∂jk(x) =

−n sin(x1)xj
|x|n+2

, if j 6= 1.

Thus |∇k(x)| ≤ Cn|x|−n and k satisfies (2.38). It suffices to prove that the Fourier
transform of k fails to be bounded near ±(2π)−1e1. Then the operator f 7→ I−1k?f
has no bounded extension to L2(Rn) and an interpolation argument, combined with
duality, shows that I−1k ? f has no bounded extension to Lp(Rn) for 1 < p <∞.

Proposition 2.39. Let k(x) = sin(x1)|x|−n, x ∈ Rn \ {0}. Then the Fourier
transform Fk ∈ S ′ is a regular distribution, given by the formula

(2.40) Fk(ξ) = Cn log
|ξ − (1/2π)e1|
|ξ + (1/2π)e1|

, ξ ∈ Rn.

As a consequence, the convolution operator f 7→ I−1k ? f has no bounded extension
to Lp(Rn) if 1 < p <∞.

Proof. We prove the claim only when n ≥ 3; similar computations apply in di-
mensions n = 1 (the derivative of log |ξ| is p.v. 1/ξ) and n = 2 (recall Laplace’s
fundamental solution). Because the Fourier transform of x 7→ sinx1 is compactly
supported, we have for j ∈ {1, 2, . . . , n} the identity

∂jFk = F
(
−2πixj sinx1

|x|n

)
= −2πiF(xj|x|−n) ? F(sinx1).

We also have the identity

F(xj|x|−n) = CnF(∂j|x|2−n)

= CnξjF(|x|2−n) = Cnξj|ξ|−2 = Cn∂j log |ξ|.
Combining the two previous identities, we obtain

∂jFk = Cn∂j log |ξ| ?
(
δ(1/2π)e1 − δ−(1/2π)e1

)
= Cn∂j log

|ξ − (1/2π)e1|
|ξ + (1/2π)e1|

.

Because the partial derivatives coincide and k ∈ L1(Rn)+L2(Rn), so that the Fourier
transform of k cannot converge to a nonzero constant at the infinity, we have the
desired identity (2.40). �
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3. WSIO’s with global kernels

In this section we study global WSIO’s – operators T ∈ SK−mRn (δ) whose associated
kernels are globally defined. The main result here is a so called TχΩ theorem, see
(3.1), characterizing the desired boundedness property of global WSIO’s restricted
to a Whitney coplump domain Ω ⊂ Rn. The following ingredients are utilized in
the proof whose main obstruction is comprised of terms associated with so called
boundary cubes:

• A reduced T1 theorem, formally stated as

T1 = 0 = T ∗1⇒ {∂αT, ∂αT ∗ : |α| = m} ⊂ L (L2(Rn)),

where T ∈ SK−mRn (δ). If T is of convolution type, then the condition T1 =
0 = T ∗1 is satisfied. The main application of this result lies in the proof of
the TχΩ theorem.
• BMO-type spaces ḟm,2∞ (Ω) and Ḟm,2

∞ (Ω) defined on general domains Ω ⊂ Rn.
These are large spaces because certain terms associated with boundary cubes
in the domain are omitted from the definitions.
• A geometric characterization of Whitney coplump domains in terms of a
reflection. This implies that boundary cubes in the domain can be reflected
to the complement of the domain, so that the diameter of the cubes is
preserved. Also the mutual distance between the boundary and reflected
cube should be bounded by a constant multiple of the common diameter of
these two cubes.
• Reflected paraproduct operators on Whitney coplump domains Ω ⊂ Rn.
Such an operator depends heavily on the reflection occuring in the charac-
terization of the Whitney coplump domains. The purpose of these operators
is twofold: they are used in a reduction to the reduced T1 theorem (in a
standard manner) but they also modify the associated kernel K outside of
Ω× Ω to reach a bounded operator on L2(Rn). The novelty of our solution
lies in this modification procedure where the boundary terms are treated
using the reflection.

The aforementioned ingredients combine in the proof of the following TχΩ theorem
for restricted operators,

(3.1) TχΩ, T
∗χΩ ∈ ḟm,2∞ (Ω)⇔ {∂αT, ∂αT ∗ : |α| = m} ⊂ L (L2(Ω)),

where T ∈ SK−mRn (δ) and Ω ⊂ Rn is a Whitney coplump domain. Altough the
operator T is associated with a globally defined kernel, the conditions in (3.1) are
intrinsic to Ω so that they depend only on the associated kernel restricted to the
set Ω× Ω \ {(x, x)}.

3.1. Reduced T1 theorem in Rn. The fact that convolutions do commute, used
in conjunction with the Calderón reproducing formula (2.6), lies behind the proof of
Theorem 1.7. Not all of the WSIO’s commute with convolutions and the following
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approach is adapted for the proof of the reduced T1 theorem which is a boundedness
result for globally defined WSIO’s under strong cancellation conditions.

The Calderón reproducing formula can be refined to a so called ϕ-transform
identity [FJ85] which states that

f =
∑
Q∈D

〈f, ϕQ〉ψQ,

where f ∈ S ′/P and ϕQ, ψQ are translations and dilatations of a dual pair of
Littlewood–Paley functions ϕ, ψ, so that both ϕQ, ψQ are concentrated on the dyadic
cubeQ ∈ D. The sequence {〈f, ϕQ〉 : Q ∈ D} of coefficients can be used to compute
norms of f in the scales Ḃα,q

p (Rn) and Ḟα,q
p (Rn). In particular, if T : S∞ → S ′/P is

continuous, various function space norms ||Tf || can be computed using the coeffi-
cients

〈Tf, ϕQ〉 =
∑
P∈D

〈f, ϕP 〉〈TψP , ϕQ〉, Q ∈ D.

As a consequence,
||Tf || ≤ CT ||f ||

given that the matrix {〈TψP , ϕQ〉 : P,Q ∈ D} is a so called almost diagonal
matrix. Hereby the boundedness of T on various function spaces reduces to an
almost diagonality condition. An important example is that, if T is a Calderón–
Zygmund type operator, this almost diagonality condition is implied by the integral
conditions ∫

Rn
T tϕQ(x)dx = 0 =

∫
Rn
TψQ(x)dx, Q ∈ D,

which correspond to the weak formulation of the familiar cancellation conditions
T1 = 0 = T t1. This Frazier–Han–Jawerth–Weiss approach to reduced T1 theorem
for Calderón–Zygmund type integral operators is well established [FHJW89, FJ90,
Wan99] and there are also results for potential operators resembling globally defined
WSIO’s [GT99, Tor91, Väh08].

The described approach does not support localization since the functions ϕQ, ψQ
are not compactly supported. We conform to later requirements of locality by adapt-
ing the treatment of Meyer and Coifman, originally involving Calderón–Zygmund
type operators [MC97, pp. 51–55]. In particular, we use compactly supported
wavelets {ψεQ} and establish almost diagonality estimates for the operator matrices
{〈TψρP | ψεQ〉}. There is also a price to pay from this wavelet transform point-of-
view: small technicalities arise from that compactly supported wavelets are not of
class C∞(Rn).

Standing definitions and notation. Let ∅ 6= Ω ⊂ Rn be a domain. If f ∈ Lp(Ω) and
g ∈ Lp′(Ω), 1/p+ 1/p′ = 1, then denote

(3.2) 〈f | g〉 =

∫
Ω

f(x)g(x)dx.
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This extends the notion of an inner product on L2(Ω). For the sake of weak deriva-
tives we need another extension, furnished by the duality. A typical approach via
distributions excludes compactly supported wavelets as test functions since these
are not smooth. To include these wavelets as test functions we make use of the fol-
lowing modifications. Let κ ∈ N0 and denote Cκ

0 (Ω) = {ϕ ∈ Cκ
0 (Rn) : suppϕ ⊂ Ω},

C0(Ω) = C0
0(Ω). By (Cκ

0 (Ω))∗ we denote the algebraic dual, consisting of conjugate-
linear functionals

Λ : Cκ
0 (Ω)→ C : ϕ 7→ Λ(ϕ) = 〈Λ | ϕ〉.

In the sense of (3.2), Lp(Ω) ⊂ (Cκ
0 (Ω))∗. If α ∈ Nn

0 and κ = |α| then the weak
partial differential operator ∂α is the linear operator (C0(Ω))∗ → (Cκ

0 (Ω))∗, defined
by

〈∂αΛ | ϕ〉 = (−1)|α|〈Λ | ∂αϕ〉, ϕ ∈ Cκ
0 (Ω).

Here ∂α on the right-hand side denotes the pointwise partial differential operator
Cκ

0 (Ω)→ C0(Ω). Integration by parts shows that these weak and pointwise partial
derivatives coincide if Λ ∈ Cκ

0 (Ω) ⊂ (C0(Ω))∗. Let κ ∈ N0 and T : C0(Ω) →
(Cκ

0 (Ω))∗ be a linear operator. Then we denote T ∈ L (Lp(Ω), Lq(Ω)) if, given
1 < p, q <∞ and 1/q + 1/q′ = 1, it satisfies

(3.3) |〈Tf | g〉| ≤ CT ||f ||Lp(Ω)||g||Lq′ (Ω)

for every f ∈ C0(Ω) and g ∈ Cκ
0 (Ω). In the special case p = q we denote T ∈

L (Lp(Ω)) and say that T has a bounded extension to Lp(Ω). This terminology is
justified in what follows. Assume that T ∈ L (Lp(Ω), Lq(Ω)). Fix f ∈ C0(Ω). Then
the estimate (3.3) implies that Tf is a bounded conjugate-linear functional on the
normed vector space (

Cκ
0 (Ω), || · ||Lq′ (Ω)

)
.

Since Cκ
0 (Ω) ⊂ Lq

′
(Ω) is dense we see that Tf ∈ (Cκ

0 (Ω))∗ extends uniquely to a
conjugate-linear functional on Lq′(Ω), with norm bounded by CT ||f ||Lp(Ω). Now use
the identification (Lq

′
(Ω))′ = Lq(Ω) [Rud87, p. 127] to conclude that this extension,

denoted also by Tf , belongs to Lq(Ω) and satisfies the norm-estimate

(3.4) ||Tf ||Lq(Ω) ≤ CT ||f ||Lp(Ω).

Then fix f ∈ Lp(Ω). The estimate (3.4) allows us to define Tf as the limit of
a Cauchy sequence (Tfj)j∈N ⊂ Lq(Ω) in Lq(Ω), where (fj)j∈N ⊂ C0(Ω) satisfies
limj→∞ fj = f in Lp(Ω). This definition of Tf is independent of (fj)j∈N and it
provides an extension of T : C0(Ω) → (Cκ

0 (Ω))∗ to a bounded linear operator T :
Lp(Ω)→ Lq(Ω). Indeed, due to norm-estimate (3.4), we have

||Tf ||Lq(Ω) = lim
j→∞
||Tfj||Lq(Ω) ≤ CT lim

j→∞
||fj||Lp(Ω) = CT ||f ||Lp(Ω).
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Foundations for WSIO’s. Here we establish a fundamental size estimate for WSIO’s
and extend their domain of definition to include, for instance, the space BMO(Rn).

Atoms in connection with function spaces appear in various forms and here they
are understood in the sense of (m + 1)-regular wavelets {ψεQ : (Q, ε) ∈ D × E} ⊂
Cm+1

0 (Rn) which are defined in Appendix B. These possess vanishing moments, up
to order m + 1, and a compact support that is concentrated on the dyadic cube
Q ∈ D. Let T ∈ SK−mRn (δ) satisfy certain cancellation condition T1 = 0 = T ∗1.
Then T maps atoms to molecule-like functions that share properties with so called
smooth molecules [FJ90, p. 56]. These are, in a vague sense, dispersed atoms and
their properties include some smoothness, decay at infinity, and vanishing moments.

These molecule-like size estimates for TψεQ’s is the first topic here. A powerful
tool for these purposes is the following Whitney approximation theorem.

Theorem 3.5. Let Q ⊂ Rn be a cube and f ∈ L1(Q). Then we have

inf
P∈Pm(Rn)

||f − P ||L1(Q) ≤ Cn,m sup
|h|≤diam(Q)

||∆m+1
h (f,Q, ·)||L1(Q).

A related result is originally due to H. Whitney in dimension n = 1 [Whi57].
Whitney’s result is further generalized in [Bru70], where the proof of Theorem 3.5
can also be found as a special case. Another proof of Theorem 3.5 via interpolation
theory is in [JS77].

We begin establishing the molecule-estimates. Fix T ∈ SK−mRn (δ) that it is as-
sociated with kernel K ∈ SK−mRn (δ). Let 1 ≤ p < n/m. Then using the kernel
size-estimate (1.16) and a well known inequality [Gra04, p. 416], yields

|Tf(x)| ≤
∫

Rn
|K(x, y)||f(y)|dy ≤ Cn,TIm(|f |)(x)

≤ Cn,m,p,TM(f)(x)1−mp/n||f ||mp/np

(3.6)

if x ∈ Rn and f ∈ C0(Rn). Here Im is the Riesz potential operator as in (2.11). As
a consequence, T induces a linear operator C0(Rn)→ (C0(Rn))∗, satisfying

(3.7) T ∈ L (Lp(Rn), Lnp/(n−mp)(Rn)), if 1 < p < n/m.

Estimating as in (3.6) and applying the Fubini’s theorem, we also obtain the identity
〈Tf | g〉 = 〈f | T ∗g〉 if f, g ∈ C0(Rn). Here T ∗ ∈ SK−mRn (δ) is the adjoint operator,
associated with the adjoint kernel

(x, y) 7→ K(y, x).

In particular, (S + T )∗ = S∗ + T ∗ if S, T ∈ SK−mRn (δ). Next we prove a quantitative
size-estimate about TψεQ’s. Such an estimate is one of the requirements of molecules.

Lemma 3.8. Let T ∈ SK−mRn (δ). Then for every Q ∈ D, ε ∈ E, and x ∈ Rn, we
have

|TψεQ(x)| ≤ C|Q|−1/2+m/n(1 + `(Q)−1|x− xQ|)−n−δ.
Here the constant C depends at most on n,m,Cm+1, T .
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Proof. Recall that xQ denotes the lower left-corner ofQ and xQ denotes the midpoint
of Q. In particular, |xQ−xQ| ≤

√
n`(Q) and therefore it suffices to verify a modified

estimate where |x−xQ| is replaced with |x−xQ|. Denote by K ∈ K−mRn (δ) the kernel
associated with operator T . Using the inequality (3.6) with p = 1 and properties
B4)–B5) of wavelets, see Appendix B, we get

|TψεQ(x)| ≤ CM(ψεQ)(x)1−m/n||ψεQ||
m/n
1 ≤ C|Q|−1/2+m/n.

As a consequence, it suffices to verify the following inequality

|TψεQ(x)| ≤ C|Q|−1/2+m/n(`(Q)−1|x− xQ|)−n−δ(3.9)

for |x − xQ| ≥ CK diam(Cm+1Q), where CK denotes the constant in assumption
(1.17). Using B2)–B5) from Appendix3 B, we get

|TψεQ(x)| =
∣∣∣∣ ∫

Rn
K(x, y)ψεQ(y)dy

∣∣∣∣
= inf

P∈Pm(Rn)

∣∣∣∣ ∫
Rn

(K(x, y)− P (y))ψεQ(y)dy

∣∣∣∣
≤ Cm+1|Q|−1/2 inf

P∈Pm(Rn)

∫
Cm+1Q

|K(x, y)− P (y)|dy.

(3.10)

Using Theorem 3.5 and the integral estimate (1.17), we obtain the following upper
bounds for the right-hand side of (3.10)

C|Q|−1/2 sup
|h|≤diam(Cm+1Q)

∫
Cm+1Q

|∆m+1
h (K(x, ·), Cm+1Q, y)|dy

≤ C|Q|−1/2+1+(m+δ)/n|x− xQ|−n−δ = C|Q|−1/2+m/n(`(Q)−1|x− xQ|)−n−δ.
Here the constant C may vary from one occurence to another but it depends at
most on n,m,Cm+1, T . Combining these estimates we obtain (3.9). �

This lemma is a powerful tool, used in various occasions. Here we collect some of
its implications that turn out to be useful. Lemma 3.8 combined with the Hölder’s
inequality imply the following L2-estimates: assuming that T ∈ SK−mRn (δ), |α| = m
and ε, ρ ∈ E , we have

sup
Q∈D
|〈TψεQ | ∂αψ

ρ
Q〉| ≤ sup

Q∈D
||TψεQ||L2||∂αψρQ||L2 <∞.

An L1-estimate is recorded in the following corollary of Lemma 3.8. This estimate
is used later on when normalizing weakly singular integral operators.

Corollary 3.11. Let T ∈ SK−mRn (δ) and (Q, ε) ∈ D × E. Then

||TψεQ||L1 ≤ C|Q|1/2+m/n,

where C depends at most on n,m, δ, Cm+1, T .

3All of the references to B1)–B5) in the sequel will be to Appendix B
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Next we extend the domain of definition of T ∈ SK−mRn (δ) to the vector space

D(δ) =

{
b ∈ L1

loc(Rn) :

∫
Rn
|b(x)|(1 + `(Q)−1|x− xQ|)−n−δdx <∞ if Q ∈ D

}
.

The quantity Tb, b ∈ D(δ), need not exist as an absolutely convergent integral.
Therefore we modify the range of T to reach this extension. Define Tb : D×E → C
for b ∈ D(δ) by

(3.12) Tb(Q, ε) =

∫
Rn
b(x)T ∗ψεQ(x)dx, (Q, ε) ∈ D × E ,

where ψεQ’s are (m + 1)-regular wavelets. Because of b ∈ D(δ), Lemma 3.8 shows
that the integrals in (3.12) do converge absolutely. This definition induces a linear
operator b 7→ Tb, defined in D(δ) and valued in the vector space {τ : D × E → C}.

The main reason for this extension is that cancellation phenomena occuring in
the TχΩ theorem are best quantified in terms of certain BMO-type sequence spaces,
formally TχΩ, T

∗χΩ ∈ ḟm,2∞ (Ω). The following related definition is used in connection
with the reduced T1 theorem.

Definition 3.13. We say that T ∈ SK−mRn (δ) satisfies a strong cancellation condition
if T1 = 0 ∈ {τ : D × E → C}, that is,

(3.14) T1(Q, ε) = TχRn(Q, ε) =

∫
Rn
T ∗ψεQ(x)dx = 0, (Q, ε) ∈ D × E .

Here the wavelets {ψεQ} are (m+ 1)-regular.

The sequential approach, which is initiated above, makes it possible to study
WSIO’s when their domain of definition is L∞(Rn) or BMO(Rn).

Example 3.15. Let b ∈ L1
loc(Rn) and denote

||b||BMO(Rn) = sup
Q cube in Rn

{
1

|Q|

∫
Q

|b(x)− bQ|dx
}
, bQ =

1

|Q|

∫
Q

b(x)dx.

We show that if ||b||BMO(Rn) < ∞ and δ > 0, then b ∈ D(δ). For this purpose we
invoke the following estimate which is an easy implication of [Gra04, pp. 521–522],∫

Rn
|h(x)− h[0,1)n|(1 + |x|)−n−δdx ≤ Cn,δ||h||BMO(Rn), h ∈ L1

loc(Rn).

Next, if Q ∈ D, then by a change of variables h(x) = b(`(Q)x + xQ) for x ∈ Rn we
are reduced to this estimate,∫

Rn
|b(x)− bQ|(1 + `(Q)−1|x− xQ|)−n−δdx

= |Q|
∫

Rn
|h(x)− h[0,1)n|(1 + |x|)−n−δdx

≤ Cn,δ|Q|||h||BMO(Rn) = Cn,δ|Q|||b||BMO(Rn) <∞.

(3.16)

It follows that b ∈ D(δ).
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Almost diagonality estimates for WSIO’s. The size estimates combined with strong
cancellation condition (3.14) for T and T ∗ imply almost diagonality estimates for
these WSIO’s. It is precisely these estimates that ultimately give rise to the reduced
T1 theorem. We continue with a useful lemma towards the almost diagonality. Here
one should keep the primary application in mind:

G = |P |−m/nTψρP , F = ψεQ

for some T ∈ SK−mRn (δ) satisfying T ∗1 = 0. However, there are also other applications
and we present a general result whose proof is modelled after [MC97, p. 53].

Lemma 3.17. Let % > 0 and P,Q ∈ D be such that `(P ) ≤ `(Q). Let G ∈ L1(Rn)
satisfy

∫
Rn G(x)dx = 0. Assume further that, for some δ ∈ (0, 1), we have

(3.18) |G(x)| ≤ %|P |−1/2(1 + `(P )−1|x− xP |)−n−δ, if x ∈ Rn.

Let F ∈ C1(Rn) satisfy suppF ⊂ %Q and

(3.19) ||∂αF ||L∞(Rn) ≤ %|Q|−1/2−|α|/n, if |α| ≤ 1.

Then we have the estimate

(3.20) |〈G | F 〉| ≤ C

(
`(P )

`(Q)

)n/2+δ(
1 +
|xP − xQ|
`(Q)

)−(n+δ)

,

where the constant C depends on the parameters %, δ, n.

Proof. Let P ∈ Dµ and Q ∈ Dν be such that `(P ) = 2−µ ≤ 2−ν = `(Q). Without
loss of generality we can further assume that % > 1. First we change the variables

〈G | F 〉 = 2−µn
∫

Rn
G(2−µx+ xP )F (2−µx+ xP )dx

= 2−µn/2+νn/2

∫
Rn
g(x)f

(
R−1(x− x0)

)
dx,

(3.21)

where R = 2µ−ν , x0 = 2µ(xQ − xP ),

g(x) = 2−µn/2G(2−µx+ xP ), f(x) = 2−νn/2F (2−νx+ xQ).

Using assumption (3.18), we get the estimate |g(x)| ≤ %(1 + |x|)−n−δ. Using (3.19),
we have supp f ⊂ B̄(0,

√
n%) and ||∂αf ||L∞(Rn) ≤ % if |α| ≤ 1. As a consequence,

we have supp f(R−1(· − x0)) ⊂ B̄(x0, R
√
nρ)

First assume that |x0| ≥ 2R
√
n%, that is, |xP − xQ| ≥ 2

√
n%`(Q). In particular,∣∣∣∣ ∫

Rn
g(x)f

(
R−1(x− x0)

)
dx

∣∣∣∣ ≤ C|x0|−n−δRn = C2δ(ν−µ)

(
|xP − xQ|

2−ν

)−n−δ
.

This combined with (3.21) yields the desired estimate (3.20) in the present case.
Then assume that |x0| < 2R

√
n%, that is, |xP −xQ| < 2

√
n%`(Q). In this case the

functions f(R−1(· − x0)) and g are concentrated roughly on the origin and g is well
localized when compared to f(R−1(· − x0)). What saves us here is that the integral
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of g vanishes and f has smoothness. These facts allow us to utilize cancellation
effects as follows. First of all, define

gj = (xj/|x|n) ? g, j ∈ {1, 2, . . . , n}.
The divergence theorem shows that, for every y ∈ Rn, we have

(3.22)
1

ωn−1

n∑
j=1

∫
Rn

xj − yj
|x− y|n

∂j(f(R−1(x− x0)))dx = f(R−1(y − x0)).

An elementary proof of the identity (3.22) is [EE87, p. 238]. Multiply the identity
(3.22) by g(y) and then integrate with respect to the y-variable. Then using the
Fubini’s theorem, justified by (3.6), we get

(3.23)
1

ωn−1

n∑
j=1

R−1

∫
Rn
gj(x)(∂jf)

(
R−1(x− x0)

)
dx =

∫
Rn
g(y)f

(
R−1(y − x0)

)
dy.

According to the definition of g and the assumption
∫
G = 0, we have

∫
g = 0.

Hence, if j ∈ {1, 2, . . . , n} and x ∈ Rn \ {0}, we can write

(3.24) gj(x) =

∫
Rn
g(y)

(
xj − yj
|x− y|n

− xj
|x|n

)
dy.

Define the sets A(x) = {y ∈ Rn : |y| < |x|/2}‚ B(x) = {y ∈ Rn : |x|/2 ≤
|y| ≤ 2|x|}, and C(x) = Rn \ (A ∪ B). In what follows we also use the assumption
0 < δ < 1 and denote by C any constant depending at most on n, %. Using the
estimate |g(x)| ≤ %(1 + |x|)−n−δ and the mean value theorem on the difference, we
get∫

A(x)

∣∣∣∣g(y)

(
xj − yj
|x− y|n

− xj
|x|n

)∣∣∣∣dy ≤ C|x|−n
∫
A(x)

(1 + |y|)−n−δ|y|dy ≤ C|x|−n+1−δ

1− δ
.

The integrals with respect to B(x) and C(x) are easier to estimate by using again
the size estimate about |g|, resulting to the inequality(∫

B(x)

+

∫
C(x)

)∣∣∣∣g(y)

(
xj − yj
|x− y|n

− xj
|x|n

)∣∣∣∣dy ≤ C|x|−n+1−δ

δ
.

Combining the estimates above with the identity (3.24), we have

(3.25) |gj(x)| ≤ Cn,δ,%|x|−n+1−δ, j ∈ {1, 2, . . . , n}.
Using the identity (3.23) and then the estimate (3.25) about gj’s, we get∣∣∣∣ ∫

Rn
g(x)f

(
R−1(x− x0)

)
dx

∣∣∣∣
≤ Cn

n∑
j=1

R−1

∣∣∣∣ ∫
B(0,3R

√
n%)

gj(x)(∂jf)
(
R−1(x− x0)

)
dx

∣∣∣∣ ≤ Cn,δ,%R
−δ = Cn,δ,%2

δ(ν−µ).

Together with (3.21) this shows the desired estimate (3.20) in the present case. �
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As a consequence, we obtain the following almost diagonality estimate for WSIO’s.
It can be interpreted as a technical formulation of the reduced T1 theorem.

Proposition 3.26. Let T ∈ SK−mRn (δ) satisfy T1 = T ∗1 = 0 ∈ {τ : D × E → C}.
Then for every P,Q ∈ D and ε, ρ ∈ E we have the weighted almost diagonality
estimate

|〈TψρP | ψ
ε
Q〉| ≤ C

(`(P ) ∧ `(Q))n/2+δ+m

(`(P ) ∨ `(Q))n/2+δ

(
1 +

|xP − xQ|
`(P ) ∨ `(Q)

)−(n+δ)

,

where the constant C depends at most on n,m, δ, Cm+1, T .

Proof. Assume first that `(P ) ≤ `(Q). Let G = |P |−m/nTψρP and F = ψεQ ∈
Cm+1

0 (Rn). Using the assumption T ∗1 = 0 and the identity (T ∗)∗ = T , we have∫
Rn G(x)dx =

∫
Rn Tψ

ρ
P (x)dx = 0. Also, because T ∈ SK−mRn (δ), Lemma 3.8 implies

that G satisfies the estimate

|G(x)| = |P |−m/n|TψρP (x)| ≤ Cn,m,Cm+1,T |P |−1/2(1 + `(P )−1|x− xP |)−n−δ, x ∈ Rn.

On the other hand, the localization property B4) for (m+1) regular wavelets implies
that suppF ⊂ Cm+1Q. Also, the regularity property B5) implies that

||∂αF ||L∞(Rn)|| = ||∂αψεQ||L∞(Rn) ≤ Cm+1|Q|−1/2−|α|/n, |α| ≤ 1.

We have verified the assumptions of Lemma 3.17 with constant % depending at most
on the parameters n,m,Cm+1, T . Accordingly we obtain the estimate

|〈TψρP | ψ
ε
Q〉| = |P |m/n|〈G | F 〉 ≤ C

`(P )n/2+δ+m

`(Q)n/2+δ

(
1 +
|xP − xQ|
`(Q)

)−(n+δ)

.

This is the required estimate in the present case `(P ) ≤ `(Q). The other case,
`(P ) > `(Q), reduces to the estimates above. Indeed, we have

〈TψρP | ψ
ε
Q〉 = 〈ψρP | T

∗ψεQ〉 = 〈T ∗ψεQ | ψ
ρ
P 〉,

where T ∗ ∈ SK−mRn (δ) and the assumption T1 = 0 implies that
∫
T ∗ψεQ = 0. By

setting G = |Q|−m/nT ∗ψεQ and F = ψρP we can proceed as above. �

Reduced T1 theorem for WSIO’s. Here we finish the proof of reduced T1 theorem.
The main work is done – culminating in Proposition 3.26. It remains to deal with
certain technicalities. Fix T ∈ SK−mRn (δ) satisfying T1 = 0 = T ∗1. We need to
show that ∂αT ∈ L (L2(Rn)) if |α| = m. This is here established by constructing
an operator [∂αT ] ∈ L (L2(Rn)) that satisfies

(3.27) 〈[∂αT ]f | g〉 = 〈∂αTf | g〉

if f ∈ C0(Rn) and g ∈ Cm
0 (Rn). Definition (3.38) for [∂αT ] : C0(Rn)→ (C0(Rn))∗ is

given by using the wavelet transform and the operator matrix
(3.28)
M∂αT = {M(P, ρ;Q, ε) = 〈∂αTψρP | ψ

ε
Q〉 : Q,P ∈ D and ε, ρ ∈ E}, |α| = m.
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Using Proposition 3.26 and a factorization

M∂αT = M∂mTM∂α/∂m ,

where M∂α/∂m is a Riesz-transform type almost diagonal matrix and M∂mT is a
discrete derivative matrix of T , we will see that M∂αT is an almost diagonal matrix,
hence bounded on `2(D × E). Now the boundedness property [∂αT ] ∈ L (L2(Rn))
follows because this operator is defined in terms of a bounded matrix operator and
the wavelet transform, which is an isometry between L2(Rn) and `2(D × E).

To complete this sketch we begin with some preparations. Let P,Q ∈ D and
recall that the lower-left corners of these dyadic cubes are xP ∈ P and xQ ∈ Q,
respectively. Let also β, γ > 0. For these parameters, we denote

(3.29) ωP,Q(β, γ) =

(
`(P ) ∧ `(Q)

`(P ) ∨ `(Q)

)n/2+γ(
1 +

|xP − xQ|
`(P ) ∨ `(Q)

)−(n+β)

.

Notice that ωP,Q(β, γ) = ωQ,P (β, γ) and ωP,Q(β̃, γ̃) ≥ ωP,Q(β, γ) if β̃ ≤ β and γ̃ ≤ γ.
A matrix M : (D × E)× (D × E)→ C, denoted by

M = {M(P, ρ;Q, ε) ∈ C : P,Q ∈ D and ρ, ε ∈ E},
is almost diagonal if there exists δ > 0 such that

(3.30) sup

{
|M(P, ρ;Q, ε)|
ωP,Q(δ, δ)

: P,Q ∈ D and ρ, ε ∈ E
)
<∞.

This condition is symmetric so that the adjoint matrix M∗, defined by

M∗(P, ρ;Q, ε) = M(Q, ε;P, ρ),

is almost diagonal if, and only if, M is. The same holds true for the transpose
matrix defined by M t = M∗.

Example 3.31. Let 0 < m < n and fix (m + 1)-regular wavelets {ψεQ} as described
in Appendix B. Here are certain almost diagonal matrices:

• Let T ∈ SK−mRn (δ) satisfy T1 = T ∗1 = 0 ∈ {τ : D × E}. Denote the order m
discrete derivative matrix of T by

M∂mT (P, ρ;Q, ε) = |Q|−m/n〈TψρP | ψ
ε
Q〉

if P,Q ∈ D and ρ, ε ∈ E . Then M∂mT is almost diagonal by Proposition
3.26.
• Let α ∈ Nn

0 satisfy |α| = m and consider the Riesz-transform type matrix

M∂α/∂m(P, ρ;Q, ε) = |P |m/n〈∂αψρP | ψ
ε
Q〉

if P,Q ∈ D and ρ, ε ∈ E . Then M∂α/∂m is almost diagonal and it satisfies
(3.30) for every δ ∈ (0, 1). Indeed, we can do the case studies `(P ) ≤ `(Q)
and `(P ) > `(Q) and choose the functions G = |P |m/n∂αψρP and F = ψεQ
in the former case and vice versa in the latter. The assumptions of Lemma
3.17 are satisfied in any case by B4) and B5).
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• If ρ ∈ E then there exists a canonical multi-index α = α(ρ,m) ∈ Nn
0 with

|α| = m and a function ψρ,m : Rn → C as in Lemma B.2. This satisfies
ψρ = ∂αψρ,m. Define

M lift
m (P, ρ;Q, ε) = 〈ψρ,mP | ψεQ〉

for P,Q ∈ D and ρ, ε ∈ E . Then the lift matrix M lift
m is almost diagonal. In

the proof we proceed in a case study as above and choose F,G ∈ {ψρ,mP , ψεQ}.

The matrix multiplication MN corresponds to the composition of the matrix
operators M and N on `2(D×E). The following lemma shows that almost diagonal
matrices are closed under this matrix multiplication. A proof is in [FJ90, p. 158–
159] and, in comparison therein, we only changed the variable γ.

Lemma 3.32. Let P,Q ∈ D. Let β, γ1, γ2 > 0, γ1 6= γ2, and γ1 + γ2 > β. Then∑
R∈D

ωP,R(β, γ1)ωR,Q(β, γ2) ≤ CωP,Q(β, γ1 ∧ γ2),

where the constant C depends at most on n, β, γ1, γ2.

Now we can show the almost diagonality of the matrix M∂αT defined in (3.28).

Lemma 3.33. Let T ∈ SK−mRn (δ) satisfy T1 = T ∗1 = 0 ∈ {τ : D × E → C}. Then,
if |α| = m, we have the factorization M∂αT = M∂mTM∂α/∂m. As a consequence, the
matrix M∂αT is almost diagonal if |α| = m.

Proof. First of all, the relation (3.7) implies that T ∈ L (Lp(Rn), Lnp/(n−mp)(Rn)) if
1 < p < n/m. Also, according to Proposition 3.26, the matrix M∂mT defined by

M∂mT (P, ρ;Q, ε) = |Q|−m/n〈TψρP | ψ
ε
Q〉

is almost diagonal. Fix p ∈ (1, n/m) and denote q = np/(n−mp) ∈ (p,∞).
First we prove that the matrix M∂αT in (3.28) is almost diagonal. Fix P,Q ∈ D

and ρ, ε ∈ E . Now, according to the property B2), the wavelet approximation of
TψρP ∈ Lq(Rn) converges uncoditionally. That is, the series

TψρP =
∑
R∈D

∑
σ∈E

〈TψρP | ψ
σ
R〉ψσR

converges unconditionally in Lq(Rn). Because ∂αψεQ ∈ Lq
′
(Rn) and 1 = |R|−m/n|R|m/n,

R ∈ D, we have

M∂αT (P, ρ;Q, ε) = 〈∂αTψρP | ψ
ε
Q〉 = (−1)|α|〈TψρP | ∂

αψεQ〉

=
∑
R∈D

∑
σ∈E

|R|−m/n〈TψρP | ψ
σ
R〉|R|m/n〈∂αψσR | ψεQ〉

= M∂mTM∂α/∂m(P, ρ;Q, ε).

(3.34)

As a consequence, we have M∂αT = M∂mTM∂α/∂m . Using Lemma 3.32 and Example
3.31, we see that M∂αT is almost diagonal, being a product of almost diagonal
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matrices. To be more precise, there exists δ, δ′ such that 0 < δ < δ′ < 1 and

(3.35) |M∂αT (P, ρ;Q, ε)| ≤ CT,M∂α/∂m

∑
R∈D

ωP,R(δ, δ)ωR,Q(δ, δ′) ≤ CωP,Q(δ, δ).

We refer to this estimate later and it serves also for those purposes. �

We need yet another fact: Almost diagonal matrices can be interpreted as bounded
operators on `2(D × E). This is formally stated in the following result whose proof
is based on Schur’s lemma and can be found in [MC97, pp. 54–55].

Lemma 3.36. LetM be an almost diagonal matrix, therefore satisfying the estimate

|M(P, ρ;Q, ε)| ≤ CMωP,Q(δ, δ)

if P,Q ∈ D and ρ, ε ∈ E. Then M is a bounded matrix operator on `2(D×E). That
is, assuming x ∈ `2(D × E) we define

y(P, ρ) = Mx(P, ρ) =
∑

Q∈D,ε∈E

M(P, ρ;Q, ε)x(Q, ε), (P, ρ) ∈ D × E .

Then y = Mx ∈ `2(D × E) and it satisfies the norm-estimate∑
P∈D,ρ∈E

∣∣y(P, ρ)|2 ≤ C
∑

Q∈D,ε∈E

|x(Q, ε)|2,

where the constant C depends only on the matrix M .

Next we combine all the pieces together for the reduced T1 theorem.

Theorem 3.37. Let T ∈ SK−mRn (δ) be such that T1 = T ∗1 = 0 ∈ {τ : D × E → C}.
Then, if |α| = m, we have ∂αT, ∂αT ∗ ∈ L (L2(Rn)).

Proof. Because of the symmetry it suffices to verify the boundedness of the operator
∂αT for |α| = m. According to Lemma 3.33, the matrix M∂αT is almost diagonal.
We define a linear operator [∂αT ] : C0(Rn)→ (C0(Rn))∗. If f, g ∈ C0(Rn), we set

(3.38) 〈[∂αT ]f | g〉 =
∑

Q∈D,ε∈E

∑
P∈D,ρ∈E

〈f | ψρP 〉M∂αT (P, ρ;Q, ε)〈ψεQ | g〉.

With the aid of property B1) and Lemma 3.36, we can first change the order of
summation and then use the Hölder’s inequality for that [∂αT ] ∈ L (L2(Rn)) in the
sense of (3.3). In particular, to reach the desired conclusion ∂αT ∈ L (L2(Rn)) it
suffices to verify that

(3.39) 〈[∂αT ]f, g〉 = 〈∂αTf, g〉
if f ∈ C0(Rn) and g ∈ Cm

0 (Rn).
To do this, we invoke definition (3.38) and expand the double series therein by

applying the identity (3.34). This results in

〈[∂αT ]f | g〉 =
∑

Q∈D,ε∈E

∑
P∈D,ρ∈E

∑
R∈D,σ∈E

〈f | ψρP 〉〈Tψ
ρ
P | ψ

σ
R〉〈∂αψσR | ψεQ〉〈ψεQ | g〉.
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This sum converges absolutely. This is seen by estimating as in (3.34)–(3.35) and
using Lemma 3.36. Hence we can organize the summation to the order R,Q, P . By
(3.7) we have T ∈ L (Lp(Rn), Lq(Rn)) if p ∈ (1, n/m) and q = np/(n−mp). Using
this relation with B2), and the definition of weak derivative, we reach the identity

〈[∂αT ]f | g〉 = (−1)|α|〈Tf | ∂αg〉 = 〈∂αTf | g〉.

This is the required representation formula (3.39). �

Application to convolution operators. The assumptions of the reduced T1 theorem
hold true if T ∈ SK−mRn (δ) is of convolution type. Notice that the assumptions here
are stronger than those in Remark 2.31 (i).

Theorem 3.40. Let 0 < m < n and k ∈ L1
loc(Rn) be a kernel satisfying the size

condition |k(x)| ≤ ck|x|−n+m and the regularity condition

|∆m+1
h (k, x)| ≤ ck|h|m+δ|x|−n−δ, if 2(m+ 1)|h| ≤ |x|.

Then the operator T = f 7→ k ? f ∈ SK−mRn (δ) satisfies the cancellation conditions
T1 = 0 = T ∗1 and the boundedness property ∂αT ∈ L (L2(Rn)) if |α| = m.

Proof. To begin with, it is simple to verify that the convolution operator T asso-
ciated with the kernel K(x, y) = k(x − y) satisfies T ∈ SK−mRn (δ) and we have a
generalization of the integral condition (1.8), which occured in Remark 2.31,

(3.41) sup
h6=0

{
|h|−m

∫
Rn
|∆m+1

h (k, x)|dx
}
<∞.

According to Theorem 3.37 it suffices to verify that T1 = 0 = T ∗1. Due to symmetry
it suffices to prove that T ∗1 = 0 and for this purpose we fix (Q, ε) ∈ D×E . According
to Definition 3.13 it suffices to show that

(3.42)
∫

Rn

∫
Rn

k(x− y)ψεQ(y)dydx =

∫
Rn

TψεQ(x)dx = 0,

where ψεQ is an (m+ 1)-regular compactly supported wavelet.
Notice that TψεQ is integrable due to Lemma 3.8 and, in the formal level, the

identity (3.42) is trivial since
∫
ψεQ = 0; one would change the variables and then

the order of integration. However, Fubini’s theorem does not apply because the
kernel may not be integrable at infinity. Instead the cancellation condition (3.41) is
utilized by using the Fourier transform as follows∫

Rn
TψεQ(x)dx = lim

ξ→0,ξ 6=0

∫
Rn
TψεQ(x)e−2πix·ξdx

= (−2−1)m+1 lim
ξ→0,ξ 6=0

∫
Rn

∆m+1
g(ξ) (TψεQ, x)e−2πix·ξdx,

where g(ξ) = 2−1ξ/|ξ|2 if ξ 6= 0. The last identity follows by iterating the corre-
sponding identity with m = 0 and in this special case it follows by a simple change
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of variables with the aid of the Euler’s identity eπi = −1. Using linearity we get∫
Rn

TψεQ(x)dx = (−2−1)m+1 lim
ξ→0,ξ 6=0

∫
Rn

(∆m+1
g(ξ) (k, ·) ? ψεQ)(x)e−2πix·ξdx.

If ξ 6= 0 both of the functions ∆m+1
g(ξ) (k, ·) and ψεQ are integrable and applying the

integral estimate (3.41) we have∣∣∣∣ ∫
Rn

(∆m+1
g(ξ) (k, ·) ? ψεQ)(x)e−2πix·ξdx

∣∣∣∣ = |F(∆m+1
g(ξ) (k, ·))(ξ)||F(ψεQ)(ξ)|

≤ ||∆m+1
g(ξ) (k, ·)||L1 |F(ψεQ)(ξ)| ≤ ck|g(ξ)|m|F(ψεQ)(ξ)|.

We also have |g(ξ)|m < |ξ|−m. The Fourier transform of ψεQ is smooth and all of its
partial derivatives of order ≤ m+1 vanish in the origin because of the corresponding
vanishing moments for the (m + 1)-regular wavelets. Estimating F(ψεQ) near the
origin by using the Taylor expansion, we get

lim sup
ξ→0

|ξ|−m|F(ψεQ)(ξ)| = 0.

Combining this with previous estimates leads to the desired identity (3.42). �

3.2. BMO-type spaces on domains. To advance beyond the reduced T1 theorem
we need certain BMO-type sequence and function spaces. Let ∅ 6= Ω ⊂ Rn, n ≥ 2,
be a domain and α > 0. We utilize the following partition of the dyadic cubes into
interior (I), boundary (B), and exterior (E) cubes:

• DI(α,Ω) = {Q ∈ D : Q ⊂ Ω and dist(Q, ∂Ω) ≥ α diam(Q)},
• DB(α,Ω) = {Q ∈ D : Q ∩ Ω 6= ∅} \ DI(α,Ω),
• DE(Ω) = D \ (DI(α,Ω) ∪ DB(α,Ω)) = {Q ∈ D : Q ∩ Ω = ∅}.

The BMO-type spaces ḟm,2∞ (Ω) and Ḟm,2
∞ (Ω) depend on the interior cubes DI(α,Ω)

with

(3.43) α = Cm+1 > 0

being the constant in Appendix B for which B4)–B5) hold true in case of (m+ 1)-
regular wavelets. A function f ∈ L1

loc(Ω) belongs to Ḟm,2
∞ (Ω) if its wavelet coefficients

(3.44) {〈f | ψεQ〉 : (Q, ε) ∈ DI(Cm+1,Ω)× E}

belong to certain sequence space ḟm,2∞ (Ω) which, in turn, is defined in terms of
a Carleson’s condition. The novelty of this definition is that the supports of the
wavelets ψεQ in (3.44) are contained in the domain because of (3.43). These BMO-
type spaces turn out to be useful in the difficult direction of the TχΩ theorem
but only if we restrict to the class of Whitney coplump domains where there is a
reflection

Q 7→ Qs : DB(Cm+1,Ω)→ DE(Ω),

satisfying diam(Q) = diam(Qs) and dist(Q,Qs) ≤ βm diam(Q) for some βm > 0.
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Spaces ḟm,2∞ (Ω) and Ḟm,2
∞ (Ω) on general domains. We define the sequence spaces

ḟm,2∞ (Ω) and the corresponding function spaces Ḟm,2
∞ (Ω) on general domains. These

spaces depend on the α-interior cubes for a suitable α = αm. The boundary and
exterior cubes are not used here.

Definition 3.45. Let ∅ 6= Ω ⊂ Rn, n ≥ 2, be a domain and m ∈ N0. Denote

DmI (Ω) = DI(Cm+1,Ω),

where Cm+1 > 0 is the constant defined in Appendix B for which B4)–B5) holds
true in the case of (m+ 1)-regular wavelets.

Remark 3.46. Let ∅ 6= Ω ⊂ Rn, n ≥ 2, be a domain and m ∈ N0. Let {ψεQ} denote
the set of (m + 1)-regular wavelets. Then, according to B4) in Appendix B and
Definition 3.45, we have suppψεQ ⊂ Cm+1Q ⊂⊂ Ω if (Q, ε) ∈ DmI (Ω)× E .

Definition 3.47. Let ∅ 6= Ω ⊂ Rn, n ≥ 2, be a domain and m ∈ N0. Assume that
τ : D × E → C is such that

||τ ||2
ḟm,2∞ (Ω)

= sup
P∈DmI (Ω)

1

|P |
∑
Q⊂P

∑
ε∈E

|Q|−2m/n|τ(Q, ε)|2 <∞,

where the outer summation is over all Q ∈ D satisfying Q ⊂ P . Then denote
τ ∈ ḟm,2∞ (Ω). Assuming that f ∈ L1

loc(Ω), we denote f(Q, ε) = 〈f | ψεQ〉, if (Q, ε) ∈
DmI (Ω) × E , and f(Q, ε) = 0, if Q ∈ D \ DmI (Ω) and ε ∈ E . The wavelets {ψεQ}
here are (m+ 1)-regular. Furthermore, we denote f ∈ Ḟm,2

∞ (Ω) if ||f ||Ḟm,2∞ (Ω) = ||f :

D × E → C||ḟm,2∞ (Ω) <∞.

We also need the space of bounded mean oscillation on domains.

Definition 3.48. Let ∅ 6= Ω ⊂ Rn be a domain. Then BMO(Ω) is the seminormed
vector space of f ∈ L1

loc(Ω) satisfying

||f ||BMO(Ω) = sup
Q⊂⊂Ω

{
1

|Q|

∫
Q

|f(x)− fQ|dx
}
<∞, fQ =

1

|Q|

∫
Q

f(x)dx.

The supremum is taken over all of the cubes compactly contained in the domain.

The function space Ḟ 0,2
∞ (Rn) gives a characterization of BMO(Rn) as follows.

Assuming that f ∈ L1
loc(Rn) is bounded at infinity, then

f ∈ BMO(Rn)⇔ f ∈ Ḟ 0,2
∞ (Rn)

and the corresponding norms are equivalent [Mey92, p. 154]. The analogous iden-
tification does not hold true on proper domains Ω ( Rn because the boundary
behaviour of functions in the space Ḟ 0,2

∞ (Ω) is less restricted than in the space
BMO(Ω).

The function spaces Ḟm,2
∞ (Rn) for m ≥ 1 are related to certain Triebel–Lizorkin

spaces that are also denoted by Ḟm,2
∞ (Rn), see [FJ90, p. 70]. These spaces satisfy

Ḟm,2
∞ (Rn) = Im(BMO(Rn)) = {f ∈ S ′/P : ∂αf ∈ BMO(Rn) for |α| = m}.
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The first identity follows from the ϕ-independence and the second can be found in
[Str80, Proposition 3.1.(b)]. Also, a function f : Rn → C is in I1(BMO(Rn)) if,
and only if, the difference quotients x 7→ |h|−1(f(x + h) − f(x)) are in BMO(Rn)
uniformly with respect to h ∈ Rn [Str80, Theorem 3.2.].

The TχΩ theorem motivates our definition for the sequence spaces ḟm,2∞ (Ω) on
domains. These spaces furnish the correct means to quantify certain cancellation
effects therein. The corresponding function spaces Ḟm,2

∞ (Ω) are large spaces because
we ignore the boundary behaviour in a certain sense. A smaller space in the sense of
bounded inclusion is the restriction of Ḟm,2

∞ (Rn) on the domain Ω. This restriction
space is more natural in many applications. However, our definition for the sequence
spaces ḟm,2∞ (Ω) has the advantage that the projection

τ 7→ τχDmI (Ω)×E : {D × E → C} → {D × E → C}

induces a bounded linear operator ḟm,2∞ (Ω)→ ḟm,2∞ (Rn) on general domains Ω ⊂ Rn,
n ≥ 2. This important auxiliary result is verified next.

Lemma 3.49. Let ∅ 6= Ω ⊂ Rn, n ≥ 2, be a domain and m ∈ N0. Let τ ∈ ḟm,2∞ (Ω)
and σ : D× E → C be such that σ(Q, ε) = τ(Q, ε) if Q ∈ DmI (Ω) and σ(Q, ε) = 0 if
Q ∈ D \ DmI (Ω). Then σ ∈ ḟm,2∞ (Rn) and ||σ||ḟm,2∞ (Rn) ≤ ||τ ||ḟm,2∞ (Ω).

Proof. Fix P ∈ D. It suffices to prove that
1

|P |
∑
Q⊂P

∑
ε∈E

|Q|−2m/n|σ(Q, ε)|2 ≤ ||τ ||2
ḟm,2∞ (Ω)

.

Denote β(Q) =
∑

ε∈E |Q|−2m/n|σ(Q, ε)|2. This vanishes if Q 6∈ DmI (Ω). If Q ∈
DmI (Ω) and Q ⊂ P then there exists a maximal cube Qm ∈ DmI (Ω) with the property
Q ⊂ Qm ⊂ P . Denote

M = {Qm : Q ⊂ P and Q ∈ DmI (Ω)}.
Fix Q,R ∈ M. Then Q ∪ R ⊂ P and Q ∩ R = ∅ because of maximality and
properties of dyadic cubes. Combining these facts, we get

1

|P |
∑
Q⊂P

β(Q) =
1

|P |
∑
Q∈M

|Q||Q|−1
∑
R⊂Q

β(R) ≤
||τ ||2

ḟm,2∞ (Ω)

|P |
∑
Q∈M

|Q| ≤ ||τ ||2
ḟm,2∞ (Ω)

,

which is as required. �

Reflection of dyadic cubes on Whitney coplump domains. We provide a geometric
characterization of Whitney coplump domains in terms of so called (α, β)-coplump
domains. This gives us a certain reflection of dyadic cubes.

Definition 3.50. Let α, β > 0. A domain ∅ 6= Ω ⊂ Rn, n ≥ 2, is (α, β)-coplump if
for every Q ∈ DB(α,Ω) there is a reflected cube Qs ∈ DE(Ω) satisfying diam(Q) =
diam(Qs) and dist(Q,Qs) ≤ β diam(Q). If Ω is (α, β)-coplump domain then we
extend the reflection Q 7→ Qs to all of the dyadic cubes by setting Qs = Q if
Q ∈ D \ DB(α,Ω).
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Remark 3.51. Regarding an (α, β)-coplump domain Ω ⊂ Rn,
• If α ≥ α̃ and β ≤ β̃ then Ω is (α̃, β̃)-coplump. We will show that for every
α̃ > 0 there exists β̃ > 0, depending on the parameters α̃, n, so that Ω is
(α̃, β̃)-coplump.
• Ω is minimally regular, that is, Ω = int(Ω). To prove the nontrivial inclusion,
let x ∈ int(Ω). Then B(x, r) ⊂ Ω for some r > 0. We assume, aiming at
a contradiction, that x 6∈ Ω. Then x ∈ Ω \ Ω = ∂Ω. Choose a cube
Q ∈ DB(α,Ω) such that x ∈ Q and diam(Q) < r/(2 + β). Then there exists
a cube Qs ∈ DE(Ω) so that Qs ∩ Ω = ∅ but also Qs ⊂ B(x, r) ⊂ Ω because,
for y ∈ Qs, we have

|x− y| ≤ diam(Q) + dist(Q,Qs) + diam(Qs) ≤ (2 + β) diam(Q) < r.

• Assume that ∅ 6= Ω 6= Rn. Then there exists x ∈ ∂Ω and therefore also
arbitrarily large cubes Q ∈ DB(α,Ω). In particular, there are arbitrarily
large cubes Qs ⊂ Rn \ Ω and therefore Rn \ Ω is unbounded.
• Assume that Ω 6= Rn. For every interior cube Q ∈ DI(α,Ω) there exists
a unique maximal cube Qmax(Q) ∈ DI(α,Ω) such that P ⊂ Qmax(Q) if
P ∈ DI(α,Ω) and Q ⊂ P . Furthermore, we have

DI(α,Ω) =
⋃

P∈DI(α,Ω)

{Q ∈ D : Q ⊂ Qmax(P )}.

and the family {Qmax(Q) : Q ∈ DI(α,Ω)} is a partition of the domain Ω.

The following result is due to J. Väisälä [Väi08] but the proof is ours. For the
definition of c-coplump domains, see Definition 1.14.

Theorem 3.52. Let ∅ 6= Ω ⊂ Rn, n ≥ 2, be a domain such that diam(Rn \Ω) =∞.
If Ω is c-coplump then it is (c, 3c)-coplump. Conversely, if Ω is (α, β)-coplump then
it is c-coplump with c =

√
n(12 + 4β).

Proof. First assume that Ω is c-coplump and fix Q ∈ DB(c,Ω). Then Q ∩ Ω 6=
∅ and dist(Q, ∂Ω) < c diam(Q). Fix a point x ∈ ∂Ω such that dist(x,Q) ≤
c diam(Q). Using the assumptions we find a point z ∈ B̄(x, 2c diam(Q)) such that
B(z, 2 diam(Q)) ⊂ Rn \ Ω. Let Qs be the unique dyadic cube such that z ∈ Qs

and `(Qs) = `(Q). Then Qs ⊂ B(z, 2 diam(Q)) ⊂ Rn \ Ω; that is, Qs ∈ DE(Ω).
Furthermore, we have

dist(Qs, Q) ≤ 2c diam(Q) + dist(x,Q) ≤ 3c diam(Q).

We conclude that Ω is (c, 3c)-coplump.
Conversely, assume that Ω is (α, β)-coplump. Consider any x ∈ Rn \Ω and r > 0

so that
B(x, r/(3 + β)) 6⊂ Rn \ Ω.

Then there is w ∈ ∂Ω satisfying |x − w| < r/(3 + β). Let Q ∈ D be a cube such
that w ∈ Q and r/(6 + 2β) ≤ diam(Q) < r/(3 + β). Clearly Q ∈ DB(α,Ω) and
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therefore there exists a cube Qs ∈ DE(Ω) such that `(Qs) = `(Q) and dist(Qs, Q) ≤
β diam(Q). In particular, if y ∈ Qs, then

|x− y| ≤ |x− w|+ diam(Q) + dist(Q,Qs) + diam(Qs) < r

proving that Qs ⊂ B(x, r). As a consequence, the centerpoint z of Qs belongs to
B(x, r). Furthermore, we have

B

(
z,

r

4
√
n(3 + β)

)
⊂ B(z, `(Qs)/2) ⊂ Qs ⊂ Rn \ Ω,

proving the claim. �

We have the following characterization of Whitney coplump domains.

Theorem 3.53. Let ∅ 6= Ω ⊂ Rn, n ≥ 2, be a domain. Then
• Ω is Whitney coplump if, and only if, it is (α, β)-coplump for some α, β > 0.
• If Ω is (α, β)-coplump and α̃ > 0 then there exists β̃ > 0, depending at most
on n, α̃, β, so that Ω is (α̃, β̃)-coplump.

Proof. The first claim follow from Theorem 3.52 and Remark 3.51 about the un-
boundedness of Rn \ Ω if Ω 6= Rn. Then we prove the second claim. If Ω = Rn

then we are done because Rn is (α̃, β̃)-coplump for every β > 0. Assume then that
Ω 6= Rn. Then diam(Rn \ Ω) = ∞, see Remark 3.51, and we are in the position to
apply Theorem 3.52. But first note that Ω is (α, α̃+β)-coplump because α̃+β > β.
In particular, Ω is c-coplump where c =

√
n(12 + 4(α̃ + β)) > α̃. Applying The-

orem 3.52 again we see that Ω is (c, 3c)-coplump and, because c > α̃, it is also
(α̃, 3c)-coplump. �

This characterization allows us to choose the α-parameter such that suppψεQ ⊂⊂
Ω if Q is an α-interior cube and ψεQ is an (m+ 1)-regular wavelet. This is recorded
next.

Definition 3.54. Let Ω ⊂ Rn be a Whitney coplump domain and m ∈ N0. Denote
by Cm+1 > 0 the constant for the (m+1)-regular wavelets, see B4)–B5) in Appendix
B, and denote also βm = 1 + inf{β > 0 : Ω is (Cm+1, β)-coplump} <∞.

Remark 3.55. Let Ω ⊂ Rn be a Whitney coplump domain and let m ∈ N0. Then
the domain Ω is (Cm+1, βm)-coplump. In particular, if ψεQ’s are (m+ 1)-regular, we
have

• suppψεQ ⊂ Cm+1Q ⊂⊂ Ω if (Q, ε) ∈ DmI (Ω)× E ,
• `(Q) = `(Qs) and Qs ⊂ B(xQ, (2 + βm) diam(Q)) if Q ∈ D,
• Qs ⊂ Rn \ Ω if Q ∈ D \ DmI (Ω).

In the sequel m ∈ N0 is explicitly given but the parameters Cm+1, βm are often
omitted. The convention is that the given index m (implicitly) determines the
parameters Cm+1 and βm as in Definition 3.54.
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Remark 3.56. Later in Theorem 6.6 we prove that Whitney coplump domains are
invariant under K-quasiconformal mappings f : Rn → Rn. This result combined
with Theorem 3.53 shows that (α, β)-coplump domains are also invariant: if Ω ⊂ Rn

is (α, β)-coplump, then the image fΩ is (α̃, β̃)-coplump for some α̃, β̃ that depend
at most on α, β, n,K,Ω.

3.3. Endpoint estimates for restricted operators. Let T ∈ SK−mRn (δ) be asso-
ciated with a global kernel and ∅ 6= Ω ⊂ Rn be a domain. The ultimate goal in this
section is to characterize when

(3.57) {∂αT : |α| = m} ⊂ L (L2(Ω))

and the same with T replaced by T ∗. This is the TχΩ theorem for restricted oper-
ators. The present object of study is the boundedness on certain endpoint spaces
and the following results give the easy direction of the TχΩ theorem. Our results
here read as follows

• Assume that ∅ 6= Ω ⊂ Rn, n ≥ 2, is any domain and the condition (3.57)
holds. Then T ∈ L (L∞(Ω), ḟm,2∞ (Ω)).
• Assume that Ω ⊂ Rn is a uniform domain and that the condition (3.57)
holds. Then TχΩ = 0 in ḟm,2∞ (Ω) if, and only if, T ∈ L (BMO(Ω), ḟm,2∞ (Ω)).

The downside is that the target ḟm,2∞ (Ω) is a large space. We enhance the target
space in connection with the TχΩ theorem, see later Corollary 3.117, but there we
need to restrict to Whitney coplump domains.

Standing assumptions and notation. Let ∅ 6= Ω ⊂ Rn, n ≥ 2, be a domain and
0 < m < n. Let {ψεQ} ⊂ Cm+1

0 (Rn) be the family of (m + 1)-regular wavelets. Fix
the family DmI (Ω) in Definition 3.45. Fix S, T ∈ SK−mRn (δ) and denote S ∼ T if the
associated kernels KS, KT ∈ K−mRn (δ) satisfy

(3.58) KS|Ω× Ω \ {(x, x)} = KT |Ω× Ω \ {(x, x)}.

Notice that ∼ defines an equivalence relation in SK−mRn (δ). Let α ∈ Nn
0 satisfy

|α| = m. We denote ∂αT ∈ L (Lp(Ω)) if

(3.59) ∂α ◦ id∗ ◦T ◦ id : C0(Ω)→ (Cm
0 (Ω))∗ ∈ L (Lp(Ω))

in the sense of (3.3). Here id : C0(Ω) ↪→ C0(Rn) and id∗ : (C0(Rn))∗ ↪→ (C0(Ω))∗

are canonical inclusions. If S ∼ T and ∂αS ∈ L (Lp(Rn)), then ∂αT ∈ L (Lp(Ω)).
Fix b ∈ D(δ). Then Tb : D × E → C is defined in (3.12) and we denote Tb ∈

ḟm,2∞ (Ω) if {Tb(Q, ε)} ∈ ḟm,2∞ (Ω). For instance, we have bχΩ ∈ D(δ) if b ∈ L∞(Ω)

and we denote T ∈ L (L∞(Ω), ḟm,2∞ (Ω)) if

(3.60) ||T (bχΩ)||ḟm,2∞ (Ω) ≤ C||b||L∞(Ω)

holds with C independent of b ∈ L∞(Ω).
Assume that Ω ⊂ Rn is a uniform domain. There exists a bounded and linear

extension operator E : BMO(Ω) → BMO(Rn), Eb|Ω = b if b ∈ BMO(Ω) [Jon80].
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Example 3.15 shows that bχΩ = (Eb)χΩ ∈ D(δ) if b ∈ BMO(Ω). This allows us to
define T (bχΩ) using (3.12) and T ∈ L (BMO(Ω), ḟm,2∞ (Ω)) if

(3.61) ||T (bχΩ)||ḟm,2∞ (Ω) ≤ C||b||BMO(Ω)

holds with C independent of b ∈ BMO(Ω). Because of ||χΩ||BMO(Ω) = 0, the condi-
tion TχΩ = 0 in ḟm,2∞ (Ω) is necessary for the inequality (3.61) to hold.

Norm estimates of Tb for b ∈ L∞(Ω). A Calderón–Zygmund operator T ∈ CZO
maps L∞(Rn) to BMO(Rn) boundedly [Gra04, p. 580–582]. The counterpart in our
setting is formally stated as follows:

T ∈ SK−mRn (δ) and {∂αT : |α| = m} ⊂ L (L2(Ω))

⇒ T ∈ L (L∞(Ω), ḟm,2∞ (Ω)).
(3.62)

Definition (3.12) and Corollary 3.11 combined yield the estimate

(3.63) sup{|Q|−1/2−m/n|Tb(Q, ε)| : (Q, ε) ∈ D × E} ≤ Cn,m,δ,Cm+1,T ||b||L∞(Rn)

if b ∈ L∞(Rn). This estimate is sharp: Theorem 3.93 implies that there exists
a so called (adjoint) paraproduct operator Π∗τ ∈ SK−mRn (δ) satisfying Π∗τ1(Q, ε) =

|Q|1/2+m/n for every (Q, ε) ∈ D×E . As a consequence, Π∗τ1 6∈ ḟm,2∞ (Rn). In the light
of (3.62) we see that

{∂αΠ∗τ : |α| = m} 6⊂ L (L2(Rn)).

Thus the boundedness properties for WSIO’s are not trivial. The paraproduct
operators are defined later and now we turn to the proof of (3.62).

We begin with a tail estimate which arises from the globally defined kernel. This
tail lemma is useful also later in connection with the so called interior paraproduct
operators.

Lemma 3.64. Assume that T ∈ SK−mRn (δ) and b ∈ L∞(Rn). Let P ∈ D and B ⊂ Rn

be a measurable set, satisfying dist(B,P ) ≥ %`(P ) for some % > 0. Then

1

|P |
∑
Q⊂P

∑
ε∈E

|Q|−2m/n|T (bχB)(Q, ε)|2 ≤ C||bχB||2L∞(Rn)

so that the constant C depends at most on the parameters %, n,m, δ, Cm+1, T .

Proof. By scaling we can assume that ||bχB||L∞(Rn) = 1. Fix a dyadic cube Q ⊂ P
and ε ∈ E . Applying Lemma 3.8 we have the estimate

|T (bχB)(Q, ε)| =
∣∣∣∣ ∫

B

b(x)T ∗ψεQ(x)dx

∣∣∣∣ ≤ ∫
B

|T ∗ψεQ(x)|dx

≤ C|Q|−1/2+m/n

∫
B

(1 + `(Q)−1|x− xQ|)−n−δdx.
(3.65)
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Fix x ∈ B. Due to the assumptions, we have |x−xQ| ≥ %`(P ) and also 1 +
|x−xQ|
`(Q)

≥
%`(P )
`(Q)

. Using this and the estimate (3.65), we get

|T (bχB)(Q, ε)| ≤ C|Q|−1/2+(m+δ/2)/n|P |−(δ/2)/n

∫
Rn

(1 + `(Q)−1|x− xQ|)−n−δ/2dx

≤ C|Q|1/2+(m+δ/2)/n|P |−(δ/2)/n.

(3.66)

Summing the squared estimates with respect to ε ∈ E , we get

(3.67)
∑
ε∈E

|T (bχB)(Q, ε)|2 ≤ C|Q|1+(2m+δ)/n|P |−δ/n, if Q ∈ D and Q ⊂ P.

Denote `(P ) = 2−µ and `(Q) = 2−ν . Then, applying the estimate (3.67), we get

1

|P |
∑
Q⊂P

∑
ε∈E

|Q|−2m/n|T (bχB)(Q, ε)|2 ≤ |P |−δ/n C
|P |

∑
Q⊂P

|Q|1+δ/n

≤ |P |−δ/n C
|P |

∞∑
ν=µ

|P |
2−νn

2−νn2−νδ = C|P |−δ/n
∞∑
ν=µ

2−νδ ≤ C%,n,m,δ,Cm+1,T .

This estimate is as required. �

In order to estimate ||T (bχΩ)||ḟm,2∞ (Ω) we apply the tail lemma above which reduces
the situation to the boundedness assumption

{∂αT : |α| = m} ⊂ L (L2(Ω)).

The inclusion to the smaller space L (L2(Rn)) need not hold true.

Theorem 3.68. Assume that ∅ 6= Ω ⊂ Rn, n ≥ 2, is a domain. Let T ∈ SK−mRn (δ)

be such that ∂αT ∈ L (L2(Ω)) if |α| = m. Then T ∈ L (L∞(Ω), ḟm,2∞ (Ω)). To put
this otherwise, we have T (bχΩ) ∈ ḟm,2∞ (Ω) for every b ∈ L∞(Ω) and

||T (bχΩ)||ḟm,2∞ (Ω) ≤ C||b||L∞(Ω),

where the constant C is independent of b.

Proof. By using the linearity, we can assume that ||b||L∞(Ω) = 1. Let us denote
β(Q) =

∑
ε∈E |T (bχΩ)(Q, ε)|2 if Q ∈ DmI (Ω). According to Definition 3.47 it suffices

to prove that

(3.69) ||T (bχΩ)||2
ḟm,2∞ (Ω)

= sup
P∈DmI (Ω)

1

|P |
∑
Q⊂P

|Q|−2m/nβ(Q) ≤ C

with constant C independent of b. For this purpose we fix P ∈ DmI (Ω) and denote
ΣP = |P |−1

∑
Q⊂P |Q|−2m/nβ(Q). If (Q, ε) ∈ DmI (Ω)× E satisfies Q ⊂ P , we write

(3.70) T (bχΩ)(Q, ε) = T (bχΩ\4P )(Q, ε) + T (bχ4P∩Ω)(Q, ε).
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Denote also β1(Q) =
∑

ε∈E |T (bχΩ\4P )(Q, ε)|2 and β2(Q) =
∑

ε∈E |T (bχ4P∩Ω)(Q, ε)|2.
Then

ΣP ≤
3

|P |
∑
Q⊂P

|Q|−2m/nβ1(Q) +
3

P

∑
Q⊂P

|Q|−2m/nβ2(Q) = ΣP,1 + ΣP,2,

Notice that dist(Ω \ 4P, P ) ≥ `(P ). Hence, by using Lemma 3.64 with B = Ω \ 4P ,
we get the estimate

(3.71) ΣP,1 =
1

|P |
∑
Q⊂P

|Q|−2m/nβ1(Q) ≤ C1.

Here the finite constant C1 is independent of P and b.
In order to estimate the sum ΣP,2 we need some preparations. Fix ε ∈ E and

consider the corresponding lifted wavelet in Lemma B.2 – there is a canonical α =
α(ε,m) ∈ Nn

0 , |α| = m, and a lifted wavelet ψε,m satisfying ψε = ∂αψε,m and
B4)–B5) in Appendix B. Fix a dyadic cube Q ⊂ P . It satisfies Q ∈ DmI (Ω) and

|Q|−m/nψεQ = ∂αψε,mQ .

Here suppψε,mQ ⊂ Cm+1Q ⊂⊂ Ω, which follows from Lemma B.2 and Remark 3.46.
The assumption ∂αT ∈ L (L2(Ω)) implies that fα = ∂αT (bχ4P∩Ω) ∈ L2(Ω) satisfies

(3.72) ||fα||L2(Ω) ≤ CT,α||bχ4P∩Ω||L2(Ω).

Using these preparations we can now proceed as follows

|T (bχ4P∩Ω)(Q, ε)| = |〈bχ4P∩Ω | T ∗ψεQ〉|
= |Q|m/n|〈∂αT (bχ4P∩Ω) | ψε,mQ 〉|
= |Q|m/n|〈ψε,mQ | χΩf

α〉|.
(3.73)

Squaring this identity and summing it with respect to the dyadic cubes Q ⊂ P , but
still keeping ε fixed, we get
(3.74)

ΣP,2(ε) =
1

|P |
∑
Q⊂P

|Q|−2m/n|T (bχ4P∩Ω)(Q, ε)|2 ≤ 1

|P |
∑
Q∈D

∑
σ∈E

|〈ψσ,mQ | χΩf
α〉|2.

Then, by expanding the lifted wavelets ψσ,mQ ∈ L2(Rn), we obtain

|〈ψσ,mQ | χΩf
α〉| =

∣∣∣∣∑
P∈D

∑
ρ∈E

〈ψσ,mQ | ψρP 〉〈ψ
ρ
P | χΩf

α〉
∣∣∣∣.

The matrix M = M lift
m defined by

M lift
m (Q, σ;P, ρ) = 〈ψσ,mQ | ψρP 〉

for Q,P ∈ D and σ, ρ ∈ E is almost diagonal, see Example 3.31. Thus, applying
Lemma 3.36, we see that M is a bounded matrix operator on `2(D × E). Using
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this result within the right-hand side of the inequality (3.74) and then using (3.72)
yields

(3.75) ΣP,2(ε) ≤ CM
|P |
||χΩf

α||2L2(Rn) ≤
CM,T,α

|P |
||bχ4P∩Ω||2L2(Ω) ≤ C2(ε).

Here the finite constant C2(ε) is independent of P and b because ||b||L∞(Ω) ≤ 1.
Combining this with the inequality (3.71) we see that

ΣP ≤ 3ΣP,1 + 3
∑
ε∈E

ΣP,2(ε) ≤ C

with upper bound independent of P and b. Taking supremum of ΣP over all P ∈
DmI (Ω) we obtain the estimate (3.69) as required. �

Norm estimates of Tb for b ∈ BMO(Ω). A Calderón–Zygmund operator T ∈ CZO
is bounded on BMO(Rn) if, and only if, T1 = 0 [MC97, p. 23]. Here we establish a
similar result for WSIO’s restricted to uniform domains.

Theorem 3.76. Let Ω ⊂ Rn be a uniform domain. Let T ∈ SK−mRn (δ) be such
that ∂αT ∈ L (L2(Ω)) if |α| = m. Then TχΩ = 0 in ḟm,2∞ (Ω) if, and only if,
T ∈ L (BMO(Ω), ḟm,2∞ (Ω)). The latter condition is equivalent to the estimate

||T (bχΩ)||ḟm,2∞ (Ω) ≤ C||b||BMO(Ω),

where C is independent of b ∈ BMO(Ω).

Proof. The sufficiency follows as ||χΩ||BMO(Ω) = 0. Next we assume that TχΩ = 0 in
ḟm,2∞ (Ω). Because the extension operator E : BMO(Ω) → BMO(Rn) is bounded, it
suffices to prove the estimate

(3.77) ||T (bχΩ)||ḟm,2∞ (Ω) = ||T ((Eb)χΩ)||ḟm,2∞ (Ω) ≤ C||Eb||BMO(Rn),

where C should be independent of Eb. The proof of this is estimate very similar to
the proof of Theorem 3.68 and we only indicate the required modifications here.

Fix P ∈ DmI (Ω) and (Q, ε) ∈ DmI (Ω)× E satisfying Q ⊂ P . Analogous to (3.70),
but using also the assumption TχΩ = 0 in ḟm,2∞ (Ω), we have

T ((Eb)χΩ)(Q, ε) = T ((Eb)χΩ)(Q, ε)− (Eb)4PTχΩ(Q, ε)

= T ((Eb− (Eb)4P )χΩ\4P )(Q, ε) + T ((Eb− (Eb)4P )χΩ∩4P )(Q, ε).

First of all, we need to reach the estimate

(3.78)
1

|P |
∑
Q⊂P

∑
ε∈E

|Q|−2m/n|T ((Eb− (Eb)4P )χΩ\4P )(Q, ε)|2 ≤ C1||Eb||2BMO(Rn),
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where C1 should be independent of P and Eb. Estimating as in Lemma 3.64, we
have

|T ((Eb− (Eb)4P )χΩ\4P )(Q, ε)|

≤ C|Q|−1/2+m/n

(
`(Q)

`(P )

)δ/2 ∫
Rn
|Eb(x)− (Eb)4P |(1 + `(Q)−1|x− xQ|)−n−δ/2dx.

(3.79)

We invoke following estimate, valid for functions in the space BMO(Rn),

(3.80) |(Eb)4P − (Eb)Q| = Cn||Eb||BMO(Rn)

(
log

`(P )

`(Q)
+ log 8

)
.

Combining the estimates (3.80), (3.16), and (3.79), we get

|T ((Eb− (Eb)4P )χΩ\4P )(Q, ε)| ≤ C||Eb||BMO(Rn)|Q|1/2+m/n

(
`(Q)

`(P )

)δ/2(
1 + log

`(P )

`(Q)

)
.

This corresponds to the estimate (3.66) altough this is slightly worse due to loga-
rithmic factor. However, this factor is easily compensated and we can continue to
estimate as in Lemma 3.64 to reach the required estimate (3.78). Second we need
the estimate

ΣP,2 =
1

|P |
∑
Q⊂P

∑
ε∈E

|Q|−2m/n|T ((Eb− (Eb)4P )χΩ∩4P )(Q, ε)|2 ≤ C||Eb||2BMO(Rn),

(3.81)

with C independent of P and Eb. First of all, (Eb − (Eb)4P )χΩ∩4P ∈ L2(Ω) and
therefore we can proceed beginning from the estimate (3.73) and until we reach
(3.75), which is replaced by the following estimate in the present context

ΣP,2 ≤
C

|P |
||(Eb− (Eb)4P )χΩ∩4P ||2L2(Ω) ≤

C

|P |
||(Eb− (Eb)4P )χ4P ||2L2(Rn)

=
C

|P |

∫
4P

|Eb(x)− (Eb)4P |2dx ≤ C||Eb||2BMO(Rn).

This is the required estimate (3.81) since the constant C is independent of P and Eb.
Finally, combining the estimates (3.78) and (3.81), we reach the estimate (3.77). �

Example 3.82. Here are examples when Theorem 3.76 is applicable.

• The assumptions of Theorem 3.76 hold if Ω = Rn and T is of convolution
type. This follows from Theorem 3.40.
• Later in Definition 3.91 we define operators Πτ ∈ SK−mRn (δ) satisfying Πτ1 =

0 ∈ ḟm,2∞ (Rn) but Π∗τ1 = 0 ∈ ḟm,2∞ (Rn) only if Πτ ≡ 0. Hence Theorem 3.76
applies to those operators Πτ that meet the L2(Rn)-bundedness criterion.
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3.4. TχΩ theorem for restricted operators. Next we treat the TχΩ theorem for
restricted operators. Its difficult direction remains to be proven and, to describe it,
we fix T ∈ SK−mRn (δ) that is associated with a globally defined kernel K ∈ K−mRn (δ).
The difficult direction of the TχΩ theorem states that

(3.83) TχΩ, T
∗χΩ ∈ ḟm,2∞ (Ω)⇒ {∂αT, ∂αT ∗ : |α| = m} ⊂ L (L2(Ω)),

where Ω ⊂ Rn is a Whitney coplump domain. The assumption on the left-hand
side of (3.83) is rather weak because the space ḟm,2∞ (Ω) is defined in terms of the
interior cubes and the boundary cubes are omitted.

The main tools here are certain reflected paraproduct operators that are obtained
from the usual paraproducts by establishing a geometric modification. This modi-
fication is based on the reflection of dyadic cubes that exists in a Whitney coplump
domain.

Let us sketch the proof of (3.83). If T ∈ SK−mRn (δ), there exists reflected para-
product operators πT , πT ∗ ∈ SK−mRn (δ) such that the reduced operator

(3.84) M = T − πT ∗ − π∗T ∈ SK−mRn (δ)

satisfies the all the assumptions of the reduced T1 theorem, Theorem 3.37. In
particular, it satisfies M1 = 0 = M∗1. Applying the reduced T1 theorem, we see
that

(3.85) {∂αM,∂αM∗ : |α| = m} ⊂ L (L2(Rn)).

The proof of (3.83) in the case Ω = Rn is an adaptation of the proof of the T1
theorem of David and Journé. First we show the implication

(3.86) T1, T ∗1 ∈ ḟm,2∞ (Rn)⇒ {∂απT ∗ , ∂απ∗T : |α| = m} ⊂ L (L2(Rn)).

This is a direct computation, using the special properties of the paraproduct oper-
ators and the reflection of dyadic cubes. Combining (3.84), (3.85), and (3.86), we
obtain the conclusion in (3.83) for this special case Ω = Rn. To proceed in the case
of general Whitney coplump domains Ω ⊂ Rn we decompose the reflected para-
product operators πT ∗ and πT to interior (I) and residual (R) parts πT ∗ = IT ∗ + RT ∗

and πT = IT + RT . This decomposition and the definition (3.84) yield the following
important identity

(3.87) M + IT ∗ + I∗T = T − RT ∗ − R∗T .

The interior and residual parts are defined so that, first of all,

(3.88) 〈RT ∗f | g〉 = 0 = 〈R∗Tf | g〉, if f, g ∈ C0(Ω),

but also

(3.89) TχΩ, T
∗χΩ ∈ ḟm,2∞ (Ω)⇒ {∂αIT ∗ , ∂

αI∗T : |α| = m} ⊂ L (L2(Rn)).

Both (3.88) and (3.89) are crucial and follow from the properties of reflection Q 7→
Qs and the globally defined kernel. Fix α ∈ Nn

0 so that |α| = m, f ∈ C0(Ω), and
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g ∈ Cm
0 (Ω). Then, using (3.87) and (3.88), we get

|〈∂αTf | g〉| = |〈∂α(T − RT ∗ − R∗T )f | g〉 = |〈∂α(M − IT ∗ − I∗T )f | g〉|.

Finally, applying (3.89) with this identity, we get the required norm-estimate

|〈∂αTf | g〉| ≤ CT ||f ||L2(Rn)||g||L2(Rn) = CT ||f ||L2(Ω)||g||L2(Ω).

As a consequence, we have ∂αT ∈ L (L2(Ω)). Due to symmetry in the assumptions,
we also have ∂αT ∗ ∈ L (L2(Ω)). These are as required in (3.83).

We stick to the definitions and notation introduced in the beginning of Section
3.3 with the exception that the domain Ω ⊂ Rn is assumed to be Whitney coplump.

Basic properties of reflected paraproducts. Here we cover the definition and basic
properties of reflected paraproducts. We adapt the treatment in [MC97, pp. 57–60]
to meet our needs and the geometric modification involved in this adaptation is
apparently new. Fix a real-valued function Φ ∈ C∞0 (Rn) so that

0 ≤ Φ ≤ 1, supp Φ ⊂ [0, 1)n,

∫
Rn

Φ(x)dx = 1.

Recall that we denote

(3.90) ΦQ(x) = |Q|−1/2Φ(`(Q)−1(x− xQ))

if Q ∈ D and x ∈ Rn. Thus supp ΦQ ⊂ Q and |Q|−1/2
∫

Rn ΦQ(x)dx = 1 if Q ∈ D. A
reflected paraproduct depends on m ∈ {1, 2, . . . , n − 1}, on the function Φ, on the
(m+ 1)-regular wavelets {ψεQ}, and on the reflection

Q 7→ Qs : D → D
associated with the given Whitney coplump domain Ω which is (Cm+1, βm)-coplump;
see Remark 3.55. There is also a parameter τ : D × E → C involved that is more
variable than the fixed quantities before.

Definition 3.91. Let n ≥ 2, 0 < m < n, and τ : D × E → C satisfy

|τ(Q, ε)| ≤ λ|Q|1/2+m/n, if (Q, ε) ∈ D × E ,
where λ > 0. Let f ∈ C0(Rn). Then the reflected paraproduct (of τ and f) is the
function Πτf : Rn → C that is defined pointwise for x ∈ Rn by

(3.92) Πτf(x) = ΠΦ,m,s,Ω,τf(x) =
∑
Q∈D

∑
ε∈E

τ(Q, ε)|Q|−1/2ΦQs(x)〈f | ψεQ〉.

Let us then quantify the operator theoretic setting and properties of reflected
paraproducts. We show that the reflected paraproduct is well defined and it coin-
cides with a weakly singular integral operator that is associated with a standard ker-
nel of order −m. Accordingly we interprete reflected paraproducts as WSIO’s. One
of the important properties of a reflected paraproduct as a WSIO is that Π∗τ1 = τ̄

in ḟm,2∞ (Rn) and the dependence of Πτ on the (m+1)-regular wavelets is a reflection
of this property.
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Theorem 3.93. Let δ ∈ (0, 1), n ≥ 2, and 0 < m < n. Let τ : D × E → C be such
that |τ(P, ρ)| ≤ λ|P |1/2+m/n if (P, ρ) ∈ D × E. Then the series (3.92) converges
absolutely and Πτ ∈ SK−mRn (δ) is associated with a kernel

κ = κτ ∈ Cm+1(Rn × Rn \ {(x, x)})

that is defined by an absolutely convergent series

(3.94) κ(x, y) =
∑
Q∈D

∑
ε∈E

τ(Q, ε)|Q|−1/2ΦQs(x)ψεQ(y)

and satisfies the estimates

|∂αx∂βy κ(x, y)| ≤ C|x− y|m−n−|α|−|β|

for every α, β ∈ Nn
0 with |α| + |β| ≤ m + 1. Here the constant C depends at most

on the parameters n,m, βm, λ,Φ, Cm+1. We also have Π∗τ1 = τ̄ and Πτ1 = 0 in
ḟm,2∞ (Rn). To formulate this otherwise, we have∫

Rn
Πτψ

ρ
P (x)dx = τ(P, ρ),

∫
Rn

Π∗τψ
ρ
P (x)dx = 0,

if (P, ρ) ∈ D × E and ψεQ’s are (m+ 1)-regular wavelets.

Proof. Denote r = m + 1 and by C we denote any constant that may depend at
most on n,m, βm, λ,Φ, Cm+1. If ν ∈ Z we denote

κν(x, y) =
∑
Q∈Dν

∑
ε∈E

τ(Q, ε)|Q|−1/2ΦQs(x)ψεQ(y).

Fix ν ∈ Z and (Q, ε) ∈ Dν × E . Using (3.90) and Remark 3.55, we see that

supp ΦQs ⊂ Qs ⊂ B(xQ, (2 + βm) diam(Q)).

Applying this relation and the property B4) of (m+ 1)-regular wavelets yields

(3.95) supp ΦQs ∪ suppψεQ ⊂ B(xQ, γ diam(Q)), γ = 2 + βm + Cm+1.

Fix x ∈ Rn. Assuming that x ∈ supp ΦQs , we have Q ⊂ B(x, (1 + γ) diam(Q)).
Since the cubes in the family Dν are disjoint and diam(P ) =

√
n`(P ) =

√
n2−ν if

P ∈ Dν , there are at most

|B(x, (1 + γ)
√
n2−ν)|

2−νn
= Cn(1 + γ)n = %

cubes in the family
Dν(x) = {P ∈ Dν : x ∈ supp ΦP s}.

This upper bound is independent of ν ∈ Z and x ∈ Rn. Similar reasoning shows
that the number of cubes in the family Dν(K) = {P ∈ Dν : K ∩ supp ΦP s 6= ∅},
where K ⊂ Rn is a compact set, is finite depending essentially on diam(K) and ν
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but also on other ambient parameters. This implies that κν ∈ Cm+1(Rn×Rn) and,
if x, y ∈ Rn and |α|+ |β| ≤ m+ 1, we have the estimate

|∂αx∂βy κν(x, y)| ≤
∑

Q∈Dν(x)

∑
ε∈E

|τ(Q, ε)|Q|−1/2∂αxΦQs(x)∂βyψεQ(y)|

≤ λ2n||∂αΦ||L∞(Rn)Cm+1

∑
Q∈Dν(x)

|Q|m/n−1−|α|/n−|β|/n

≤ λ2n||∂αΦ||L∞(Rn)Cm+1%2ν(n+|α|+|β|−m) = C2ν(n+|α|+|β|−m).

(3.96)

Furthermore, if ∂αx∂βxκν(x, y) 6= 0, then there exists (Q, ε) ∈ Dν × E such that
x ∈ supp ΦQs and y ∈ suppψεQ. Using (3.95) we see that

(3.97)
|x− y|
γ
√
n

< `(Q) = 2−ν .

Let d > 0 and denote Ωd = {(x, y) : |x − y| > d} ⊂ Rn × Rn. Fix νd ∈ Z so that
that

2−νd ≤ d/(γ
√
n) < 2−νd+1.

Assuming |α|+ |β| ≤ m+ 1, (x, y) ∈ Ωd and using the (3.96) and (3.97), we get
∞∑

ν=−∞

|∂αx∂βy κν(x, y)| ≤ C

νd∑
ν=−∞

2ν(n+|α|+|β|−m) ≤ Cdm−n−|α|−|β|.

TheWeierstrassM–test shows that the left-hand side converges uniformly in Ωd and,
since ∪d>0Ωd = Rn×Rn\{(x, x)}, we have κ =

∑
ν∈Z κν ∈ Cm+1(Rn×Rn\{(x, x)})

and this series can be differentiated termwise. Assume that |α| + |β| ≤ m + 1,
(x, y) ∈ Rn×Rn \{(x, x)}, and νx,y ∈ Z satisfies 2−νx,y ≤ |x− y|/(γ

√
n) < 2−νx,y+1.

Then (3.96) and (3.97) yields∑
ν∈Z

|∂αx∂βy κν(x, y)| ≤
νx,y∑

ν=−∞

∑
Q∈Dν(x)

∑
ε∈E

|τ(Q, ε)|Q|−1/2∂αxΦQs(x)∂βyψεQ(y)|

≤ C|x− y|m−n−|α|−|β|.

(3.98)

A simple modification of later Proposition 4.6 shows that κ ∈ K−mRn (δ) if 0 < δ < 1.
Next we prove that the paraproduct is associated with kernel κ. Indeed, if f ∈
C0(Rn) and x ∈ Rn, then estimate (3.98) and local integrability of y 7→ |x− y|m−n
yields ∫

Rn

∑
ν∈Z

∑
Q∈Dν(x)

∑
ε∈E

|τ(Q, ε)|Q|−1/2ΦQs(x)ψεQ(y)||f(y)|dy <∞.(3.99)

The dominated convergence theorem implies Πτf(x) =
∫

Rn κ(x, y)f(y)dy. Further-
more, the series (3.92) converges absolutely.

Fix (P, ρ) ∈ D×E . Applying the property B1) of wavelets to the definition of Πτ

we see that
∫

Rn Πτψ
ρ
P = τ(P, ρ).
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Next we prove that
∫

Rn Π∗τψ
ρ
P = 0. First notice that the familyDν(P ) = Dν(suppψρP )

is finite for every ν ∈ Z. Therefore we can apply the Fubini’s theorem and the iden-
tity

∫
ψεQ = 0 for

(3.100)
∫

Rn

∫
Rn
κν(y, x)ψρP (y)dydx = 0.

We claim that it suffices to verify that the function F : Rn → [0,∞),

(3.101) F (x) =
∑
ν∈Z

∣∣∣∣ ∫
Rn
κν(y, x)ψρP (y)dy

∣∣∣∣,
is integrable. Indeed, assuming that F ∈ L1(Rn), we apply the dominated conver-
gence theorem twice – first justified by (3.98) and then by F ∈ L1(Rn) – thereby
reaching the identity∫

Rn
Π∗τψ

ρ
P (x)dx =

∑
ν∈Z

∫
Rn

∫
Rn
κν(y, x)ψρP (y)dydx = 0.

Notice that we also used (3.100). It remains to prove that F ∈ L1(Rn). Using
(3.98) and (3.6) we see that F ∈ L∞(Rn). Assume then that |x−xP | ≥ 2γ diam(P ).
Lemma B.2 shows that there exists α = α(ρ,m + 1) such that |α| = m + 1 and a
function ψρ,m+1 : Rn → C such that ψρ,m+1

P satisfies B4) and B5) in Appendix B
and

ψρP = |P |(m+1)/n∂αψρ,m+1
P .

Using these properties and integrating by parts, we have

F (x) = |P |(m+1)/n
∑
ν∈Z

∣∣∣∣(−1)m+1

∫
Rn
∂αy κν(y, x)ψρ,m+1

P (y)dy

∣∣∣∣
≤ Cm+1|P |(m+1)/n−1/2

∫
B(xP ,γ diam(P ))

∑
ν∈Z

|∂αy κ(y, x)|dy

Using (3.98) with β = 0 and the estimate |y−x| ≥ |x−xP |/2 for y ∈ B(xP , γ diam(P ))
yields F (x) ≤ C|P |1/2+(m+1)/n|x − xP |−n−1. Combining this with the boundedness
of F we see that F ∈ L1(Rn) as required. �

Boundedness of reflected paraproducts. From Definition 3.47 it follows that, if τ ∈
ḟm,2∞ (Rn), then

(3.102) |τ(Q, ε)| ≤ ||τ ||ḟm,2∞ (Rn)|Q|
1/2+m/n, if (Q, ε) ∈ D × E .

Hence Definition 3.91 applies and the reflected paraproduct operator Πτ = ΠΦ,m,s,Ω,τ

exists and it satisfies all the properties described in Theorem 3.93. Here we verify
the following additional boundedness property

τ ∈ ḟm,2∞ (Rn)⇒ {∂αΠτ , ∂
αΠ∗τ : |α| = m} ⊂ L (L2(Rn)).

The main tool here is the following variant of the Carleson’s lemma, which is an
adaptation from [MC97, p. 59].
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Lemma 3.103. Let τ ∈ ḟm,2∞ (Rn) and ω : D × E → [0,∞) be a positive sequence.
Define ω(x) = sup{ω(Q, ε) : x ∈ Q ∈ D and ε ∈ E} if x ∈ Rn. Then∑

Q∈D

∑
ε∈E

|Q|−2m/n|τ(Q, ε)|2ω(Q, ε) ≤ ||τ ||2
ḟm,2∞ (Rn)

∫
Rn
ω(x)dx.

Proof. Denote p(Q, ε) = |Q|−2m/n|τ(Q, ε)|2 if (Q, ε) ∈ D × E . Define χ : D × E ×
[0,∞)→ R by χ(Q, ε, t) = 1, if 0 ≤ t < ω(Q, ε), and χ(Q, ε, t) = 0 otherwise. Then

(3.104)
∑
Q∈D

∑
ε∈E

p(Q, ε)ω(Q, ε) =

∫ ∞
0

∑
Q∈D

∑
ε∈E

p(Q, ε)χ(Q, ε, t)dt.

Fix t > 0. Denote Dt = {x ∈ Rn : ω(x) > t}. Then using the Chebyshev’s
inequality, we have

|Dt| ≤ t−1

∫
Rn

ω(x)dx.

If
∫

Rn ω(x)dx =∞ then we are done. Hence we can assume that |Dt| <∞. Assume
that (Q, ε) ⊂ D×E satisfies χ(Q, ε, t) 6= 0. Then ω(Q, ε) > t and therefore Q ⊂ Dt.
Applying the estimate |Dt| < ∞ we see that there exists a unique maximal cube
Qm(Q) ∈ D satisfying Q ⊂ Qm(Q) ⊂ Dt. The familyMt of these maximal cubes is
disjoint and Qm ⊂ Dt if Qm ∈ Mt. Taking the discussion above into consideration
and using Definition 3.47, we have∑

Q∈D

∑
ε∈E

p(Q, ε)χ(Q, ε, t) ≤
∑

Qm∈Mt

∑
Q∈D :Q⊂Qm

∑
ε∈E

p(Q, ε)

≤ ||τ ||2
ḟm,2∞ (Rn)

∑
Qm∈Mt

|Qm| ≤ ||τ ||2
ḟm,2∞ (Rn)

|Dt|.

Combining this estimate with the identities
∫∞

0
|Dt|dt =

∫
Rn ω(x)dx and (3.104) we

reach the required estimate. �

We prove a boundedness result for the reflected paraproduct operators. Analogous
treatment in the limiting case m = 0 is in [MC97, p. 58–59].

Theorem 3.105. Let n ≥ 2 and 0 < m < n. Assume that τ ∈ ḟm,2∞ (Rn). Then

∂αΠτ , ∂
αΠ∗τ ∈ L (L2(Rn))

for every α ∈ Nn
0 satisfying |α| = m.

Proof. First of all, the reflected paraproduct Πτ is well defined because of the es-
timate (3.102). Theorem 3.93 implies that Πτ ∈ SK−mRn (δ) and therefore the basic
estimates (3.6) and (3.7), along with other properties related to weakly singular
integral operators, are at our disposal. Fix α ∈ Nn

0 such that |α| = m. First we
prove that

∂αΠτ ∈ L (L2(Rn)).
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For this purpose we fix f ∈ C0(Rn) and g ∈ Cm
0 (Rn). Using the definition on weak

derivative and properties of weakly singular integral operators, we have

(3.106) 〈∂αΠτf | g〉 = (−1)m〈f | Π∗τ∂αg〉.

Applying (3.7) we see that Π∗τ∂
αg ∈ Lq(Rn) for some 1 < q <∞. Since the wavelet

approximation converges unconditionally in Lq′(Rn), see B2), we have

|〈f | Π∗τ∂αg〉| =
∣∣∣∣∑
Q∈D

∑
ε∈E

〈f | ψεQ〉〈ψεQ | Π∗τ∂αg〉
∣∣∣∣

≤
∑
Q∈D

∑
ε∈E

|〈f | ψεQ〉||〈Πτψ
ε
Q | ∂αg〉| ≤ ||f ||L2(Rn)G.

(3.107)

In the last inequality we used the Cauchy–Schwarz inequality and the term G is
quantified below. Indeed, using Definition (3.91) and Lemma 3.103, we have

G2 =
∑
Q∈D

∑
ε∈E

|τ(Q, ε)|2|Q|−1|〈ΦQs | ∂αg〉|2

=
∑
Q∈D

∑
ε∈E

|Q|−2m/n|τ(Q, ε)|2|Q|−1|〈(∂αΦ)Qs | g〉|2 ≤ Cτ

∫
Rn

ω(x)dx.

Here ω(x) = sup{ω(Q, ε) : x ∈ Q ∈ D and ε ∈ E} if x ∈ Rn and

ω(Q, ε) = |Q|−1|〈(∂αΦ)Qs | g〉|2, if (Q, ε) ∈ D × E .

Fix x ∈ Rn and (Q, ε) ∈ D×E such that x ∈ Q. According to Remark 3.55 we have

x ∈ supp(∂αΦ)Qs ∪Q ⊂ Qs ∪Q ⊂ B(xQ, (2 + βm) diam(Q)).

Using this we have the estimate√
ω(Q, ε) ≤ ||∂αΦ||∞|Q|−1

∫
B(xQ,(2+βm) diam(Q))

|g(y)|dy ≤ CΦ,n,m,ΩMg(x),

where Mg is the (non-centered) Hardy–Littlewood maximal function of g. Hence
ω(x) ≤ C2

Φ,n,m,ΩMg(x)2 and, combining the estimates above, we get

G2 ≤ Cτ,Φ,n,m,Ω||Mg||22 ≤ CM,τ,Φ,n,m,Ω||g||22
This combined with the identity (3.106) and the estimate (3.107) shows that ∂αΠτ ∈
L (L2(Rn)).

Then we study the operator ∂αΠ∗τ . If f, g are as above then reasoning as in
connection with (3.107), we have

(−1)m〈∂αΠ∗τf | g〉 =
∑
Q∈D

∑
ε∈E

〈Π∗τf | ψεQ〉〈ψεQ | ∂αg〉

=
∑
Q∈D

∑
ε∈E

|Q|−m/nτ(Q, ε)|Q|−1/2〈f | ΦQs〉|Q|m/n〈ψεQ | ∂αg〉.

(3.108)
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Applying the Cauchy–Schwarz inequality and estimating as in the first part of this
proof, we get the estimate

(3.109) |〈∂αΠ∗τf | g〉| ≤ CM,τ,n,Ω||f ||2
(∑
Q∈D

∑
ε∈E

|Q|2m/n|〈ψεQ | ∂αg〉|2
)1/2

.

Because g, (∂αψε)Q ∈ L2(Rn) we have

|Q|m/n〈ψεQ | ∂αg〉 = (−1)m|Q|m/n〈∂αψεQ | g〉

= (−1)m
∑
P∈D

∑
ρ∈E

|Q|m/n〈∂αψεQ | ψ
ρ
P 〉〈ψ

ρ
P | g〉.

Example 3.31 and Lemma 3.36 show that

M = M∂α/∂m = {|Q|m/n〈∂αψεQ | ψ
ρ
P 〉}

is bounded on `2(D × E). Combining this fact with the inequality (3.109), we get
the desired estimate

|〈∂αΠ∗τf, g〉| ≤ CM,τ,n,m,Ω||f ||2||g||2.
Hence we have ∂αΠ∗τ ∈ L (L2(Rn)) as required. �

Interior and residual paraproducts. Here we split the reflected paraproduct into
interior and residual parts and collect their important properties. We keep the
setting described above, that is, reflected paraproducts depend on the sequence τ ,
on the function Φ, on the (m + 1)-regular wavelets, and on the reflection Q 7→ Qs

associated with the Whitney coplump domain Ω. Also the family DmI (Ω) of dyadic
cubes, defined in 3.45, plays a significant role.

Definition 3.110. Let T ∈ SK−mRn (δ). We pose the following definitions
• If ε ∈ E we define τ(Q, ε) =

∫
Rn T

∗ψεQ(x)dx, if Q ∈ DmI (Ω), and τ(Q, ε) = 0,
if Q ∈ D \ DmI (Ω). The interior paraproduct associated with T is defined by
IT = Πτ .
• If ε ∈ E we define σ(Q, ε) =

∫
Rn T

∗ψεQ(x)dx, if Q ∈ D\DmI (Ω), and σ(Q, ε) =
0, if Q ∈ DmI (Ω). The residual paraproduct associated with T is defined by
RT = Πσ.
• The full paraproduct associated with T is defined by πT = IT + RT .

Remark 3.111. Let T ∈ SK−mRn (δ). Combining Corollary 3.11 and Theorem 3.93 we
see that IT ,RT ∈ SK−mRn (δ). The residual paraproduct RT is associated with a kernel
satisfying

κσ|Ω× Ω \ {(x, x)} ≡ 0.

To see this apply the presentation (3.94) and use Remark 3.55 for supp ΦQs ⊂ Qs ⊂
Rn \ Ω if Q ∈ D \ DmI (Ω). In particular, we have the important equivalence

T ∼ T − RM − R∗N

if M,N ∈ SK−mRn (δ). This allows us to normalize operators by using residual para-
products.
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The following boundedness result provides a step towards the TχΩ theorem. The
earlier tail lemma for globally defined kernels turns out to be useful here.

Lemma 3.112. Assume that ∅ 6= Ω ⊂ Rn is a Whitney coplump domain and
T ∈ SK−mRn (δ) satisfies TχΩ ∈ ḟm,2∞ (Ω). Then ∂αIT , ∂

αI∗T ∈ L (L2(Rn)) if |α| = m.

Proof. In this proof C is a generic constant whose value may depend at most on
the parameters n,m,Cm+1, T . Applying Corollary 3.11 and Theorem 3.105 we see
that it suffices to prove that τ ∈ ḟm,2∞ (Rn) where τ is as in Definition 3.110, so that
IT = Πτ . By Lemma 3.49 we are reduced to showing that

||τ ||2
ḟm,2∞ (Ω)

= sup
P∈DmI (Ω)

1

|P |
∑
Q⊂P

∑
ε∈E

|Q|−2m/n|τ(Q, ε)|2 <∞.(3.113)

For this purpose, if Q ∈ DmI (Ω), we denote β(Q) =
∑

ε∈E |τ(Q, ε)|2 and

τΩ(Q, ε) = TχΩ(Q, ε) =

∫
Ω

T ∗ψεQ, τRn\Ω(Q, ε) = τ(Q, ε)− τΩ(Q, ε) = T (χRn\Ω)(Q, ε),

βΩ(Q) =
∑
ε∈E

|τΩ(Q, ε)|2, βRn\Ω(Q) =
∑
ε∈E

|τRn\Ω(Q, ε)|2.

Fix an interior cube P ∈ DmI (Ω) and denote ΣP = |P |−1
∑

Q⊂P |Q|−2m/nβ(Q). This
is well defined since, if Q ∈ D is such that Q ⊂ P , then we have Q ∈ DmI (Ω).
Applying the triangle-inequality, we get

ΣP ≤
3

|P |
∑
Q⊂P

|Q|−2m/nβΩ(Q) +
3

|P |
∑
Q⊂P

|Q|−2m/nβRn\Ω(Q)

≤ 3||TχΩ||2ḟm,2∞ (Ω)
+

3

|P |
∑
Q⊂P

|Q|−2m/nβRn\Ω(Q).

(3.114)

In order to estimate the tail series we fix a dyadic cube Q ⊂ P and index ε ∈ E .
Recall that P ∈ DmI (Ω) and, using Definition 3.45, we have dist(Rn \ Ω, P ) ≥
Cm+1`(P ). Invoking Lemma 3.64 with B = Rn \ Ω, we get the estimate

(3.115)
1

|P |
∑
Q⊂P

|Q|−2m/nβRn\Ω(Q) =
1

|P |
∑
Q⊂P

∑
ε∈E

|Q|−2m/n|T (χRn\Ω)(Q, ε)|2 ≤ C1.

Here the constant C1 <∞ is independent of the cube P ∈ DmI (Ω). Now combining
the estimates (3.115) and (3.114) above, we obtain

sup
P∈DmI (Ω)

ΣP ≤ 3||TχΩ||2ḟm,2∞ (Ω)
+ 3C1 <∞.

This is the required estimate (3.113). �
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Difficult direction of TχΩ theorem. Now we are able to prove the difficult direction
of the TχΩ theorem. Ultimately we rely on the reduced T1 theorem but also on the
reflected paraproduct operators which enable us to extend the restricted operator
to a bounded operator on the whole space.
Theorem 3.116. Assume that ∅ 6= Ω ⊂ Rn is a Whitney coplump domain and
T ∈ SK−mRn (δ) satisfies TχΩ, T

∗χΩ ∈ ḟm,2∞ (Ω). Then there exists S ∈ SK−mRn (δ) such
that S ∼ T and

{∂αS, ∂αS∗ : |α| = m} ⊂ L (L2(Rn)).

In particular, ∂αT, ∂αT ∗ ∈ L (L2(Ω)) if |α| = m.
Proof. Fix α ∈ Nn

0 such that |α| = m. Theorem 3.93 and Corollary 3.11 combined
show that M = T − πT ∗ − π∗T ∈ SK−mRn (δ) satisfies M1 = M∗1 = 0 ∈ ḟm,2∞ (Rn).
Theorem 3.37 shows that ∂αM,∂αM∗ ∈ L (L2(Rn)). Define

S = M + IT ∗ + I∗T ∈ SK−mRn (δ).

Using the assumptions and Theorem 3.112 yields ∂αS, ∂αS∗ ∈ L (L2(Rn)). On the
other hand, we have the identity

S = M + IT ∗ + I∗T = T − RT ∗ − R∗T .

Taking also the Remark 3.111 into account we see that S ∼ T and S∗ ∼ T ∗. Based
on the discussion in connection with (3.59), we see that ∂αT, ∂αT ∗ ∈ L (L2(Ω)). �

Combining Theorem 3.116 and Theorem 3.68, we obtain the following bounded-
ness result complementing Theorem 3.68.
Corollary 3.117. Assume that ∅ 6= Ω ⊂ Rn is a Whitney coplump domain and
T ∈ SK−mRn (δ) satisfies TχΩ, T

∗χΩ ∈ ḟm,2∞ (Ω). Then there exists S ∈ SK−mRn (δ) such
that S ∼ T and

S ∈ L (L∞(Rn), ḟm,2∞ (Rn)).

In particular, if b ∈ C0(Ω), there exists Sb ∈ Ḟm,2
∞ (Rn) such that Sb|Ω = Tb|Ω

pointwise and ||Sb||Ḟm,2∞ (Rn) ≤ C||b||L∞(Ω) with C independent of b.

Formulation of the TχΩ theorem. Finally we obtain the TχΩ theorem. Its proof
follows by combining Theorem 3.116 and Theorem 3.68.
Theorem 3.118. Let ∅ 6= Ω ⊂ Rn be a Whitney coplump domain and T ∈ SK−mRn (δ),
where 0 < m < n and 0 < δ < 1. Then the following two conditions are equivalent

• TχΩ, T
∗χΩ ∈ ḟm,2∞ (Ω),

• ∂αT, ∂αT ∗ ∈ L (L2(Ω)) if |α| = m.
Furthermore, if these conditions hold true, then there exists S ∈ SK−mRn (δ) such that
S ∼ T and the operator S satisfies the conditions above with Ω = Rn.
Remark 3.119. • We strengthen the TχΩ theorem in later Theorem 6.12. Therein

we show that the condition
(3.120) {∂αT, ∂αT ∗ : |α| = m} ⊂ L (Lp(Ω)), if 1 < p <∞,

is equivalent with the two conditions occuring in the TχΩ theorem.
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• The characterizing conditions in the TχΩ theorem are intrinsic to the domain
Ω ⊂ Rn and they are invariant under the equivalence relation∼. This applies
also to the condition (3.120).

The proof of our main result, Theorem 6.19, relies on these intrincity or
invariance properties. In this so called T1 theorem for WSIO’s on admissible
domains Ω ⊂ Rn we begin with an operator T ∈ SK−mΩ (δ) and in the proof
we extend the associated kernelK ∈ K−mΩ (δ) to a global kernel K̂ ∈ K−mRn (δ′).
This defines an extension of the original operator T and we apply the TχΩ

theorem to this extension. However, as a consequence of the intrincity, the
required conditions now depend only on T .
• Here are some results that are related to the TχΩ theorem:

In the formal limiting case Ω = Rn and m = 0 the TχΩ theorem coincides
with the T1 theorem of David and Journé, formulated in Theorem 1.12. This
limiting case is not included in our treatment. There are further results for
Calderón–Zygmund type operators on more general spaces. As an example,
F. Nazarov, S. Treil, and A. Volberg have proved a Tb theorem on non-
homogeneous spaces [NTV03]. A theory of Calderón–Zygmund operators
on Euclidean domains Ω ⊂ Rn follows as a special case if we consider the
space (Rn, µ), where the Borel measure µ is defined in terms of the Lebesgue
measure by µ(A) = mn(Ω ∩ A) for every Borel set A ⊂ Rn.

The treatment [Tor91] of R. H. Torres deals with Calderón–Zygmund type
singular integral operators but also with integral operators associated with
kernels of different order. These include operators resembling the global
WSIO’s [Tor91, Theorem 4.3.12.]. The function spaces involved in Torres’
work are the global Triebel–Lizorkin spaces. In our work the emphasis is in
the boundedness properties of WSIO’s on domains.
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4. Regularity of standard kernels

Finding a solution to certain kernel extension problem in a uniform domain Ω ⊂ Rn

is our last major topic. We will prove that a standard kernel K ∈ K−mΩ (δ) has an
extension to a globally defined kernel of the class K−mRn (δ′) if δ′ < δ. This result
complements the TχΩ theorem, where the kernels need to be globally defined. Our
solution to this kernel extension problem is divided in two parts as follows:

• The first part consists of a regularity result for standard kernels, formally

(4.1) K−mΩ (δ) ⊂ K−mΩ (δ) ⊂ K−mΩ (δ′),

where the kernel space K−mΩ consists of certain smooth kernels of the class
Cm and whose order m derivatives are Calderón–Zygmund standard kernels
if Ω = Rn. The second inclusion in (4.1) is the main result in this section. It
follows from certain almost diagonality estimates combined with a so called
dyadic resolution of unity that we will construct by utilizing the geometry
of uniform domains.
• The second part consists of an extension result for the smooth kernelsK−mΩ (δ)
and this is the main result in the following Section 5.

4.1. Kernel spaces. We define various kernel spaces and collect those inclusions
between these spaces that are somewhat easy to verify. The standard kernel space
K−mΩ (δ) is defined in the Introduction. Next we define the Hölder–Zygmund kernels
km+δ

loc (Ω) and the smooth kernels K−mΩ (δ).

Definition 4.2. Let ∅ 6= Ω ⊂ Rn, n ≥ 2, be a domain. Assume that m ∈ N,
m < n, and 0 < δ < 1. The space of Hölder–Zygmund kernels, denoted by km+δ

loc (Ω),
consists of complex-valued functions K ∈ C(Ω× Ω \ {(x, x)}) satisfying

• size-estimate |K(x, y)| ≤ CK |x− y|m−n, if x, y ∈ Ω,
• (m+ δ)-Hölder–Zygmund condition

|∆m+1
h (K(x, ·), Q, y)| ≤ CK |h|m+δ|x− y|−n−δ

if x, y ∈ Ω, Q ⊂⊂ Ω is a cube, and 2(m + 1)|h| ≤ |x − y|. We also assume
the same estimate but with K(x, ·) replaced by K(·, x).

Definition 4.3. Let ∅ 6= Ω ⊂ Rn, n ≥ 2, be a domain. Assume that m ∈ N,
m < n, and 0 < δ < 1. The space of smooth kernels, denoted by K−mΩ (δ), consists
of complex-valued functions K ∈ Cm(Ω× Ω \ {(x, x)}) satisfying

• size-estimate, given α, β ∈ Nn
0 so that |α|+ |β| ≤ m,

|∂αx∂βyK(x, y)| ≤ CK |x− y|m−n−|α|−|β|

if x, y ∈ Ω,
• Hölder-regularity estimate, given α, β ∈ Nn

0 so that |α|+ |β| = m,

|∂αx∂βyK(x+ h, y)− ∂αx∂βyK(x, y)| ≤ CK |h|δ|x− y|−n−δ
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if x, y, x + h ∈ Ω satisfy 2|h| ≤ |x − y|. We also assume the same estimate
with h-difference placed to the y-variable and x, y, y + h ∈ Ω satisfying
2|h| ≤ |x− y|.

Remark 4.4. • Let K ∈ K−mRn (δ), |α| + |β| = m. Then ∂αx∂βyK is a Calderón–
Zygmund standard kernel as defined in connection with (1.9). Hence WSIO’s
with smooth kernels and Calderón–Zygmund type operators are related to
each other.
• There are analogous function spaces. The kernel space K−mΩ (δ) corresponds
to so called local smoothness space Cm+δ

∞ (Ω). Smooth kernel space K−mΩ (δ)
corresponds to a Hölder space Cm,δ(Ω). Both of these function spaces are
defined in Section 5.

First inclusions between kernel spaces. In this section we will show the following
inclusions

(4.5) K−mΩ (δ) ⊂ km+δ
loc (Ω) ⊂ K−mΩ (δ) ⊂ K−mΩ (δ′),

where Ω ⊂ Rn is a uniform domain. We begin with the first two inclusions because
these are easier to prove. The difficulties lie in the later verification of the last
inclusion, where the uniformity is utilized.

Proposition 4.6. Let ∅ 6= Ω ⊂ Rn, n ≥ 2, be a domain. Assume that m ∈ N,
0 < m < n, and 0 < δ < 1. Then we have the inclusions

K−mΩ (δ) ⊂ km+δ
loc (Ω) ⊂ K−mΩ (δ).

Proof. The size-estimates are valid. Due to symmetry it suffices to prove the regu-
larity estimates with respect to the y-variable only. First we verify that K−mΩ (δ) ⊂
km+δ

loc (Ω) and, for this purpose, let K ∈ K−mΩ (δ), Q ⊂⊂ Ω be a cube, x, y ∈ Ω, and
h ∈ Rn be so that 2(m + 1)|h| ≤ |x − y| and {y, y + h, . . . , y + (m + 1)h} ⊂ Q. It
suffices to show that

(4.7) |∆m+1
h (K(x, ·), Q, y)| ≤ Cn,K |h|m+δ|x− y|−n−δ.

Denoting f = K(x, ·) and using the integral presentation (A.1) for the first m
differences, we are reduced to proving the estimate

(4.8) |∆1
h(∂

α
yK(x, ·), y + (θ1 + · · ·+ θm)h)| ≤ Cn,K |h|δ|x− y|−n−δ

if |α| = m and θ ∈ [0, 1]m. Notice that

2|h| ≤ 2(m+ 1)|h| −m|h| ≤ |x− y| −m|h| ≤ |x− (y + (θ1 + · · ·+ θm)h)|.
Hence we can apply the Hölder-regularity estimate, satisfied by the smooth kernel
K. After doing so we use the estimate 2|x− (y + (θ1 + · · ·+ θm)h)| ≥ |x− y|. This
gives us

|∆1
h(∂

α
yK(x, ·), y + (θ1 + · · ·+ θm)h)| ≤ 2n+δCK |h|δ|x− y|−n−δ,

and this is the estimate (4.8). Hence (4.7) holds and therefore K ∈ km+δ
loc (Ω).



64 ANTTI V. VÄHÄKANGAS

Next we prove that km+δ
loc (Ω) ⊂ K−mΩ (δ). Let K ∈ km+δ

loc (Ω) and denote by CK
the associated constant. Let x ∈ Ω and fix a cube Q = Q(xQ, r) ⊂⊂ Ω, r ≤
|x − xQ|/8

√
n. Let y ∈ Q and h ∈ Rn. If (m + 1)|h| > diam(Q), then {y, y +

h, . . . , y + (m+ 1)h} 6⊂ Q and therefore ∆m+1
h (K(x, ·), Q, y) = 0. Next assume that

(m + 1)|h| ≤ diam(Q). Then, since r ≤ |x− xQ|/8
√
n and |x− xQ| < 2|x− y|, we

have
(m+ 1)|h| ≤ diam(Q) = 2

√
nr ≤ |x− xQ|/4 < |x− y|/2.

Thus 2(m+ 1)|h| < |x− y| and, using the assumptions, we get

|∆m+1
h (K(x, ·), Q, y)| ≤ CK |h|m+δ|x− y|−n−δ ≤ Cn,K |Q|(m+δ)/n|x− xQ|−n−δ.

Combining the estimates above, we obtain

sup
|h|≤diam(Q)

1

|Q|1+(m+δ)/n

∫
Q

|∆m+1
h (K(x, ·), Q, y)|dy ≤ Cn,K |x− xQ|−n−δ.

We assumed that Q(xQ, r) ⊂⊂ Ω satisfies 4 diam(Q) = 8
√
nr ≤ |x − xQ|. As a

consquence, K ∈ K−mΩ (δ) with constant max{CK , Cn,K , 4}. �

4.2. Dyadic resolution of unity. In order to prove the last inclusion in (4.5) we
first construct a so called dyadic resolution of unity in uniform domains. This is a
generalization of a similar construction on special Lipschitz domains [Ryc99].

Let us explain what we mean by a dyadic resolution. If f : Ω→ C is continuous,
then f(x) = 〈f, δx〉, where δx is the Dirac’s delta located at the point x ∈ Ω. This
identity gives rise to a dyadic resolution of f as follows. First we approximate the
Dirac’s delta with a bump function ϕx,M . Then we expand this bump function as a
sum of a fixed coarse scale bump function and a telescoping series of differences of
two consecutive bump functions. That is,

(4.9) f(x) ≈
∫

Ω

f(y)ϕx,`(y)dy +
M∑

j=`+1

∫
Ω

f(y)(ϕx,j − ϕx,j−1)(y)dy,

where the integrands are smooth for every fixed y, as functions of x. For instance,
if Ω = Rn, then we can fix one bump function ϕ ∈ C∞0 (Rn) so that

∫
Rn ϕ(x)dx = 1

and define ϕj,x = 2jnϕ(2j(· − x)) for j ∈ Z. Decompositions like (4.9) allow us to
connect to cancellation properties of f as we will see.

In proper domains the difficulties lie in ensuring that we can do this construction
so that the supports of the bump functions are included in the domain. To indicate
some of the difficulties, one expects vanishing moments from the difference of two
consecutive bump functions in order to induce cancellation. There are also certain
geometric properties that the construction should possess. We show that these
difficulties can be overcome in the case of uniform domains.

Bump functions. Our construction requires special bump functions which we first
describe. Here we follow Triebel [Tri92, p. 173–174] until we reach the bump
functions supported in rotated cones, see Lemma 4.13 below. We begin with one-
dimensional bump functions.



WEAKLY SINGULAR INTEGRAL OPERATORS ON DOMAINS 65

Lemma 4.10. Let m ∈ N, ε > 0, and ρ ∈ R. There exists a function g = gρ,ε ∈
C∞0 (R) such that supp g ⊂ B(ρ, ε) and∫

R
g(t)dt = 1,

∫
R
tkg(t)dt = 0, k = 1, 2, . . . ,m.

Proof. Choose m + 1 points ρ0 < ρ1 < · · · < ρm ∈ R such that ρ − ε/2 < ρ0

and ρm < ρ + ε/2. Fix δ > 0 and let gδ0, gδ1, . . . , gδm ∈ C∞0 (R) be such that, if
j = 0, 2, . . . ,m, we have

∫
R g

δ
j (t)dt = 1 and supp gδj ⊂ B(ρj, δ). Then consider the

linear system

(4.11)
m∑
j=0

µj

∫
R
gδj (t)dt = 1;

m∑
j=0

µj

∫
R
tkgδj (t)dt = 0, k = 1, 2, . . . ,m

of the variable µ = (µ0, µ1, . . . , µm) ∈ Rm+1. This linear system has the equivalent
matrix form

Aδµ = (1, 0, 0, . . . , 0) ∈ Rm+1, Aδ =

{∫
R
tjgδk(t)dt

}m
j,k=0

∈ R(m+1)×(m+1).

Due to properties of Vandermonde determinants,

detAδ = detATδ
δ→0−−→ det{ρkj}mj,k=0 = Πj>k(ρj − ρk) 6= 0.

In particular, for some δ = δ0 < ε/2, the linear system of equations (4.11) has a
solution µ ∈ Rm+1. Then we can choose g(t) =

∑m
j=0 µjg

δ0
j (t) if t ∈ R. �

Multivariate bump functions are then obtained as tensor products of correspond-
ing one-dimensional bump functions. For later purposes we need the supports to be
contained in a small neighborhood of the point en ∈ Rn.

Lemma 4.12. Let m ∈ N and ε > 0. Then there exists ϕ ∈ C∞0 (B(en, ε)), en ∈ Rn

being the n’th base vector, such that∫
Rn
ϕ(x)dx = 1;

∫
Rn
xαϕ(x)dx = 0, 0 < |α| ≤ m.

Proof. Fix g, h ∈ C∞0 (R) provided by Lemma 4.10 with supp g ⊂ B(0, ε/2n) and
supph ⊂ B(1, ε/2n). Define ϕ(x) = g(x1)g(x2) · · · g(xn−1)h(xn), x ∈ Rn. Assume
that x ∈ Rn is such that ϕ(x) 6= 0. Then x1, . . . , xn−1 ∈ B(0, ε/2n) and xn ∈
B(1, ε/2n). Thus |x − en| < ε/2 and we have x ∈ B(en, ε/2). In particular,
suppϕ ⊂ C∞0 (B(en, ε)). The Fubini’s theorem yields∫

Rn
ϕ(x)dx =

∫
R
g(x1)dx1 · · ·

∫
R
g(xn−1)dxn−1

∫
R
h(xn)dxn = 1.

Assume that 0 < |α| ≤ m. Then 0 < αj ≤ m for some j and the Fubini’s theorem
with the identities ∫

R
xαjg(x)dx = 0 =

∫
R
xαjh(x)dx

yields
∫

Rn x
αϕ(x)dx = 0 in any case. �
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Then we define multivariate bump functions that are supported in rotated cones.
For this purpose we need notation regarding rotation and dilatation.

Let n ≥ 2 and ϕ be as in Lemma 4.12 with parameters m and ε. Let σ ∈ Sn−1 =
{x ∈ Rn : |x| = 1}. We denote by Tσ : Rn → Rn arbitrary but fixed rotation about
the origin such that Tσ(en) = σ; in the special case σ = en, we choose Ten = id.
Denote ϕσ = ϕ ◦ T−1

σ . If σ ∈ Rn \ {0} then we denote ϕσ = |σ|−nϕσ/|σ|(|σ|−1·).

Lemma 4.13. Functions ϕσ, as defined above, satisfy the following

1) suppϕσ ⊂ B(σ, |σ|ε), if σ ∈ Rn \ {0},
2)
∫

Rn ϕσ(x)dx = 1, if σ ∈ Rn \ {0},
3)

∫
Rn x

αϕσ(x)dx = 0, if 0 < |α| ≤ m and σ ∈ Rn \ {0},
4) Let α ∈ Nn

0 and σ ∈ Sn−1. Then

|∂αϕσ(x)| ≤
∑
|β|=|α|

cα,β|(∂βϕ)(T−1
σ x)|, x ∈ Rn.

In particular, if ρ ∈ Rn \ {0}, we have ||∂αϕρ||L∞ ≤ Cα,ϕ|ρ|−n−|α|.

Proof. We prove 1)–3) under the assumption that σ ∈ Sn−1. General cases follow.
1) We have suppϕσ = suppϕ ◦ T−1

σ ⊂ Tσ suppϕ ⊂ TσB(en, ε) = B(σ, ε).
2) Recall that Tσ is a rotation and change the variables.
3) Tσ(yα) =

∑
|β|=|α| cβy

β and therefore∫
Rn
xαϕσ(x)dx =

∫
Rn

(Tσy)αϕ(y)dy =
∑
|β|=|α|

cα,β

∫
Rn
yβϕ(y)dy = 0.

4) Denote the matrix of T−1
σ by {cj,k}nj,k=1. Apply the chain rule for

(4.14) ∂j(ϕ ◦ T−1
σ )(x) =

n∑
k=1

ck,j(∂kϕ)(T−1
σ x), j = 1, 2, . . . , n.

Note that ∂α = ∂α1
1 ∂α2

2 · · · ∂αnn . Denoting a ∈ {n}αn ×{n− 1}αn−1 × · · · × {1}α1 and
iterating (4.14), we have

∂α(ϕ ◦ T−1
σ )(x) =

n∑
k1=1

ck1,a1 · · ·
n∑

k|α|=1

ck|α|,a|α|(∂k|α| · · · ∂k1ϕ)(T−1
σ x),

if x ∈ Rn. Observe that |cjk| = |ej · T−1
σ ek| ≤ 1 for every 1 ≤ j, k ≤ n and

|∂αϕσ(x)| = |∂α(ϕ ◦ T−1
σ )(x)| ≤

∑
|β|=|α|

cα,β|(∂βϕ)(T−1
σ x)|, x ∈ Rn.

If ρ ∈ Rn \ {0}, use the chain rule. �
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Special Lipschitz domains. Having the bump functions at our disposal, we are ready
to illustrate the ideas behind the construction of a dyadic resolution of unity on
domains. The relevant ideas are best demonstrated in the context of so called
special Lipschitz domains.

Definition 4.15. Let n ≥ 2. A special Lipschitz domain is a domain Ω ⊂ Rn lying
above the graph of a Lipschitz function ω : Rn−1 → R satisfying ω(0) = 0. More
precisely,

Ω = {(x′, xn) ∈ Rn : xn > ω(x′)}
and there exists a constant L > 0 such that |ω(x′)−ω(y′)| ≤ L|x′−y′| if x′, y′ ∈ Rn−1.

It is straightforward to show that any special Lipschitz domain is an image of the
half space {(x′, xn) : xn > 0} ⊂ Rn under a bi-Lipschitz mapping of Rn onto itself.
Thus, according to later Theorem 6.4, special Lipschitz domains are uniform (even
admissible).

The following construction of a dyadic resolution of unity is due to Rychkov
[Ryc99]. It also serves as a starting point for our construction. Let Ω ⊂ Rn be a
special Lipschitz domain with constant L. Consider the following cone

K = KL = {(x′, xn) : xn > L|x′|} ⊂ Ω.

This cone is convex and positively homogeneous so that λK = K if λ > 0. Its
translations satisfy x + K ⊂ Ω for every x ∈ Ω. The core of the translated cone
x+K, x ∈ Ω, is the image σx[0,∞) = {σx(t) : t ≥ 0} of the path

σx : [0,∞)→ x+K, σx(t) = x+ ten.

We call σx the arc length parametrization of the core.
Fix m ∈ N and ε > 0 so that B(en, ε) ⊂ K. Let ϕ ∈ C∞0 (B(en, ε)) denote the

bump function associated with the parameters m and ε as in Lemma 4.12. Using
the homogeneity and translation properties of K, we have

supp(ϕ(λ−1(· − x))) ⊂ x+ λB(en, ε) ⊂ x+ λK = x+K ⊂ Ω

for every λ > 0 and x ∈ Ω. Notice that the center σx(λ) = x + λen of the ball
x+ λB(en, ε) lies in the core σx[0,∞) of the translated cone x+K and ϕ = ϕen =
ϕ(σx(1)−x).

If j ∈ N0 and x ∈ Ω, define

ψx,j(y) =

{
ϕ(y − x), j = 0,

2jnϕ(2j(y − x))− 2(j−1)nϕ(2j−1(y − x)), j > 0.

Notice that, if j ∈ N and x ∈ Ω, then suppψx,j ⊂ Ω and its diameter is roughly
2−j. IfM ∈ N, then

∑M
j=0 ψx,j = 2Mnϕ(2M(·−x)) approximates the Dirac’s delta at

x ∈ Ω. Furthermore, if x ∈ Ω, then we have
∫

Ω
ψx,0(y)dy = 1 and

∫
Ω
xαψx,j(y)dy = 0

in the case |α| ≤ m and j > 0.
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Quasihyperbolic geodesics in uniform domains. The previous construction of a dyadic
resolution of unity in special Lipschitz domains admits a generalization to uniform
domains. The translation x + K of a convex cone is, in this general case, replaced
with a cone like object that is implicitly defined via its core. Recall that the core
of x + K is the geodesic σx[0,∞) = {x + ten : t ≥ 0}. In uniform domains a core
is given by a quasihyperbolic geodesic joining two given points x, y ∈ Ω.

We invoke the quasihyperbolic geodesics from [GO79]. Assume that Ω ⊂ Rn is
a uniform domain and x, y ∈ Ω. There exists a path σ : [0, `(σ)] → Ω that is
parametrized by the arc length and satisfies the following:

• σ(0) = x, σ(`(σ)) = y,
• if 0 ≤ s < t ≤ `(σ), then∫ t

s

dist(σ(x), ∂Ω)−1dx = inf
γ

∫ `(γ)

0

dist(γ(x), ∂Ω)−1dx,

where the infimum is taken over all of the rectifiable paths γ : [0, `(γ)] →
Ω that are parametrized by the arc length and satisfy γ(0) = σ(s) and
γ(`(γ)) = σ(t). This infimum is the quasihyperbolic distance between σ(s)
and σ(t) in Ω.

The path σ is (the arc length parametrization of) a quasihyperbolic geodesic joining
the two points x, y ∈ Ω. Such paths are denoted by σ : x y y. The following useful
result is proven by Gehring and Osgood.

Lemma 4.16. Let Ω ⊂ Rn be a uniform domain with uniformity constant a ≥ 1.
There is a constant b, depending on Ω and satisfying b ≥ a, so that the following
holds. Let x, y ∈ Ω and σ : x y y be a quasihyperbolic geodesic joining the two
points x and y. Then we have a)–b) below

a) |s− t| ≤ b|σ(s)− σ(t)| if 0 ≤ s, t ≤ `(σ),
b) min(t, `(σ)− t) ≤ b dist(σ(t), ∂Ω) if t ∈ [0, `(σ)].

As a consequence of b) above and the arc length parametrization of σ, we have for
every t ∈ [0, |x− y|/2] ⊂ [0, `(σ)/2],

c) t < 2b dist(σ(t) + (z − x), ∂Ω) if z ∈ B(x, dist(x, ∂Ω)/4b).

Proof. Both a) and b) are stated in [GO79, Corollary 2] and the proofs can be found
therein. It remains to verify c). Denote R(x) = dist(x, ∂Ω).

Assume first that t ∈ [0, R(x)/2). Then using the arc length parametrization of
σ : x y y, we have

|(σ(t) + z − x)− x| ≤ |σ(t)− x|+ |z − x| < R(x)/2 +R(x)/4b ≤ 3R(x)/4.

Therefore B̄(σ(t) + z − x, t/2b) ⊂ B(σ(t) + z − x,R(x)/4) ⊂ Ω.
Next we assume that t ∈ [R(x)/2, |x−y|/2]. Applying b), we get B(σ(t), t/b) ⊂ Ω.

We also have

|(σ(t) + z − x)− σ(t)| = |z − x| < R(x)/4b ≤ t/2b.

When combined, these estimates imply that B̄(σ(t) + z − x, t/2b) ⊂ Ω. �
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Dyadic resolution of unity in uniform domains. Let m ∈ N and Ω ⊂ Rn be a
uniform domain. Let b ≥ 1 be a constant depending on the domain Ω as in Lemma
4.16. Let

ϕ ∈ C∞0 (B(en, 1/8b
√
n))

be a bump function as in Lemma 4.12 with vanishing moments for α, 0 < |α| ≤ m.
Let p ∈ N be such that

8b
√
n+ 1 ≥ p > 8b

√
n.

Given j ∈ N we divide the interval [2−j, 2−j+1] into p similar pieces and denote the
division points by

2−j = t(j, 1) < t(j, 2) < · · · < t(j, p) = 2−j+1.

The aforementioned parameters depend at most on Ω and m (and possibly on j but
we only worry about the number p of division points and the norm bounds for the
derivatives ∂αϕ because these quantities occur as constants in later estimates).

If x ∈ Ω we denote R(x) = dist(x, ∂Ω) and r(x) = R(x)/4b. Let x0, y0 ∈ Ω be
distinct points and ` = `(x0, y0) be determined by 2−` < |x0 − y0|/16 ≤ 2−`+1. Let
σ : x0 y y0 be a quasihyperbolic geodesic satisfying a)–c) in Lemma 4.16. Denote

ϕσ,t = ϕ(σ(t)−x0), t ∈ (0, |x0 − y0|/2],

so that the function y 7→ ϕ(σ(t)−x0)(y− x0) is supported in the ball B(σ(t), t/8b
√
n)

whose center σ(t) lies in the core σ[0, `(σ)]. Finally denote

ψσ,j =


0, j < ` = `(x0, y0),

ϕσ,2−j , j = `,∑p−1
q=1

(
ϕσ,t(j,q) − ϕσ,t(j,q+1)

)
, j > `.

Then {ψσ,j}j≥` is an m-regular dyadic resolution of unity along the quasihyperbolic
geodesic σ : x0 y y0.

The expansion related to the indexing scheme {t(j, q)}, j > `, is used to ensure
that there is a cube ⊂⊂ Ω containing the support of ϕσ,t(j,q)−ϕσ,t(j,q+1), j > `. This
property is later required by the Whitney approximation theorem.

In what follows we collect properties that a dyadic resolution of unity satisfies.
Denote by Q(x, r) ⊂ Rn the unique open cube whose sides are parallel to the
coordinate axes and which satisfies B(x, r) ⊂ Q(x, r) ⊂ B(x,

√
nr). Hence Q(x, r)

is centered at the point x and has side-length 2r.

Lemma 4.17. Let Ω ⊂ Rn be a uniform domain and x0, y0 ∈ Ω. Let {ψσ,j}j≥` be the
m-regular dyadic resolution of unity along the quasihyperbolic geodesic σ : x0 y y0.
Let x ∈ B(x0, r(x0)), α ∈ Nn

0 , t ∈ (0, |x0 − y0|/2], j > `, and q ∈ {1, 2, . . . , p − 1}.
Then we have 1)–4) below

1) suppϕσ,t(· − x) ⊂ Q(σ(t) + x− x0, t/8b
√
n) ⊂⊂ Ω,

2) ||∂αx (ϕσ,t(· − x))||L∞ ≤ Cα,m,Ωt
−n−|α|,

3) supp(ϕσ,t(j,q)(·−x)−ϕσ,t(j,q+1)(·−x)) ⊂ Q(σ(t(j, q)+x−x0, 2
−j/2b

√
n) ⊂⊂ Ω,

4) ||∂αx (ϕσ,t(j,q)(· − x)− ϕσ,t(j,q+1)(· − x))||L∞ ≤ Cα,m,Ω2j(n+|α|).
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Proof. 1) Using 4.13.1), the arc length parametrization of σ, and 4.16.c), we have

suppϕσ,t(· − x) = suppϕ(σ(t)−x0)(· − x) ⊂ B(σ(t) + x− x0, t/8b
√
n)

⊂ Q(σ(t) + x− x0, t/8b
√
n) ⊂ B(σ(t) + x− x0, t/8b) ⊂⊂ Ω.

2) Applying 4.13.4) and 4.16.a) with s = 0, we get

||∂αx (ϕσ,t(· − x))||L∞ = ||(∂αϕ(σ(t)−x0))(· − x)||L∞

≤ Cα,ϕ|σ(t)− x0|−n−|α| ≤ Cα,m,Ωt
−n−|α|.

3) The inequalities 2−j ≤ t(j, q) < t(j, q + 1) ≤ 2−j+1 < |x0 − y0|/2 show that
the difference is well defined and 1) is applicable to the individual terms. These
estimates are also used below. We continue with the estimate

|σ(t(j, q + 1))− σ(t(j, q))| ≤ |t(j, q + 1)− t(j, q)|
= p−1(2−j+1 − 2−j) = p−12−j < 2−j+1/8b

√
n.

Using this estimate, we get

σ(t(j, q + 1)) + x− x0 ∈ B(σ(t(j, q)) + x− x0, 2
−j+1/8b

√
n).

Applying also the proof of 1) above and using 4.16.c), we get

supp(ϕσ,t(j,q)(· − x)− ϕσ,t(j,q+1)(· − x))

⊂ Q(σ(t(j, q)) + x− x0, 2
−j/2b

√
n) ⊂ B̄(σ(t(j, q)) + x− x0, 2

−j/2b) ⊂⊂ Ω.

4) We have t(j, q) < t(j, q + 1) ≤ 2−j+1 ≤ |x0 − y0|/16. Therefore, applying 2)
above, we have the following estimate for the left-hand side of 4) from above

||∂αx (ϕσ,t(j,q)(· − x))||L∞ + ||∂αx (ϕσ,t(j,q+1)(· − x))||L∞

≤ Cα,m,Ωt(j, q)
−n−|α| + Cα,m,Ωt(j, q + 1)−n−|α|.

Taking also the inequality 2−j ≤ t(j, q) ∧ t(j, q + 1) into account, we are able to
estimate the right-hand side by Cα,m,Ω2j(n+|α|) from above. �

Lemma 4.18. Let Ω ⊂ Rn be a uniform domain and x0, y0 ∈ Ω. Let {ψσ,j}j≥` be the
m-regular dyadic resolution of unity along the quasihyperbolic geodesic σ : x0 y y0.
Let x ∈ B(x0, r(x0)), α, β ∈ Nn

0 with |α| ≤ m, j > `, and q ∈ {1, 2, . . . , p−1}. Then∫
Ω

yα∂βx
(
ϕσ,t(j,q)(y − x)− ϕσ,t(j,q+1)(y − x)

)
dy = 0.

Proof. Applying 4.17.3) and integrating by parts in Rn, we get∫
Ω

= (−1)|β|
∫

Rn
yα
(
(∂βϕσ,t(j,q))(y − x)− (∂βϕσ,t(j,q+1))(y − x)

)
dy

= (−1)|β|
∫

Rn
(y + x)α∂β(ϕσ,t(j,q) − ϕσ,t(j,q+1))(y)dy

=

∫
Rn
∂βy (y + x)α(ϕσ,t(j,q) − ϕσ,t(j,q+1))(y)dy.
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Using Lemma 4.13, 2) and 3) therein, and that ∂βy (y + x)α ∈ Pm(Rn) (x is treated
as a constant here) we see that the last integral vanishes. �

Remark 4.19. Let Ω ⊂ Rn be a uniform domain, x0, y0 ∈ Ω be distinct, and {ψσ,j}j≥`
be anm-regular dyadic resolution of unity along a quasihyperbolic geodesic σ : x0 y
y0. Due to cancellation of terms, we have ψσ,j = ϕσ,2−j − ϕσ,2−j+1 for j > `. Also,
if M > `, further cancellation occurs so that

∑M
j=` ψσ,j = ϕσ,2−M . Let x ∈ B =

B(x0, r(x0)) ⊂⊂ Ω. Then, using 4.17.1) and 4.13.2), we get suppϕσ,2−M (· − x) ⊂
B(x, 2−M+1) ∩ Ω and

∫
Ω
ϕσ,2−M (y − x)dy = 1. In particular, if f ∈ L1

loc(Ω) is
continuous at x ∈ B, then

(4.20) f(x) = lim
M→∞

∫
Ω

ϕσ,2−M (y − x)f(y)dy =
∞∑
j=`

∫
Ω

ψσ,j(y − x)f(y)dy.

4.3. Regularity of kernels in uniform domains. We prove the following regu-
larity result for standard kernels

(4.21) K−mΩ (δ) ⊂ K−mΩ (δ′), if 0 < δ′ < δ < 1,

where Ω ⊂ Rn is a uniform domain and 0 < m < n. This result is a step towards
the atomic decomposition of standard kernels which, in turn, leads to the extension
of these kernels. Certain almost diagonality estimates turn out to be useful here.
Such estimates were crucial also for the boundedness properties of WSIO’s as was
seen in connection with the TχΩ theorem.

Parts of the estimates here originate in [HL03] for a proof that an almost diagonal
operator has a kernel representation as a CZO.

A variant of a result of Gehring and Martio. Here is a useful local-to-global type
Hölder estimate which is based on computations due to Gehring and Martio [GM85,
pp. 206–207]. This result is useful in many occasions. For instance, while proving
Hölder estimates for standard kernels the special formulation below is convenient.

Theorem 4.22. Let Ω ⊂ Rn be a uniform domain and 0 < δ < 1. Denote by
a = aΩ the uniformity constant as in Definition 1.13. Let x, y ∈ Ω be distinct and
γ : [0, `(γ)]→ Ω be a path joining these two points as in the Definition 1.13. Assume
that f : Ω→ C is such that f ◦ γ : [0, `(γ)]→ C is continuous and

(4.23) |f(γ(t) + k)− f(γ(t))| ≤ |k|δ

for every t ∈ [0, `(γ)] and γ(t) + k ∈ B(γ(t),min(t, `(γ) − t)/c) ⊂ Ω for a fixed
c > aΩ. Then we have the endpoint-estimate

|f(x)− f(y)| ≤ C|x− y|δ,

where C depends at most on the parameters a, c, δ.

Proof. Denote by z = γ(`(γ)/2) the midpoint. Because

|f(x)− f(y)| ≤ |f(z)− f(x)|+ |f(y)− f(z)|
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it suffices to prove that |f(z) − f(x)| ≤ C|x − y|δ. Indeed, the corresponding
estimate for |f(y) − f(z)| is symmetric to this. Let 0 < t0 < `(γ)/2. This should
be thought to be close to zero so that f(γ(t0)) is close to f(γ(0)) = f(x) due to
continuity. Assume that t0, . . . , tj−1 are chosen. If tj−1 < `(γ)/2 then we choose
tj = min(`(γ)/2, (1 + 1/2c)tj−1). This procedure ends after a finite number of steps
when we reach tm = `(γ)/2 with m ∈ N. Using the triangle inequality, we have the
estimate

(4.24) |f(z)− f(γ(t0))| = |f(γ(tm))− f(γ(t0))| ≤
m∑
j=1

|f(γ(tj))− f(γ(tj−1))|.

Write

|f(γ(tj))− f(γ(tj−1))| = |f(γ(tj−1) + kj)− f(γ(tj−1))|, j = 1, . . . ,m,

where |kj| = |γ(tj) − γ(tj−1)| ≤ |tj − tj−1| ≤ tj−1/2c < min(tj−1, `(γ) − tj−1)/c by
the arc-length parametrization of γ. Hence, using (4.24) and (4.23), we obtain the
estimate |f(z) − f(γ(t0))| ≤

∑m
j=1 |kj|δ. In the sequel we estimate the sum on the

right-hand side. First of all, we have |km|δ < (`(γ)/c)δ ≤ |x− y|δ. If m > 1, we also
need the estimate

m−1∑
j=1

|kj|δ ≤
m−1∑
j=1

|tj−1 − tj||tj−1 − tj|δ−1 = (1 + 2c)1−δ
m−1∑
j=1

|tj−1 − tj|tδ−1
j

≤ (1 + 2c)1−δ
∫ tm−1

t0

sδ−1ds ≤ (1 + 2c)1−δδ−1aδ|x− y|δ.

Combining the estimates beginning from (4.24) we get

(4.25) |f(z)− f(γ(t0))| ≤ (1 + (1 + 2c)1−δδ−1aδ)|x− y|δ, 0 < t0 < `(γ)/2.

Using the continuity of f ◦ γ we let t0 → 0 and obtain the desired estimate as
γ(0) = x and the right-hand side of (4.25) is independent of t0. �

A dyadic resolution of kernel. We continue with a dyadic resolution of a standard
kernel K ∈ K−mΩ (δ), where Ω ⊂ Rn is a uniform domain. Let x0, y0 ∈ Ω be distinct
points and let {ψσ,j}j≥`, {ψρ,k}k≥` be m-regular dyadic resolutions of unity along
quasihyperbolic geodesics σ : x0 y y0 and ρ = σ−1 : y0 y x0, respectively, see
Section 4.2. Denote

Ω(x0, y0) = B(x0, r(x0) ∧ (|x0 − y0|/4b)), r(x0) = dist(x0, ∂Ω)/4b,

where the constant b ≥ 1 is defined in Lemma 4.16. Then, if j, k ≥ ` = `(x0, y0)
and (x, y) ∈ Ω(x0, y0)× Ω(y0, x0) ⊂ Ω× Ω, we denote

(4.26) Kσ,ρ
j,k (x, y) =

∫
Ω

ψσ,j(α− x)

∫
Ω

K(α, ω)ψρ,k(ω − y)dωdα.
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Now have the following decomposition of the kernel

(4.27) K(x, y) =
∞∑
j=`

∞∑
k=`

Kσ,ρ
j,k (x, y), (x, y) ∈ Ω(x0, y0)× Ω(y0, x0).

To prove (4.27), let us fix x ∈ Ω(x0, y0) and y ∈ Ω(y0, x0). Then, using the identity
(4.20), we have

(4.28) K(x, y) = lim
M→∞

∫
Ω

ϕσ,2−M (α− x)K(α, y)dα =
∞∑
j=`

∫
Ω

ψσ,j(α− x)K(α, y)dα

Expanding the quantities K(α, y) on the right-hand side of (4.28) we are lead to

K(x, y) =
∞∑
j=`

∫
Ω

ψσ,j(α− x)
∞∑
k=`

∫
Ω

K(α, ω)ψρ,k(ω − y)dωdα.

The dominated convergence theorem applies to the inner summation and this es-
tablishes (4.27). Indeed, if M ≥ ` and α ∈ Ω \ {y}, we have∣∣∣∣ M∑

k=`

∫
Ω

K(α, ω)ψρ,k(ω − y)dω

∣∣∣∣ =

∣∣∣∣ ∫
Ω

K(α, ω)ϕρ,2−M (ω − y)dω

∣∣∣∣ ≤ C|α− y|−n+m

with C independent ofM,α, y. This follows from a case study with |α−y| ≤ 2−M+2

and |α− y| ≥ 2−M+2. Within these cases we apply Lemma 4.17 and the kernel size
estimate |K(α, ω)| ≤ CK |α− ω|−n+m.

Proving regularity of kernels using dyadic resolution. Using the dyadic resolution of
a standard kernel K ∈ K−mΩ (δ) we prove that this kernel has continuous derivatives
up to oder m and Hölder continuous derivatives of order m, that is, we have K ∈
K−mΩ (δ′). We rely on almost diagonality estimates that appear also in connection
with the TχΩ theorem.

First we establish molecule-like estimates for images of certain atoms under weakly
singular integral operators. Analogous estimates were already obtained in Lemma
3.8 but here the atoms are understood as differences of bump functions composing
the m-regular dyadic resolution of unity.

Lemma 4.29. Let Ω ⊂ Rn be a uniform domain and T ∈ SK−mΩ (δ) be associated
with a kernel K ∈ K−mΩ (δ) that is decomposed as in (4.27). Let k > ` = `(y0, x0),
y ∈ Ω(y0, x0), z ∈ Ω, and β ∈ Nn

0 . Then

|T (∂βy (ψρ,k(· − y)))(z)| ≤ C2k(n+|β|−m)(1 + 2k|z − y|)−n−δ,
where the constant C depends at most on the parameters n,m, β,K,Ω.

Proof. Denote ψ(ω) = ∂βy (ψρ,k(ω − y)) if ω ∈ Rn. It suffices to prove the following

|Tψ(z)| ≤ C2k(n+|β|−m),(4.30)

|Tψ(z)| ≤ C2k(n+|β|−m)(2k|z − y|)−n−δ, if |z − y| ≥ (2 + CK)2−k+1,(4.31)
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where CK denotes the constant in (1.17). First we prove the inequality (4.30). A
trivial modification of the inequality (3.6) and Lemma 4.17 combined show that

|Tψ(z)| ≤ CM(ψ)(z)1−m/n||ψ||m/n1 ≤ C2k(n+|β|−m).

Then we prove (4.31). For this purpose we denote

Qq = Q(ρ(t(k, q)) + y − y0, 2
−k/2b

√
n) ⊂⊂ Ω, if q ∈ {1, 2, . . . , p− 1}.

Then, applying Lemma 4.17, we get

|Tψ(z)| =
∣∣∣∣ ∫

Ω

K(z, ω)ψ(ω)dω

∣∣∣∣
≤

p−1∑
q=1

∣∣∣∣ ∫
Ω

K(z, ω)∂βy (ϕρ,t(k,q)(ω − y)− ϕρ,t(k,q+1)(ω − y))dω

∣∣∣∣.
Lemma 4.18 and Lemma 4.17 combined allows us to continue as follows

|Tψ(z)| =
p−1∑
q=1

inf
Pq∈Pm(Rn)

∣∣∣∣ ∫
Ω

(K(z, ω)− Pq(ω))

× ∂βy (ϕρ,t(k,q)(ω − y)− ϕρ,t(k,q+1)(ω − y))dω

∣∣∣∣
≤ C2k(n+|β|)

p−1∑
q=1

inf
Pq∈Pm(Rn)

∫
Qq

|K(z, ω)− Pq(ω)|dω.

Let q ∈ {1, 2, . . . , p− 1}. Using the inequality t(k, q) ≤ 2−k+1 it is simple to verify
that

(4.32) max{|z − y|/2, CK diam(Qq)} ≤ |z − yq|, yq = ρ(t(k, q)) + y − y0.

Applying Theorem 3.5 and utilizing the estimate (1.17) with the aid of (4.32), we
get

|Tψ(z)| ≤ C2k(n+|β|)
p−1∑
q=1

sup
|h|≤diam(Qq)

∫
Qq

|∆m+1
h (K(z, ·), Qq, ω)|dω

≤ C2k(|β|−m−δ)|z − y|−n−δ = C2k(n+|β|−m)(2k|z − y|)−n−δ.
This is the required estimate (4.31). �

We continue in the spirit of almost diagonality, Lemma 3.26 to be more precise.
One important difference is that the cancellation conditions T1 = 0 = T ∗1 are not
needed. This is because of the restriction j, k ≥ ` below.

Lemma 4.33. Let Ω ⊂ Rn be a uniform domain and T ∈ SK−mΩ (δ) be associated
with a kernel K ∈ K−mΩ (δ) that is decomposed as in (4.27). Let j, k ≥ ` = `(x0, y0).
Then the summands in this decomposition enjoy the regularity

Kσ,ρ
j,k ∈ C

∞(Ω(x0, y0)× Ω(y0, x0))
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and, if α, β ∈ Nn
0 and (x, y) ∈ Ω(x0, y0)× Ω(y0, x0), they satisfy the estimate

(4.34) |∂αx∂βyK
σ,ρ
j,k (x, y)| ≤ C2−δ|j−k|+n(j∧k)−(m−|α|−|β|)(j∨k)

(
1 + (2j ∧ 2k)|x− y|

)−n−δ
,

where the constant C depends at most on n,m, α, β,K,Ω.

Proof. Differentiating (4.26) under the integral signs we obtain the identity

∂αx∂
β
yK

σ,ρ
j,k (x, y) = 〈∂αx (ψσ,j(· − x)), T (∂βy (ψρ,k(· − y)))〉.

Assume first that k = j = `. Then, applying Lemma 4.17 and computing as in the
proof of the inequality (4.30), we get

|∂αx∂βyK
σ,ρ
j,k (x, y)| ≤ C2|α|j+|β|k2k(n−m).

This is as desired because 2`|x − y| ≤ 2`+1|x0 − y0| ≤ 64. Then we assume that
k ≥ j ≥ `, k 6= `, and note that remaining case, where j ≥ k ≥ ` and j 6= `, is
completely symmetric because the transpose kernel Kt = (x, y) 7→ K(y, x) belongs
also to the class K−mΩ (δ). Denote

Tρ,k : Rn → C : z 7→ T (∂βy (ψρ,k(· − y)))(z)χΩ(z).

Then we do a change of variables

∂αx∂
β
yK

σ,ρ
j,k (x, y) = (−1)|α|

∫
Ω

(∂αψσ,j)(z − x)Tρ,k(z)dz

= (−1)|α|2−nk
∫

Rn
(∂αψσ,j)(y − x− 2−kz)Tρ,k(y − 2−kz)dz

= (−1)|α|2nj−mk
∫

Rn
f
(
R−1(z0 − z)

)
g(z)dz,

(4.35)

where R = 2k−j, z0 = 2k(y − x),

f(z) = 2−nj(∂αψσ,j)(2
−jz), g(z) = 2−k(n−m)Tρ,k(y − 2−kz).

Lemma 4.29 implies the estimate |g(z)| ≤ C2k|β|(1 + |z|)−n−δ if z ∈ Rn. Applying
Lemma 4.17, we have

supp f ⊂ 2j supp(∂αψσ,j) ⊂ 2jB(0, 2−j+2) = B(0, 4)

and ||f ||L∞(Rn) ≤ C2j|α|. Taking also the inequality 4R ≤ |z0|/2 into account we
have supp f(R−1(z0 − ·)) ⊂ B(z0, 4R) ⊂ B(z0, |z0|/2). Using these estimates, we
have∣∣∣∣ ∫

Rn
f
(
R−1(z − z0)

)
g(z)dz

∣∣∣∣ ≤ C2j|α|+k|β||z0|−n−δRn = C2δ(j−k)+j|α|+k|β|(2j|x− y|)−n−δ.

This combined with (4.35) and the inequalities

j|α| ≤ k|α|, 2j|x− y| ≥ 2j−1|x0 − y0| ≥ 2`−1|x0 − y0| ≥ 8

implies the desired estimate (4.34). �

In addition to the almost diagonality estimates we need the following simple
lemma which is used later with the Weierstrass M–test.



76 ANTTI V. VÄHÄKANGAS

Lemma 4.36. Let β > α > 0 and λ, ε > 0. Then∑
j∈Z

∑
k∈Z

2−ε|j−k|+α(j∧k)
(
1 + (2k ∧ 2j)λ

)−β ≤ Cλ−α,

where the constant C depends at most on the parameters α, β, ε.

Proof. Denote skj = 2−ε|j−k|+α(j∧k)
(
1 + (2k ∧ 2j)λ

)−β. Notice that sjk = skj if
j, k ∈ Z. Therefore∑

j∈Z

∑
k∈Z

sjk =
∑
j∈Z

(∑
k≤j

+
∑
k>j

)
sjk =

∑
j∈Z

∑
k≤j

sjk +
∑
j∈Z

∑
k<j

sjk ≤ 2
∑
j∈Z

∑
k≤j

sjk.

It remains to estimate the sum on the right hand side; we have∑
j∈Z

∑
k≤j

sjk =
∑
j∈Z

∑
k≤j

2−ε|j−k|+kα(1 + 2kλ)−β ≤ Cε
∑
k∈Z

2kα(1 + 2kλ)−β.

Now choose k0 ∈ Z such that 2k0 ≤ λ−1 < 2k0+1. Next we write∑
k∈Z

2kα(1 + 2kλ)−β =
(∑
k≤k0

+
∑
k>k0

)
2kα(1 + 2kλ)−β = Σ1 + Σ2.

For the first term we have the estimate

Σ1 ≤
∑
k≤k0

2kα = 2k0α
∑
k≤k0

2(k−k0)α = Cα2k0α ≤ Cαλ
−α.

Note that we used the inequality α > 0. For the second term we have

Σ2 ≤
∑
k>k0

2k(α−β)(2−k + λ)−β ≤ λ−β
∑
k>k0

2k(α−β)

≤ λ−β2k0(α−β)
∑
k>k0

2(k−k0)(α−β) ≤ Cα,βλ
−β+β−α = Cα,βλ

−α.

Note that we used the inequality β > α. Combining the estimates above for Σ1 and
Σ2 we find that the desired conclusion holds true. �

We are ready for the proof of kernel regularity.

Theorem 4.37. Let Ω ⊂ Rn be a uniform domain and K ∈ K−mΩ (δ) be a standard
kernel so that 0 < m < n and 0 < δ < 1. Then K is smooth, that is,

K ∈ K−mΩ (δ′), if 0 < δ′ < δ.

As a consequence, if Ω = Rn and α, β ∈ Nn
0 satisfy |α|+ |β| = m, then

∂αx∂
β
yK : Rn × Rn \ {(x, x)} → C

is a Calderón–Zygmund standard kernel. These are defined in connection with (1.9).
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Proof. Throughout the proof C denotes a constant depending on m,n, δ, δ′, K,Ω.
Let x0, y0 ∈ Ω be distinct and ` = `(x0, y0). We use the decomposition (4.27)
extensively. Let (x, y) ∈ Ω(x0, y0) × Ω(y0, x0) and |α| + |β| ≤ m. Then |x − y| ≥
|x0 − y0|/2 and, combining this estimate with Lemma 4.33 and Lemma 4.36, we
obtain

∞∑
j=`

∞∑
k=`

|∂αx∂βyK
σ,ρ
j,k (x, y)|

≤ C
∞∑
j=`

∞∑
k=`

2−δ|j−k|+n(j∧k)−(m−|α|−|β|)(j∨k)
(
1 + (2j ∧ 2k)|x− y|

)−n−δ
≤ C

∞∑
j=−∞

∞∑
k=−∞

2−δ|j−k|+(n+|α|+|β|−m)(j∧k)
(
1 + (2j ∧ 2k)|x0 − y0|

)−n−δ
≤ C|x0 − y0|m−n−|α|−|β|.

(4.38)

The Weierstrass M–test, combined with the identity (4.27), shows that

(4.39) K|(Ω(x0, y0)× Ω(y0, x0)) =
∞∑
j=`

∞∑
k=`

Kσ,ρ
j,k ∈ C

m(Ω(x0, y0)× Ω(y0, x0))

and the series can be differentiated termwise up to the order m. As a consequence
of this identity we have the regularity K ∈ Cm(Ω×Ω\{(x, x)} and, by using (4.38),
we also have the estimate

(4.40) |∂αx∂βyK(x0, y0)| ≤ C|x0 − y0|m−n−|α|−|β|, |α|+ |β| ≤ m,

which is the required size-estimate for smooth kernels.
We turn to Hölder-regularity estimates which are required for smooth kernels.

Due to symmetry it suffices to consider differences in the first Rn-variable only. To
begin with consider the situation, where x0, y0 ∈ Ω are distinct points, |α|+|β| = m,
and h ∈ Rn is close to x0 so that x0 + h ∈ Ω(x0, y0). Fix j, k ≥ ` = `(x0, y0) and
denote

∆1
h(∂

α
x∂

β
yK

σ,ρ
j,k (·, y0), x0) = ∂αx∂

β
yK

σ,ρ
j,k (x0 + h, y0)− ∂αx∂βyK

σ,ρ
j,k (x0, y0).

Applying the mean value theorem and Lemma 4.33 we see that there is a point
ξ ∈ Rn, belonging to the line segment [x0, x0 + h] ⊂ Ω(x0, y0), so that |ξ − y0| ≥
|x0 − y0|/2 and

|∆1
h(∂

α
x∂

β
yK

σ,ρ
j,k (·, y0), x0)| ≤ |h||∇x(∂

α
x∂

β
yK

σ,ρ
j,k (ξ, y0))|

≤ C|h|2−δ|j−k|+n(j∧k)+(j∨k)
(
1 + (2j ∧ 2k)|x0 − y0|

)−n−δ
.

(4.41)

Using the triangle inequality and Lemma 4.33, we also have the estimate

|∆1
h(∂

α
x∂

β
yK

σ,ρ
j,k (·, y0), x0)| ≤ C2−δ|j−k|+n(j∧k)

(
1 + (2j ∧ 2k)|x0 − y0|

)−n−δ
.(4.42)
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Multiplying suitable powers of these two estimates (4.41) and (4.42), we get

|∆1
h(∂

α
x∂

β
yK

σ,ρ
j,k (·, y0), x0)|

≤ C|h|δ′2−δ|j−k|+n(j∧k)+δ′(j∨k)
(
1 + (2j ∧ 2k)|x0 − y0|

)−n−δ
,

(4.43)

where
−δ|j − k|+ n(j ∧ k) + δ′(j ∨ k) = −(δ − δ′)|j − k|+ (n+ δ′)(j ∧ k).

Summing the estimates (4.43) and applying Lemma 4.36 we have
∞∑
j=`

∞∑
k=`

|∂αx∂βyK
σ,ρ
j,k (x0 + h, y0)− ∂αx∂βyK

σ,ρ
j,k (x0, y0)|

≤ C|h|δ′
∞∑

j=−∞

∞∑
k=−∞

2−(δ−δ′)|j−k|+(n+δ′)(j∧k)
(
1 + (2j ∧ 2k)|x0 − y0|

)−n−δ
≤ C|h|δ′ |x0 − y0|−n−δ

′
.

(4.44)

Combining (4.39) and (4.44) it follows that
(4.45)
|∂αx∂βyK(x0 + h, y0)− ∂αx∂βyK(x0, y0)| ≤ C|h|δ′ |x0 − y0|−n−δ

′
, x0 + h ∈ Ω(x0, y0).

Due to limitations on h this does not suffice for the Hölder estimate which is required
for smooth kernels. We prove the full Hölder-estimate with the aid of (4.45) and
geometric properties of uniform domains, captured in Theorem 4.22. Fix h ∈ Rn

such that |h| ≤ |x0 − y0|/4b and x0 + h ∈ Ω. Join x0 and x0 + h with a path
γ as in Definition 1.13. It is straightforward to verify that, if t ∈ [0, `(γ)] and
k ∈ B(0,min(t, `(γ)− t)/4b2), we have

• γ(t) + k ∈ Ω(γ(t), y0),
• |γ(t)− y0|−n−δ

′ ≤ Cn|x0 − y0|−n−δ
′ .

Thus, applying (4.45), we get the estimate

|∂αx∂βyK(γ(t) + k, y0)− ∂αx∂βyK(γ(t), y0)| ≤ C|k|δ′|x0 − y0|−n−δ
′

for t ∈ [0, `(γ)] and k ∈ B(0,min(t, `(γ)− t)/4b2). Also, the function

s 7→ ∂αx∂
β
yK(γ(s), y0) : [0, `(γ)]→ C

is continuous. Therefore we can invoke Theorem 4.22 to conclude that (4.45) holds
true if x0, y0, x0 +h ∈ Ω and |h| ≤ |x0−y0|/4b. In the remaining case |x0−y0|/4b ≤
|h| ≤ |x0 − y0|/2 we use (4.40). �

Combining Proposition 4.6 and Theorem 4.37, we get the following corollary.

Corollary 4.46. Let Ω ⊂ Rn be a uniform domain and 0 < m < n. Then⋃
0<δ<1

K−mΩ (δ) =
⋃

0<δ<1

km+δ
loc (Ω) =

⋃
0<δ<1

K−mΩ (δ).
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5. Extension of smooth kernels

We arrive at the second part of our solution to the kernel extension problem. This
part consists of an extension result for the smooth kernels K−mΩ (δ). Decomposing
these kernels using a partition of unity, subordinate to the Whitney decomposition
of the open set

Rn × Rn \ {(x, x)} ⊂ R2n,

yields a characterization of smooth kernels in terms of so called kernel atoms. The
purpose of this characterization is that it can be used to reduce the kernel extension
problem to the Hölder extension of individual kernel atoms.

We begin with the definition of Hölder spaces and formulate the required Hölder
extension results when the underlying domain is uniform.

5.1. Hölder spaces. Here we define Hölder spaces on general domains and then
establish extension results for these spaces on uniform domains via certain pointwise
error estimates in polynomial approximation. We also consider a measure theoretical
polynomial approximation, leading to the so called local smoothness spaces. These
spaces are useful in showing inclusions of Hölder spaces to BMO-type spaces.

Definition 5.1. Let ∅ 6= Ω ⊂ Rn be a domain and 0 < δ < 1. Define the δ-Hölder
seminorm of f : Ω→ C by

|f |Cδ(Ω) = sup

{
|f(x)− f(y)|
|x− y|δ

: x, y ∈ Ω, x 6= y

}
.

Define the local δ-Hölder seminorm of f : Ω→ C by

|f |Cδloc(Ω) = sup
Q⊂⊂Ω

|f |Cδ(Q),

where the supremum is over all of the open cubes Q compactly contained in Ω.

Definition 5.2. Let ∅ 6= Ω ⊂ Rn be a domain. Let m ∈ N0 and 0 < δ < 1.
The local Hölder space Cm,δ

loc (Ω) is the Banach space of complex-valued functions
f ∈ Cm(Ω) satisfying

||f ||Cm,δloc (Ω) =
∑
|α|≤m

||∂αf ||L∞(Ω) +
∑
|α|=m

|∂αf |Cδloc(Ω) <∞.

Definition 5.3. Let ∅ 6= Ω ⊂ Rn be a domain and m ∈ N0. Denote by Cm(Ω) the
space of continuous complex-valued functions f : Ω→ C so that f |Ω ∈ Cm(Ω) and
the derivatives ∂α(f |Ω), |α| ≤ m, have extensions to continuous functions Ω → C
that are also denoted by ∂αf . Let 0 < δ < 1. The Hölder space Cm,δ(Ω) is the
Banach space of functions f ∈ Cm(Ω) satisfying

||f ||Cm,δ(Ω) =
∑
|α|≤m

||∂αf ||L∞(Ω) +
∑
|α|=m

|∂αf |Cδ(Ω) <∞.
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Remark 5.4. Let f ∈ Cm,δ(Ω). Then ||∂αf ||L∞(Ω) = ||∂αf ||L∞(Ω) if |α| ≤ m by using
the continuity of ∂αf : Ω→ C. Using the continuity of order m derivatives, we also
have their δ-Hölder continuity up to the boundary, that is, if |α| = m then

|∂αf(x)− ∂αf(y)| ≤ ||f ||Cm,δ(Ω)|x− y|δ, if x, y ∈ Ω.

Extension of Hölder functions. Let Ω ⊂ Rn be a domain and f ∈ Cm,δ
loc (Ω). Let also

α ∈ Nn
0 , |α| ≤ m, and y ∈ Q ⊂⊂ Ω, where Q is an open cube. Then ∂αf admits

a polynomial approximation by the Taylor polynomials Pαf(·, y) ∈ Pm−|α|(Rn) so
that, if x ∈ Q, we have

(5.5) ∂αf(x) = Pαf(x, y) +Rαf(x, y), |Rαf(x, y)| ≤ C||f ||Cm,δloc (Ω)|x− y|
m+δ−|α|.

These estimates follow by using the Taylor formula along the line-segment joining
x and y in the cube Q.

It turns out that, in the case of uniform domains, these local estimates bootstrap
the corresponding non-local estimates so that (5.5) holds true for every x ∈ Ω. These
non-local estimates serve as a starting point for the following results: assuming that
Ω ⊂ Rn is a uniform domain, there are bounded extension operators

Cm,δ
loc (Ω)→ Cm,δ(Ω), Cm,δ(Ω)→ Cm,δ(Rn).

First we define the Taylor polynomials and the corresponding error terms.

Definition 5.6. Let ∅ 6= Ω ⊂ Rn be a domain and f ∈ Cm,δ
loc (Ω). Let α ∈ Nn

0 satisfy
|α| ≤ m. Then the Taylor polynomial Pαf and the error term Rαf are defined in
terms of the identity

(5.7) ∂αf(x) =
∑

|α+β|≤m

∂α+βf(y)

β!
(x− y)β +Rαf(x, y) = Pαf(x, y) +Rαf(x, y),

where x, y ∈ Ω. Assuming that f ∈ Cm,δ(Ω) and |α| ≤ m, the Taylor polynomial
Pαf and error term Rαf are defined by (5.7) if x, y ∈ Ω.

Let f ∈ Cm,δ
loc (Ω). Then, if |α| ≤ m and x, y ∈ Ω, we have the identity Pαf(x, y) =

∂αxP(0,...,0)f(x, y). Differences of this Taylor polynomial (in the second Rn-variable)
are related to the error terms as follows

(5.8) Pαf(x, a)− Pαf(x, b) =
∑

|α+β|≤m

Rα+βf(a, b)

β!
(x− a)β, x, a, b ∈ Ω.

The identity (5.8) is the Taylor expansion of the polynomial Pαf(·, a) − Pαf(·, b)
about the point a. Indeed, if |α + β| ≤ m, we have

Rα+βf(a, b) = ∂α+βf(a)− Pα+βf(a, b)

= Pα+βf(a, a)− Pα+βf(a, b) = ∂βx
(
Pαf(x, a)− Pαf(x, b)

)∣∣
x=a

.

For f ∈ Cm,δ(Ω) the identity (5.8) holds true if x, a, b ∈ Ω. The following lemma
provides semilocal control for the error terms.
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Lemma 5.9. Let ∅ 6= Ω ⊂ Rn be a domain and f ∈ Cm,δ
loc (Ω). Assume that x, y ∈ Q

are two points in an open cube Q ⊂⊂ Ω. Then, assuming that α ∈ Nn
0 satisfies

|α| ≤ m, the error term Rαf(x, y) defined in (5.7) satisfies

|Rαf(x, y)| ≤ 2||f ||Cm,δloc (Ω)|x− y|
m+δ−|α|.

Proof. Looking at real and imaginary parts separately we can assume that f is real-
valued. The line-segment L, joining the points x, y, is cointained in the cube Q ⊂⊂
Ω. Hence the multivariate Taylor’s formula, applied to the real-valued function
∂αf ∈ Cm−|α|(Ω), implies that there exists a point ξ ∈ L ⊂ Q such that

∂αf(x) =
∑

|α+β|≤m−1

∂α+βf(y)

β!
(x− y)β +

∑
|α+β|=m

∂α+βf(ξ)

β!
(x− y)β

= Pαf(x, y) +
∑

|α+β|=m

(
∂α+βf(ξ)− ∂α+βf(y)

β!

)
(x− y)β.

As a consequence, we have

|Rαf(x, y)| = |∂αf(x)− Pαf(x, y)|

=

∣∣∣∣ ∑
|α+β|=m

(
∂α+βf(ξ)− ∂α+βf(y)

β!

)
(x− y)β

∣∣∣∣
≤

∑
|α+β|=m

|∂α+βf(ξ)− ∂α+βf(y)|
β!

|x− y||β| ≤ ||f ||Cm,δloc (Ω)|x− y|
m+δ−|α|.

This is as required. �

In case of uniform domains these semilocal error estimates imply the correspond-
ing error estimates uniformly in the whole the domain. This result, which is formu-
lated and proven below, can be interpreted as a higher order analogue of that the
identity operator maps

loc Lipδ(Ω)→ Lipδ(Ω)

boundedly if 0 < δ ≤ 1. This latter result is due to Gehring and Martio [GM85].
We omit the formal definition of the local spaces loc Lipδ(Ω) but later we define the
non-local spaces Lipδ(F ) on general closed sets F ⊂ Rn.

To prepare for the following proof we denote by Q(x, r) ⊂ Rn the unique open
cube, sides parallel to the coordinate axes, and satisfying

(5.10) B(x, r) ⊂ Q(x, r) ⊂ B(x,
√
nr).

Hence Q(x, r) is centered at the point x and has side-length 2r.

Theorem 5.11. Let Ω ⊂ Rn be a uniform domain and denote by aΩ ≥ 1 the
uniformity constant as in Definition 1.13. Let f ∈ Cm,δ

loc (Ω), |α| ≤ m ∈ N0, and
x, y ∈ Ω. Then the error term Rαf(x, y) satisfies

(5.12) |Rαf(x, y)| ≤ C||f ||Cm,δloc (Ω)|x− y|
m+δ−|α|,
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where the constant C depends at most on the parameters n,m, δ, aΩ. As a conse-
quence, if f ∈ Cm,δ(Ω), |α| ≤ m, and x, y ∈ Ω, then the error estimate

(5.13) |Rαf(x, y)| ≤ C||f ||Cm,δ(Ω)|x− y|m+δ−|α|

holds true with the same constant C as above.

Proof. We verify (5.12) assuming that f ∈ Cm,δ
loc (Ω) and x, y ∈ Ω. The estimate

(5.13) for Cm,δ(Ω) and x, y ∈ Ω then follows from (5.12) by continuity.
Let γ : [0, `(γ)]→ Ω be a path as in Definition 1.13 with γ(0) = x and γ(`(γ)) = y.

Define
g : Ω→ C : g(z) = Rαf(x, z) = ∂αf(x)− Pαf(x, z).

Clearly the composition g ◦ γ : [0, `(γ)] → C is continuous. Let t ∈ [0, `(γ)] and
consider any k ∈ Rn with the property [γ(t)+k ∈ B(γ(t),min(t, `(γ)−t)/(2aΩ

√
n)).

According to (5.10) and the Definition 1.13 of uniformity, we have

γ(t) + k ∈ Q(γ(t),min(t, `(γ)− t)/(2aΩ

√
n)) ⊂ B̄(γ(t),min(t, `(γ)− t)/2aΩ) ⊂ Ω.

Furthermore, applying the identity (5.8) and Lemma 5.9, we have the estimate

|g(γ(t) + k)− g(γ(t))| =
∣∣∣∣ ∑
|α+β|≤m

Rα+βf(γ(t), γ(t) + k)

β!
(x− γ(t))β

∣∣∣∣
≤ 2||f ||Cm,δloc (Ω)

∑
|α+β|≤m

|k|m+δ−|α|−|β|`(γ)|β| ≤ Cma
m−|α|
Ω ||f ||Cm,δloc (Ω)|x− y|

m−|α||k|δ.

Applying Theorem 4.22 with c = 2aΩ

√
n > aΩ, we get the required estimate

|Rαf(x, y)| = |Rαf(x, x)−Rαf(x, y)| = |g(x)− g(y)| ≤ C||f ||Cm,δloc (Ω)|x− y|
m+δ−|α|,

where the constant C depends at most on the parameters n,m, δ, aΩ. �

The uniform error estimates above imply the first extension result.

Theorem 5.14. Let Ω ⊂ Rn be a uniform domain with uniformity constant aΩ ≥ 1.
Let f ∈ Cm,δ

loc (Ω), where m ∈ N0 and 0 < δ < 1. There is g ∈ Cm,δ(Ω) such that
g|Ω = f and ||g||Cm,δ(Ω) ≤ C||f ||Cm,δloc (Ω), where the constant C depends at most on
the parameters n,m, δ, aΩ.

Proof. Let α ∈ Nn
0 be such that |α| ≤ m. Assume that x, y ∈ Ω satisfy |x− y| ≤ 1.

Then using Theorem 5.11, we get the following estimate

|∂αf(x)− ∂αf(y)| ≤
∑

|α|<|α+β|≤m

|∂α+βf(y)|
β!

|x− y||β| + |Rαf(x, y)|

≤ C||f ||Cm,δloc (Ω)(|x− y|+ |x− y|
m+δ−|α|),

Hence ∂αf : Ω→ C is uniformly continuous and, as such, it has a unique extension
to a continuous function Ω → C. Denote by g the extension of f to a continuous
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function Ω → C. Using Theorem 5.11, we see that order m derivatives of g satisfy
the non-local Hölder estimate. Indeed, if x, y ∈ Ω and |α| = m, we have

|∂αg(x)− ∂αg(y)| = |∂αf(x)− ∂αf(y)| = |Rαf(x, y)| ≤ C||f ||Cm,δloc (Ω)|x− y|
δ.

The required properties of g follow easily from this estimate and the definitions. �

Theorem 5.11 combined with the classical Whitney extension implies the existence
of a bounded and linear extension operator Cm,δ(Ω) → Cm,δ(Rn) if Ω ⊂ Rn is a
uniform domain. We will prove this next. The following Whitney extension results
for Lipschitz functions are from Stein [Ste70, pp. 166–180] but the original work is
that of Whitney [Whi34].

The Lipschitz space Lipm+δ(F ), where m ∈ N0, 0 < δ < 1, and F ⊂ Rn is closed,
consists of f : F → C for which there are functions {fα : F → C}|α|≤m with f 0 = f
and

(5.15) fα(x) =
∑

|α+β|≤m

fα+β(y)

β!
(x− y)β + rα(x, y),

where

(5.16) |fα(x)| ≤M and |rα(x, y)| ≤M |x− y|m+δ−|α|

if x, y ∈ F and |α| ≤ m. The norm ||f ||Lipm+δ(F ) is taken to be the infimum
over M for which (5.16) holds for some functions {fα : F → C}|α|≤m as above. The
extension result of Whitney is that there is a bounded and linear extension operator

(5.17) Emf : Lipm+δ(F )→ Lipm+δ(Rn)

whose operator norm is independent of the closed set F . See [Ste70, Theorem 4].
Assume that f ∈ Lipm+δ(Rn). In this case f ∈ Cm(Rn) so that the associated

functions {fα : Rn → C}|α|≤m are unique and they are given by fα = ∂αf . Further-
more, the order m derivatives fα = ∂αf are δ-Hölder continuous. To summarize
Lipm+δ(Rn) ⊂ Cm,δ(Rn) and we have the norm estimate

(5.18) ||f ||Cm,δ(Rn) ≤ Cn,m||f ||Lip(m+δ(Rn), f ∈ Lipm+δ(Rn).

For the converse, assume that Ω ⊂ Rn is a uniform domain and F = Ω. Fix
f ∈ Cm,δ(Ω) and denote fα = ∂αf : Ω → C if |α| ≤ m. Then, using Definition 5.3
and the estimate (5.13) in Theorem 5.11, we see that f ∈ Lipm+δ(Ω) and

(5.19) ||f ||Lipm+δ(Ω) ≤ Cn,m,δ,aΩ
||f ||Cm,δ(Ω).

Finally, using the extension operator (5.17) and the norm-estimates (5.18) and
(5.19), we finish the proof of the following extension result.

Theorem 5.20. Let Ω ⊂ Rn be a uniform domain with uniformity constant aΩ ≥ 1.
Let m ∈ N0, 0 < δ < 1, and f ∈ Cm,δ(Ω). There is a function Emf : Rn → C
satisfying Emf |Ω = f , Emf ∈ Cm,δ(Rn), and

(5.21) ||Emf ||Cm,δ(Rn) ≤ C||f ||Cm,δ(Ω),
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where C depends at most on the parameters n,m, δ, aΩ. The induced relation f 7→
Emf is a bounded and linear extension operator Em : Cm,δ(Ω)→ Cm,δ(Rn).

Remark 5.22. We need another local-to-global type estimate for Hölder seminorms.
Let Ω ⊂ Rn be a uniform domain and 0 < δ < 1. Assume that f : Ω → C.
Proceeding as in the proof of Theorem 5.11, we have |f |Cδ(Ω) ≤ C|f |Cδloc(Ω), where
the constant C depends at most on the parameters δ,Ω.

Local smoothness spaces. Measure theoretical approach to Hölder spaces is furnished
by the so called local smoothness spaces Cm+δ

∞ (Ω) of DeVore and Sharpley [DS84].
These spaces are based on a generalization of the sharp maximal function which
measures the error in local polynomial approximation. Local smoothness spaces
emerge naturally while proving inclusions of the form

(5.23) Cm,δ
loc (Ω) ⊂ Ḟm,2

∞ (Ω).

Such inclusions are convenient since the spaces Ḟm,2
∞ (Ω), or their sequence coun-

terparts, appear in the assumptions of our main result which is a T1 theorem on
admissible domains. In some cases these assumptions can be verified by using (5.23),
see later Example 6.21.

If Q ⊂ Rn is a cube and f ∈ L1(Q), we denote

Em(f,Q) = inf
P∈Pm(Rn)

∫
Q

|f(x)− P (x)|dx, m ∈ N0.

The local smoothness spaces are defined in terms of these error measurements.

Definition 5.24. Let ∅ 6= Ω ⊂ Rn be a domain, m ∈ N0, and 0 < δ < 1. Let
f ∈ L1

loc(Ω) and define a seminorm

|f |Cm+δ
∞ (Ω) = sup

Q⊂⊂Ω
|Q|−(1+(m+δ)/n)Em(f,Q),

where the supremum is taken over all cubes Q, compactly contained in Ω. Define
a norm ||f ||Cm+δ

∞ (Ω) = ||f ||L∞(Ω) + |f |Cm+δ
∞ (Ω). The local smoothness space Cm+δ

∞ (Ω)

consists of f ∈ L1
loc(Ω) for which ||f ||Cm+δ

∞ (Ω) <∞.

We use the following relation between the local smoothness and Hölder spaces.

Theorem 5.25. Let ∅ 6= Ω ⊂ Rn be a domain, m ∈ N0, and 0 < δ < 1. Then we
have a bounded inclusion

Cm,δ
loc (Ω) ⊂ Cm+δ

∞ (Ω),

where the implicit constant depends at most on the parameters n,m.

Proof. We invoke the Whitney approximation theorem 3.5. It implies that there
exists a constant C depending at most on m and n such that, for each open cube
Q ⊂ Rn and each f ∈ L1(Q),

Em(f,Q) ≤ Cn,m|Q| sup
|h|≤diam(Q)

||∆m+1
h (f,Q, ·)||L∞(Q).(5.26)
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Let f ∈ Cm,δ
loc (Ω). Fix an open cube Q ⊂⊂ Ω and x, h ∈ Rn so that ∆m+1

h (f,Q, x) 6=
0. Then it must be that {x, x+ h, · · · , x+ (m+ 1)h} ⊂ Q, and the convexity of Q
implies that the line-segment connecting x to x+ (m+ 1)h is contained in Q. This
allows us to iterate the identity f(x+ h)− f(x) =

∫ 1

0
h · ∇f(x+ θh)dθ for

∆m+1
h (f,Q, x) =

n∑
j1=1

· · ·
n∑

jm=1

hj1 · · ·hjmAj1,...,jm ,

Aj1,...,jm =

∫ 1

0

· · ·
∫ 1

0

∆1
h(∂j1 · · · ∂jmf, x+ (θ1 + · · ·+ θm)h)dθ1 · · · dθm.

(5.27)

Taking the absolute values, we obtain the norm-estimate

sup
h6=0
||∆m+1

h (f,Q, ·)||L∞(Q) ≤ |h|m+δ
∑
|α|=m

cα,m|∂αf |Cδloc(Ω) ≤ Cn,m|Q|(m+δ)/n||f ||Cm,δloc (Ω).

Using also (5.26), we see that the inclusion Cm,δ
loc (Ω) ⊂ Cm+δ

∞ (Ω) is bounded. �

Remark 5.28. If Ω is a uniform domain, then the dyadic resolution of unity can be
utilized to show that the spaces Cm+δ

∞ (Ω) and Cm,δ
loc (Ω) are isomorphic. This result

corresponds to the kernel regularity result given in Section 4.
The extension problem for local smoothness spaces is treated in [DS84, DS93,

Miy93] some of which are based on Sobolev extension techniques developed by
Jones [Jon81]. By using those results, the theory of local smoothness spaces can be
utilized to establish extension results for Hölder functions on uniform domains. But
this approach to the Hölder extension leads to a more technical treatment than the
previously described approach based on Lipschitz extension.

Example 5.29. The space BMO(Ω), defined in 3.48, is also related to the local
smoothness spaces. First of all, the inclusions Cm+δ

∞ (Ω) ⊂ L∞(Ω) ⊂ BMO(Ω) are
trivially bounded if m ∈ N0 and 0 < δ < 1. But there is more to this relation.
Assume that f ∈ L1

loc(Ω), Q ⊂⊂ Ω is a cube, and fQ = |Q|−1
∫
Q
f . Then

|Q|−1E0(f,Q) ≤ |Q|−1

∫
Q

|f(x)− fQ|dx ≤ 2|Q|−1E0(f,Q).

Hence, if Ω ⊂ Rn is bounded, we have ||f ||BMO(Ω) ≤ 2 diam(Ω)δ|f |C δ∞(Ω) if 0 < δ < 1
and f ∈ L1

loc(Ω).

Here is a modification of Example 5.29.

Theorem 5.30. Let ∅ 6= Ω ⊂ Rn, n ≥ 2, be a domain. Let m ∈ N and 0 < δ < 1.
Then, assuming that f ∈ L1

loc(Ω), we have

(5.31) ||f ||Ḟm,2∞ (Ω) ≤ Cm,n,δ||f ||Cm+δ
∞ (Ω).
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Hence the inclusion Cm+δ
∞ (Ω) ⊂ Ḟm,2

∞ (Ω) is bounded. Assuming also that Ω is
bounded, we then have the estimate

(5.32) ||f ||Ḟm,2∞ (Ω) ≤ Cm,n,δ diam(Ω)δ|f |Cm+δ
∞ (Ω).

Proof. We only verify (5.31); the verification of (5.32) is similar to this. Fix f ∈
Cm+δ
∞ (Ω). Let (Q, ε) ∈ DmI (Ω) × E and denote f(Q, ε) = 〈f | ψεQ〉. Using B3) in

Appendix B and Remark 3.46, stating that suppψεQ ⊂ Cm+1Q ⊂⊂ Ω, we get

|f(Q, ε)| = inf
P∈Pm(Rn)

∣∣∣∣ ∫
Ω

(f(x)− P (x))ψεQ(x)dx

∣∣∣∣.
Taking also the estimate B5) into account, that is ||ψεQ||L∞(Rn) ≤ Cm+1|Q|−1/2, we
reach the following estimate after elementary manipulations

(5.33) |f(Q, ε)| ≤ Cm,n,δ ×min{|Q|1/2+(m+δ)/n|f |Cm+δ
∞ (Ω), |Q|

1/2||f ||L∞(Ω)}.

Fix P ∈ DmI (Ω) and consider the following summations

ΣP =
1

|P |
∑
Q⊂P

∑
ε∈E

|Q|−2m/n|f(Q, ε)|2

=
1

|P |
∑
Q∈A

∑
ε∈E

|Q|−2m/n|f(Q, ε)|2 +
1

|P |
∑
Q∈B

∑
ε∈E

|Q|−2m/n|f(Q, ε)|2,

where we have partitioned {Q ∈ D : Q ⊂ P} as follows: A = {Q ⊂ P : `(Q) < 1}
and B = {Q ⊂ P : `(Q) ≥ 1}. To estimate the sum over the family A, apply the
first estimate in (5.33). To estimate the sum over the family B, apply the second
estimate in (5.33). Then we obtain the estimate ΣP ≤ Cm,n,δ||f ||2Cm+δ

∞ (Ω)
, where the

right-hand side is independent of P ∈ DmI (Ω). According to Definition 3.47 we have
established (5.31). �

Combining Theorem 5.25 and Theorem 5.30, we get the following corollary.

Corollary 5.34. Let ∅ 6= Ω ⊂ Rn, n ≥ 2, be a domain. Let m ∈ N and 0 < δ < 1.
Then we have the following bounded restriction and inclusion, respectively,

Cm,δ(Ω) ↪→ Cm,δ
loc (Ω) ⊂ Ḟm,2

∞ (Ω).

The implicit constant in the inclusion depends at most on the parameters n,m, δ.

5.2. Uniformity and products. In order to extend standard kernels we need to
extend so called kernel atoms which are Hölder regular functions defined in the
product domain Ω × Ω. The extension of such functions is possible in the case of
uniform product domains and for this reason we prove that a domain Ω ⊂ Rn is
uniform if, and only if, Ω× Ω ⊂ R2n is uniform.

The proof relies on the following characterization from [Väi88] involving certain
continua that are referred to as distance cigars.
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Theorem 5.35. Let n ≥ 2 and ∅ 6= Ω ⊂ Rn be a domain, that is, an open and
connected set in Rn. Then Ω is uniform if, and only if, it satisfies the following
condition: There is a constant c > 1 so that for every pair x, y ∈ Ω there exists a
continuum E ⊂ Ω, a connected and compact set, containing these two points such
that diam(E) ≤ c|x− y| and that every point z ∈ E satisfies

min{|z − x|, |z − y|} ≤ c dist(z, ∂Ω).

The following proof is ours but there are similar results in the literature when Ω
is bounded and uniformity is replaced by inner uniformity [BS01].

Theorem 5.36. Let ∅ 6= Ω ⊂ Rn, n ≥ 2, be a domain. Then Ω is uniform if, and
only if, the product domain Ω× Ω ⊂ R2n is uniform.

Proof. First assume that Ω × Ω is uniform. Let x1, y1 ∈ Ω. Denote x = (x1, x1) ∈
Ω×Ω and y = (y1, x1) ∈ Ω×Ω. Applying Theorem 5.35 to the points x, y ∈ Ω×Ω
we obtain a continuum E ⊂ Ω×Ω containing these two points with the associated
constant c independent of them. Denote E1 = π1(E) ⊂ Ω where π1 : R2n → Rn

denotes the projection to the first n coordinates. Then E1 is a continuum containing
the points x1, y1 and diam(E1) ≤ diam(E) ≤ c|x− y| = c|x1 − y1|. If z1 ∈ E1 then
z1 = π1(z) for some z ∈ E, and we have

min{|z1 − x1|, |z1 − y1|} ≤ min{|z − x|, |z − y|}
≤ c dist(z, ∂(Ω× Ω)) ≤ c dist(z1, ∂Ω).

Since the constant c is independent of the points x1, y1 ∈ Ω we can invoke Theorem
5.35 to conclude that Ω is uniform.

Then we assume that Ω is uniform. Let x = (x1, x2) ∈ Ω× Ω and y = (y1, y2) ∈
Ω × Ω. We will invoke Theorem 5.35 and for this purpose we need to construct
distance cigars containing these two points x and y. Without loss of generality we
can assume that |x1 − y1| ≥ |x2 − y2|. Fix a path γ1 : [0, `(γ1)] → Ω joining x1

to y1 as in the Definition 1.13 of uniform domains. There is z ∈ {x1, y1} ⊂ Ω so
that |x1 − y1|/2 ≤ |x2 − z|. Let γz : [0, `(γz)] → Ω be a path joining x2 to z as
in Definition 1.13. Let tz = |x1 − y1|/4 ≤ `(γz)/2 and w = γz(tz) ∈ Ω. Denote
by γw : [0, `(γw)] → Ω a path joining w to y2 as in Definition 1.13. We record the
following useful facts for later purposes:

a) The properties of γz imply that |x1 − y1|/4a ≤ dist(w, ∂Ω),
b) Let t ∈ [0, |x1 − y1|/8a] ∩ [0, `(γw)/2]. Then |γw(t)− w| ≤ |x1 − y1|/8a and,

combining this with a), we have |x1 − y1|/8a ≤ dist(γw(t), ∂Ω),
c) Let t ∈ [|x1 − y1|/8a,∞) ∩ [0, `(γw)/2] (if such exists). Then the properties

of γw imply that |x1 − y1|/8a2 ≤ dist(γw(t), ∂Ω).
Let γ2 : [0, tz + `(γw)]→ Ω be the path joining x2 to y2 that is defined by the rule

γ2(t) =

{
γz(t), t ∈ [0, tz],

γw(t− tz), t ∈ [tz, tz + `(γw)].
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Then γ2 is parametrized by the arc length measured from x2 and |x1 − y1|/4 ≤
`(γ2) = tz + `(γw) ≤ (a/4 + a+ 1/4)|x1 − y1|. Using b) and c) above, properties of
γz and γw, and the definition of γ2, we get

(5.37) min(t, `(γ2)− t) ≤ Ca dist(γ2(t), ∂Ω), t ∈ [0, `(γ2)].

Denote % = `(γ2)`(γ1)−1 and σ(t) = %t ∈ [0, `(γ2)] if t ∈ [0, `(γ1)]. Using this we
define

Γ = Γ1 × Γ2 = γ1 × (γ2 ◦ σ) : [0, `(γ1)]→ Ω× Ω.

Now E = Γ[0, `(γ1)] ⊂ Ω× Ω is a continuum containing the points x and y.
We verify that E satisfies the conditions of Theorem 5.35 with constant depending

at most on the domain Ω. The diameter of E is estimated as follows. If t ∈ [0, `(γ1)]
then

|x− Γ(t)| ≤ |x1 − Γ1(t)|+ |x2 − Γ2(t)| ≤ `(γ1) + tz + `(γw)

≤ a|x1 − y1|+ (a/4 + a+ 1/4)|x1 − y1| ≤ 4a|x1 − y1| ≤ 4a|x− y|.

Hence diam(E) ≤ 8a|x− y|.
We verify the cigar condition. Let t ∈ [0, `(γ1)] and

m = min{|x− Γ(t)|, |y − Γ(t)|}.

Then, using the arc length parametrization of γ1 and γ2, we have the estimate

m ≤ |x− Γ(t)| ≤ |x1 − Γ1(t)|+ |x2 − Γ2(t)| ≤ (1 + %)t,

implying that m/(1 + %) ≤ t. In a similar fashion, we have

m ≤ |y − Γ(t)| ≤ |y1 − Γ1(t)|+ |y2 − Γ2(t)| ≤ `(γ1)− t+ %(`(γ1)− t),

implying that m/(1 + %) ≤ `(γ1) − t. Combining these estimates for t with the
inequality (5.37) and the properties of γ1, we get the following{

m/(1 + %) ≤ min(t, `(γ1)− t) ≤ a dist(γ1(t), ∂Ω),

%m/(1 + %) ≤ min(%t, `(γ2)− %t) ≤ Ca dist(γ2(%t), ∂Ω).

Note that min(1/a(1 +%), %/Ca(1 +%)) ≥ ca for some ca > 0 which depends at most
on the uniformity constant a. Using also that m = min{|x − Γ(t)|, |y − Γ(t)|}, we
have

dist(Γ(t), ∂(Ω× Ω)) = dist((γ1(t), γ2(%t)), ∂(Ω× Ω))

≥ ca min{|x− Γ(t)|, |y − Γ(t)|}.

It follows that, if x, y ∈ Ω×Ω, there is a continuum E ⊂ Ω×Ω containing these two
points and satisfying the diameter and distance cigar conditions in Theorem 5.35
with constant c = max{8a, 1/ca} independent of the points x, y. As a consequence,
Ω× Ω is a uniform domain. �
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5.3. Atomic decomposition and kernel extension. We come to a characteriza-
tion of smooth kernels in terms of an atomic decomposition. This characterization,
combined with Hölder extension results, is then applied to show an extension result
for the smooth kernels. This section is based on our research but we strongly rely
on the previous extension results for Hölder functions.

Kernel atoms and their extension. Here we define the kernel atoms and establish
their extension properties on uniform domains. We begin with notation. Denote
x = (x1, x2) ∈ R2n, where x1, x2 ∈ Rn and n ≥ 2. The diagonal set is denoted by

∆ = {(x, x) : x ∈ Rn} ⊂ R2n.

Notice that ∆ ⊂ R2n is closed, ∂(R2n \∆) = ∆, and R2n \∆ is a domain. Let F∆

be the Whitney decomposition of R2n \∆ as described in Appendix C. Recall the
properties of the associated partition of unity {ϕQ}Q∈F∆

and the definition of cubes
Q ⊂ Q∗ ⊂ Q∗∗ therein. All the references C1)–C14) are to Appendix C.

Definition 5.38. Let ∅ 6= Ω ⊂ Rn, n ≥ 2, be a domain. Let m ∈ N, 0 < δ < 1,
Q ∈ F∆, and R ∈ {Q∗, Q∗∗}. Then KQ : Ω×Ω→ C is an (R,Ω,m, δ) kernel atom,
if it satisfies A1)–A4) below

A1) suppΩ×Ω KQ ⊂ R,
A2) KQ ∈ Cm(Ω× Ω),
A3) ||∂αKQ||L∞(Ω×Ω) ≤ diam(Q)m−n−|α| if α ∈ N2n

0 , |α| ≤ m,
A4) |∂αKQ|Cδloc(Ω×Ω) ≤ diam(Q)−n−δ if α ∈ N2n

0 , |α| = m.

In A1) suppΩ×Ω stands for the closure of {x ∈ Ω × Ω : KQ(x) 6= 0} in Ω × Ω.
Notice also that it is possible that R ( Ω. Here is an extension result regarding
kernel atoms in uniform domains.

Theorem 5.39. Let Ω ⊂ Rn be a uniform domain. Assume that Q ∈ F∆ and KQ

is an (Q∗,Ω,m, δ) kernel atom for m ∈ N and 0 < δ < 1. Then there exists an
(Q∗∗,Rn,m, δ) kernel atom K̂Q satisfying

KQ = (κK̂Q)|Ω× Ω,

where the constant κ > 0 depends at most on the parameters n,m, δ and the unifor-
mity constant aΩ×Ω of the uniform domain Ω× Ω ⊂ R2n.

Proof. Theorem 5.36 implies that the domain Ω × Ω ⊂ R2n is uniform. Denote by
aΩ×Ω ≥ 1 its uniformity constant. It easy to verify that this uniformity constant is
invariant under dilatations and, in particular, the dilatated domain

ω = diam(Q)−1(Ω× Ω) = {diam(Q)−1x : x ∈ Ω× Ω}
is uniform in R2n with the constant aω = aΩ×Ω. In what follows we use the con-
vention that C denotes a constant that depends at most on the parameters n,m, δ,
and aω = aΩ×Ω.

First we define certain auxiliary functions. Define f : ω → C by
f(x) = diam(Q)n−mKQ(diam(Q)x).
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Then using the estimates A2)–A4) for KQ it is straightforward to verify that f ∈
Cm,δ

loc (ω) and ||f ||Cm,δloc (ω) ≤ 1. In what follows we extend f twice. First of all,
using Theorem 5.14, we infer that f has a continuous extension to the closure of
the domain and the order m derivatives of this extension are Hölder regular in the
whole closed set ω. To put this otherwise, there is g ∈ Cm,δ(ω) such that g|ω = f
and

(5.40) ||g||Cm,δ(ω) ≤ C||f ||Cm,δloc (ω).

Applying Theorem 5.20 and (5.40), we obtain G = Emg ∈ Cm,δ(R2n) satisfying the
identity G|ω = g|ω = f and the norm-estimate

||G||Cm,δ(R2n) ≤ C||g||Cm,δ(ω) ≤ C||f ||Cm,δloc (ω) = C.

Define h : R2n → C by h(x) = ψQ(diam(Q)x)G(x), where ψQ : R2n → R satisfies
the properties C13)–C14) for Q ∈ F∆. Using C14), we get

(5.41) ||h||Cm,δ(R2n) ≤ C||ψQ(diam(Q)·)||Cm,δ(R2n)||G||Cm,δ(R2n) ≤ κ,

where the constant κ depends at most on the parameters n,m, δ, and aω = aΩ×Ω.
Now we define the function K̂Q : R2n → C by the rule

K̂Q(x) =
diam(Q)m−nh(diam(Q)−1x)

κ
, x ∈ R2n.

Then using C13) and the norm-estimate (5.41), it is straightforward to verify that
K̂Q is an (Q∗∗,Rn,m, δ) kernel atom. Furthermore, if x ∈ Ω × Ω, then using A1)
for KQ and C13), we have

κK̂Q(x) = ψQ(x) diam(Q)m−nG(diam(Q)−1x) = ψQ(x)KQ(x) = KQ(x).

All in all, K̂Q is as required. �

Atomic decomposition of smooth kernels. Here we establish the so called atomic
decomposition of the smooth kernels. The proof of this characterization of smooth
kernels involves technicalities and to clarify we outline an argument first, showing
how such decompositions arise.

It is natural to treat a given smooth kernel K ∈ K−mΩ (δ) as of being defined in
the domain ω = Ω× Ω \ {(x, x)} ⊂ R2n. Let us indicate this shift in the viewpoint
even further. Notice that

∂γK(x) = ∂αx1
∂βx2

K(x1, x2),

if x = (x1, x2) ∈ ω and γ = (α, β) ∈ N2n
0 satisfies |γ| = |α|+ |β| ≤ m. This notation

is utilized in the sequel. Assume a regular situation: K ∈ Cm+1(Rn ×Rn \ {(x, x)}
satisfies the homogeneity estimates

(5.42) |∂γK(x)| ≤ CK |x1 − x2|m−n−|γ|, |γ| ≤ m+ 1 ≤ n.
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Fix Q ∈ F∆. Then, according to later Lemma 5.45, |x1 − x2| ≥ Cn diam(Q) if
x ∈ Q∗. Also the function ϕQ, defined in Appendix C, satisfies suppϕQ ⊂ Q∗ and

||∂γϕQ|| ≤ Cn,γ diam(Q)−|γ|.

Combining these facts and using (5.42), we get the following for γ ∈ N2n
0 , |γ| ≤ m+1,

||∂γ(ϕQK)||L∞(Rn×Rn) ≤
∑
σ≤γ

cσ,γ||∂γ−σϕQ||L∞(Q∗)||∂σK||L∞(Q∗)

≤ Cn,m,K diam(Q)−(|γ|−|σ|) diam(Q)m−n−|σ| = Cn,m,K diam(Q)m−n−|γ|.

This indicates that the summands ϕQK in the decomposition K =
∑

Q∈F∆
ϕQK are

constant multiples of kernel atoms. To advance in the general situation, we need a
simple Fubini type argument.

Lemma 5.43. Let ∅ 6= Ω ⊂ Rn, n ≥ 2, be a domain, 0 < m < n, and 0 < δ < 1.
Let K ∈ K−mΩ (δ). Assume that P ⊂⊂ Ω × Ω is an open cube and x, x + h ∈ P
satisfy 4|h| ≤ |x1 − x2|. Then

|∆1
h(∂

γK,P, x)| = |∂γK(x+ h)− ∂γK(x)| ≤ Cn,K |h|δ|x1 − x2|−n−δ,

if γ ∈ N2n
0 is such that |γ| = m.

Proof. Denote P = P1×P2, where P1, P2 ⊂ Ω are cubes. Then x1, x1 +h1 ∈ P1 and
x2, x2 + h2 ∈ P2. In particular,

(x1, x2 + h2) ∈ P1 × P2 = P ⊂ Ω× Ω,

and we can estimate as follows

|∆1
h(∂

γK,P, x)| ≤ |∆1
(h1,0)(∂

γK,P, (x1, x2 + h2))|+ |∆1
(0,h2)(∂

γK,P, x)|.

Use 4 max{|h1|, |h2|} ≤ |x1−x2| for the estimates 2|h1| ≤ |x1−x2|/2 ≤ |x1−x2−h2|
and 2|h2| ≤ |x1−x2|. Hence we are allowed to apply the Hölder-regularity estimate
satisfied by K to reach the following

|∆1
h(∂

γK,P, x)| ≤ CK |h1|δ|x1 − x2 − h2|−n−δ + CK |h2|δ|x1 − x2|−n−δ

≤ Cn,K |h|δ|x1 − x2|−n−δ.

This is the required estimate. �

We also need a certain geometric connection between the diagonal set and cubes in
the Whitney decomposition F∆. Here is the first ingredient towards this connection.

Lemma 5.44. Let x ∈ R2n. Then 1√
2
|x1 − x2| ≤ dist(x,∆) ≤ |x1 − x2|.

Proof. First of all, we have |(x1, x2)−(x1, x1)| = |x1−x2| and dist(x,∆) ≤ |x1−x2|.
Next we assume that ∆∩B̄(x, r) 6= ∅. Then it suffices to verify that |x1−x2| ≤

√
2r.

According to the assumption there is a point z,

z = x+ h = (x1 + h1, x2 + h2) ∈ ∆ ∩ B̄(x, r).
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Notice that |h1 − h2| = |x1 − x2| because 0 = z1 − z2 = x1 + h1 − x2 − h2. Also,
|(h1, h2)| = |(h2, h1)| = |h| ≤ r and therefore

√
2|h1−h2| = |(h2−h1, h1−h2)| ≤ 2r.

The estimates above prove that |x1 − x2| = |h1 − h2| ≤
√

2r. �

The geometric connection between the diagonal set and the cubes in the Whitney
decomposition is as follows.

Lemma 5.45. Let Q ∈ F∆ and x ∈ Q∗∗. Then C−1
n diam(Q∗∗) ≤ |x1 − x2| ≤

Cn diam(Q).

Proof. Recall that ∂(R2n \∆) = ∆. By using Lemma 5.44, we see that

dist(Q∗∗,∆) ≤ dist(x,∆) ≤ |x1 − x2|.

This together with C6) shows the estimate C−1
n diam(Q∗∗) ≤ |x1−x2|. On the other

hand, using C6), we have

dist(x,∆) ≤ dist(Q∗∗,∆) + diam(Q∗∗) ≤ (1 + Cn) diam(Q∗∗).

Lemma 5.44 implies that |x1−x2| ≤
√

2 dist(x,∆) ≤
√

2(1 +Cn) diam(Q∗∗). At the
end it suffices to use C5) for diam(Q∗∗) ≤ Cn diam(Q). �

We are ready for the atomic decomposition of smooth kernels.

Theorem 5.46. Let Ω ⊂ Rn be a uniform domain, 0 < m < n, and 0 < δ < 1.
Then we have 1)–2) below

1) Assume that K : Ω× Ω \∆→ C has the atomic decomposition

(5.47) K(x) = λ
∑
Q∈F∆

KQ(x), x ∈ Ω× Ω \∆,

where λ ∈ C and KQ is an (Q∗∗,Ω,m, δ) kernel atom if Q ∈ F∆. Then
K ∈ K−mΩ (δ).

2) Assume that K ∈ K−mΩ (δ). Then K has the atomic decomposition (5.47),
where λ > 0 and KQ is an (Q∗,Ω,m, δ) kernel atom if Q ∈ F∆.

Proof. Notice that, according to Theorem 5.36, the domain Ω×Ω ⊂ R2n is uniform.
First we prove 1). Without loss of generality we can assume that λ = 1. Fix Q ∈ F∆

and x, x + h ∈ Ω × Ω \ ∆ so that |h| ≤ |x1 − x2|/4. Applying Lemma 5.45 and
A1)–A3) in Definition 5.38, we have

(5.48) |∂αKQ(x)| ≤ Cn|x1 − x2|m−n−|α|, |α| ≤ m.

Using Lemma 5.45 and both A1) and A4) in Definition 5.38, but also the uniformity
of Ω× Ω with Remark 5.22, we have

(5.49) |∂αKQ(x+ h)− ∂αKQ(x)| ≤ Cn,δ,Ω|h|δ|x1 − x2|−n−δ, |α| = m.

According to C8), there are at most Cn cubes in

N (x) = {Q ∈ F∆ : x ∈ Q∗∗}.
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Applying A1) in Definition 5.38 and the estimate (5.48), we get

(5.50) |∂αK(x)| ≤
∑

Q∈N (x)

|∂αKQ(x)| ≤ Cn|x1 − x2|m−n−|α|, |α| ≤ m.

In a similar way, summing over the cubes in N (x)∪N (x+ h) and using (5.49), we
get

(5.51) |∂αK(x+ h)− ∂αK(x)| ≤ 2Cn,δ,Ω|h|δ|x1 − x2|−n−δ, |α| = m.

The remaining estimate (5.51) with x, x + h ∈ Ω × Ω and 2|h| ≤ |x1 − x2| < 4|h|
follows from the kernel size estimate (5.50). All in all, we have shown that K ∈
K−mΩ (δ).

Then we prove 2). First recall that {ϕQ}Q∈F∆
is a partition of unity in R2n \∆,

see Appendix C. Fix a cube Q ∈ F∆ and define KQ(x) = ϕQ(x)K(x) if x ∈ Ω×Ω.
Hence, using C10), we have

K(x) = K(x)
∑
Q∈F∆

ϕQ(x) =
∑
Q∈F∆

KQ(x), x ∈ Ω× Ω \∆.

It suffices to verify that there exists λ > 0 such that λ−1KQ is an (Q∗,Ω,m, δ) kernel
atom if Q ∈ F∆. Fix Q ∈ F∆. The condition A1) holds since, according to C11),
we have

suppΩ×Ω KQ ⊂ suppΩ×Ω ϕQ ⊂ suppϕQ ⊂ Q∗.

It remains to verify A2)–A4). First of all, the condition A2) holds since ϕQ ∈
C∞0 (int(Q∗)), dist(Q∗,∆) > 0, and K ∈ Cm(Ω × Ω \ ∆). Next we verify the
condition A3). Fix α ∈ N2n

0 , |α| ≤ m. If x ∈ Ω × Ω \ Q∗, then ∂αKQ(x) = 0.
Assuming x ∈ Q∗ ∩ Ω× Ω, we have

(5.52) ∂αKQ(x) =
∑
β≤α

cα,β∂
βϕQ(x)∂α−βK(x).

Fix β ∈ N2n
0 satisfying β ≤ α. Use C12) and estimates about K, combined with

Lemma 5.45, for

|∂βϕQ(x)∂α−βK(x)| ≤ Cn,β diam(Q)−|β|Cn,K diam(Q)m−n−|α|+|β|

≤ Cn,β,K diam(Q)m−n−|α|.

Combining this with the identity (5.52) we get A3) for λ−1
3 KQ with λ3 depending

at most on n,K. Then we prove A4). According to the Definition 5.1 we need an
estimate for

|∆1
h(∂

αKQ, P, x)| = |∂αKQ(x+ h)− ∂αKQ(x)|,
where |α| = m and P ⊂⊂ Ω×Ω is an open cube so that x, x+h ∈ P . First consider
the case x ∈ Q∗, |x1 − x2| < 4|h|. Using the proof of A3) from above, we get

|∆1
h(∂

αKQ, P, x)| ≤ |∂αKQ(x+ h)|+ |∂αKQ(x)|
≤ 2λ3 diam(Q)−n ≤ Cn,K |h|δ diam(Q)−n−δ.

(5.53)



94 ANTTI V. VÄHÄKANGAS

In the last inequality we used the estimate diam(Q) ≤ Cn|h|, which follows from
Lemma 5.45 and the estimate |x1−x2| < 4|h| with x ∈ Q∗ ⊂ Q∗∗. Next we consider
the case x ∈ Q∗, 4|h| ≤ |x1 − x2|. Fix β ∈ N2n

0 satisfying β ≤ α. Then, using
Lemma 5.45, the mean value theorem, and Lemma 5.43 if |β| = 0, we get the
following estimate

|∂βϕQ(x+ h)∂α−βK(x+ h)− ∂βϕQ(x)∂α−βK(x)|
≤ |∂βϕQ(x+ h)∂α−βK(x+ h)− ∂βϕQ(x+ h)∂α−βK(x)|

+ |∂βϕQ(x+ h)∂α−βK(x)− ∂βϕQ(x)∂α−βK(x)|
≤ Cn,β diam(Q)−|β|Cn,δ,K |h|δ diam(Q)m−n−|α|+|β|−δ

+ Cn,β,δ|h|δ diam(Q)−|β|−δCn,K diam(Q)m−n−|α|+|β|

≤ Cn,β,δ,K |h|δ diam(Q)−n−δ.

Combining this with (5.52) and (5.53) shows that the estimate

(5.54) |∆1
h(∂

αKQ, P, x)| ≤ Cn,δ,K |h|δ diam(Q)−n−δ,

holds true if x, x + h ∈ P and x ∈ Q∗. It remains to consider the case x + h ∈ Q∗.
But this reduces to the estimate (5.54) since, denoting k = −h and y = x + h, we
have y, y + k ∈ P , y ∈ Q∗, and

(5.55) |∆1
h(KQ, P, x)| = |∆1

k(KQ, P, y)| ≤ Cn,δ,K |k|δ diam(Q)−n−δ, |k| = |h|.

The estimates (5.54) and (5.55) imply that there exists λ4 > 0, depending at most
on n, δ,K, such that λ−1

4 KQ satisfies A4). Denoting λ = λ3 + λ4, λ−1KQ satisfies
A1)–A4). �

Kernel extension via atomic decomposition. The atomic decomposition of smooth
kernels is a powerful tool. Indeed, combined with the atomic extension, it provides
us the desired kernel extension result.

Theorem 5.56. Let Ω ⊂ Rn be a uniform domain, 0 < m < n, 0 < δ < 1, and
K ∈ K−mΩ (δ) be a smooth kernel. Then there exists K̂ ∈ K−mRn (δ) such that

K̂|Ω× Ω \∆ = K.

That is, K has an extension to a smooth kernel K̂ : Rn × Rn \∆→ C.

Proof. Applying 2) in Theorem 5.47 implies that K has the atomic decomposition

K(x) = λ
∑
Q∈F∆

KQ(x), x ∈ Ω× Ω \∆,

where λ > 0 and KQ is an (Q∗,Ω,m, δ) kernel atom if Q ∈ F∆. Fix Q ∈ F∆. Then
applying Theorem 5.39 to KQ gives an (Q∗∗,Rn,m, δ) kernel atom K̂Q satisfying



WEAKLY SINGULAR INTEGRAL OPERATORS ON DOMAINS 95

KQ = (κK̂Q)|Ω × Ω, where κ independent of Q. As a consequence, we have the
representation

(5.57) K(x) = λκ
∑
Q∈F∆

K̂Q(x), x ∈ Ω× Ω \∆.

On the other hand, applying 1) in Theorem 5.47, we see that the right-hand side of
(5.57) defines a kernel K̂ ∈ K−mRn (δ). �

Remark 5.58. According to Corollary 4.46 this extension result applies to
K ∈ K−mΩ (δ) ∪ km+δ

loc (Ω) ∪ K−mΩ (δ),

given that Ω ⊂ Rn is uniform. Such kernels admit also an atomic decomposition as
in Theorem 5.46. When extending kernels in the two other classes, besides smooth
kernels, the Hölder-regularity decreases but this is most likely an artifact caused by
our proof of the kernel regularity result.

We formulate the following most useful extension result as a corollary. It follows
by combining Theorem 4.37, Theorem 5.56, and Proposition 4.6.

Corollary 5.59. Let Ω ⊂ Rn be a uniform domain, 0 < m < n, 0 < δ′ < δ < 1,
and K ∈ K−mΩ (δ) be a standard kernel. Then there exists K̂ ∈ K−mRn (δ′) such that

K̂|Ω× Ω \ {(x, x)} = K.

In words, K has an extension to a standard kernel K̂ : Rn × Rn \ {(x, x)} → C.

Remark 5.60. • In a similar fashion one can also extend Calderón–Zygmund
standard kernels (strictly speaking, we haven’t defined these kernels on do-
mains). However, in this case there will be no canonical way to associate an
operator to this extension of the singular kernel unless the (original) kernel is,
say, antisymmetric. Therefore the current approach to the boundedness via
extension of the kernel does not apply to Calderón–Zygmund type operators
on domains in its full generality.
• The pointwise properties of kernels are easier to establish than the bounded-
ness properties of the corresponding WSIO’s. The difference between these
is that the norm estimates involved in the pointwise properties are more
simple. For instance, this allows us to circumvent Calderón reproducing for-
mulae in the context of kernel regularity and apply the dyadic resolution of
unity instead. As a matter of fact, we do not know how to construct suitable
Calderón reproducing formulae on domains. The standard formulae, as in
[HL03, HS94], do not apply because we need further moments aside from
the zeroth.
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6. WSIO’s on domains

The topic here is a formulation and proof of our main result in this monograph,
which is a boundedness result for WSIO’s on admissible domains. We begin with
discussing the properties of admissible domains like invariance under quasiconformal
mappings of Rn onto itself. Then we strengthen the TχΩ theorem by utilizing kernel
regularity results and the T1 theorem of David and Journé. Next we verify that
the TχΩ theorem, combined with the kernel extension, leads to the proof of our
main result: T1 theorem on admissible domains. Given T ∈ SK−mΩ (δ), this result
describes the boundedness of

∂αT, |α| = m,

on the spaces Lp(Ω) for 1 < p <∞. There are also endpoint boundedness results.

6.1. Admissible domains. We discuss the properties of so called admissible do-
mains where our main result applies. These domains are, according to Definition
1.15, both uniform and Whitney coplump. The main observation here is the invari-
ance of admissible domains under quasiconformal mappings f : Rn → Rn. These
mappings generalize conformal mappings of one complex variable to higher dimen-
sional real spaces.

The class of uniform domains was introduced by Martio and Sarvas in late 70’s
in their work [MS79], where the invariance of such domains under quasiconformal
mappings f : Rn → Rn is also established: if Ω ⊂ Rn is a uniform, then the image
fΩ ⊂ Rn is uniform. The definition for uniform domains given in [MS79] is different
from the Definition 1.13, but the equivalence of these (and other) definitions was
established by Martio [Mar80]. For further characterizations of uniformity see the
references [Väi88, Geh87].

A domain Ω ⊂ Rn is Whitney coplump if either Ω = Rn or Rn \ Ω is unbounded
and c-plump for some c ≥ 1 in the sense of Definition 1.14. These domains were
studied by Martio and Väisälä [MV93] in connection with the A-harmonic measure
and passability. Whitney coplump domains are invariant under quasiconformal map-
pings f : Rn → Rn: if Ω ⊂ Rn is a Whitney coplump domain, then the image fΩ is
also Whitney coplump. We prove this in Theorem 6.6. Convex domains are Whit-
ney coplump – this follows from the definitions and existence certain hyperplanes
[Roc70, p. 100]:

Theorem 6.1. Let ∅ 6= Ω ( Rn be a convex domain and b ∈ Rn \ Ω. Then there
exists an affine hyperplane P ⊂ Rn so that b ∈ P and P does not separate the points
in Ω.

Corollary 6.2. A convex domain ∅ 6= Ω ⊂ Rn, n ≥ 2, is Whitney coplump.

Uniformity of the domain does not imply the Whitney coplumpness of the do-
main: removing an inward cusp from the unit ball B(0, 1) ⊂ R3 does not affect
the uniformity but the Whitney coplumpness of the resulting domain fails. On
the other hand, Whitney coplumpness does not suffice for the uniformity which is
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seen by looking at exterior cusps. Thus, in general, both uniformity and Whitney
coplumpness need to be verified to ensure admissibility of the domain.

Next we turn to the quasiconformal invariance of admissible domains. Useful
references for quasiconformal mappings are [AIM09, Väi71].

Definition 6.3. A homeomorphism f : Rn → Rn, n ≥ 2, is a K-quasiconformal
mapping if, for every x ∈ Rn,

lim sup
r→0

L(x, f, r)

l(x, f, r)
≤ K <∞,

where L(x, f, r) = max|x−y|=r |f(x)− f(y)| and l(x, f, r) = min|x−y|=r |f(x)− f(y)|.

Theorem 6.4. Let Ω ⊂ Rn, n ≥ 2, be an admissible domain and f : Rn → Rn be
a K-quasiconformal mapping. Then the image fΩ ⊂ Rn is admissible.

Next we prove Theorem 6.4 and it suffices to verify the invariance of both uni-
formity and Whitney coplumpness under quasiconformal mappings Rn → Rn. The
invariance of uniformity is established in [MS79, Theorem 2.15] and we omit the
proof which is based on the following quasisymmetry type estimate

(6.5) L(x, f, r2) ≤ cn,K(r2/r1)K
1/(n−1)

l(x, f, r1),

where x ∈ Rn, 0 < r1 ≤ r2 < ∞, and f : Rn → Rn is a K-quasiconformal
mapping. The estimate (6.5) implies also the remaining invariance of Whitney
coplump domains.

Theorem 6.6. Let Ω ( Rn, n ≥ 2, be a Whitney coplump domain and f : Rn → Rn

be a K-quasiconformal mapping. Then there exists c = cn,K,Ω ≥ 1 such that for all
x ∈ Rn \ fΩ and 0 < r <∞ there exists z ∈ B̄(x, r) such that B(z, r/c) ⊂ Rn \ fΩ.
As a consequence, diam(Rn \ fΩ) =∞ and fΩ ⊂ Rn is Whitney coplump.

Proof. This proof relies on the estimate (6.5) applied to the K-quasiconformal map-
pings f and f−1. Fix x ∈ Rn \ fΩ and 0 < r < ∞. Denote l′ = l(x, f−1, r),
L′ = L(x, f−1, r), and x′ = f−1(x) ∈ Rn \ Ω. Because Ω ( Rn is a Whitney
coplump domain, there exists z′ ∈ B̄(x′, l′/2) and a constant cΩ ≥ 1 such that

(6.7) B(z′, l′/(2cΩ)) ⊂ Rn \ Ω.

Denote z = f(z′). Now z′ ∈ B̄(x′, l′/2) ⊂ B(x′, l′) ⊂ f−1B(x, r) and, as a conse-
quence,

(6.8) z = f(z′) ∈ B(x, r) ⊂ B̄(x, r).

We also have f−1B(x, r) ⊂ B(x′, L′) ⊂ B(z′, 2L′) and therefore

(6.9) B(x, r) ⊂ fB(z′, 2L′).

Denote l = l(z′, f, l′/(2cΩ)) and L = L(z′, f, 2L′). Using the relation (6.9), we find
two points b1, b2 ∈ Rn satisfying |b1 − b2| ≥ 2r and

b1, b2 ∈ ∂[fB(z′, 2L′)] = f∂[B(z′, 2L′)] = {f(y′) : |z′ − y′| = 2L′}.
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Applying the triangle-inequality and the definition of L we see that there is b ∈
{b1, b2} such that r ≤ |z − b| ≤ L. Applying this and the estimate (6.5) twice, we
get

(6.10) r ≤ L ≤ cn,K(4cΩL
′/l′)K

1/(n−1)

l ≤ cn,K(4cΩcn,K)K
1/(n−1)

l.

Using the estimate (6.10) and the relation (6.7), we get

(6.11) B(z, r/cn,K,Ω) ⊂ B(z, l) ⊂ fB(z′, l′/(2cΩ)) ⊂ Rn \ fΩ,

where cn,K,Ω = cn,K(4cΩcn,K)K
1/(n−1) depends at most on n,K,Ω. Combining the

relations (6.8) and (6.11) we find that z ∈ B̄(x, r) and B(z, r/cn,K,Ω) ⊂ Rn \ fΩ as
required. �

6.2. TχΩ theorem revisited. We strengthen the TχΩ theorem for restricted op-
erators, formulated in Theorem 3.118. For the notation we refer to the notation in
the sections 3.1 and 3.3.

Theorem 6.12. Let Ω ⊂ Rn, n ≥ 2, be a Whitney coplump domain and T ∈
SK−mRn (δ)‚ where 0 < m < n and 0 < δ < 1. Then the following conditions are
equivalent

• ∂αT, ∂αT ∗ ∈ L (L2(Ω)) if |α| = m,
• ∂αT, ∂αT ∗ ∈ L (Lp(Ω)) if 1 < p <∞ and |α| = m.

Proof. The second condition implies the first. Assume the first condition. Then,
due to symmetry, it suffices to consider the operator T . Theorem 3.118 shows that
there exists S ∈ SK−mRn (δ) such that S ∼ T and ∂αS ∈ L (L2(Rn)) if |α| = m.
Fix α ∈ Nn

0 satisfying |α| = m. Assuming that S is associated with a kernel
κ ∈ K−mRn (δ), Theorem 4.37 implies that κ ∈ K−mRn (δ′) if 0 < δ′ < δ. In particular,
κ ∈ Cm(Rn × Rn \ {(x, x)}) and

∂αxκ : Rn × Rn \ {(x, x)} → C

is a Calderón–Zygmund standard kernel. Let f, g ∈ C∞0 (Rn) be test functions such
that their supports are disjoint. Applying Fubini’s theorem and integrating by parts
gives

〈∂αSf, g〉 = (−1)|α|〈Sf | ∂αḡ〉 = (−1)|α|
∫

Rn

∫
Rn
κ(x, y)∂αg(x)dxf(y)dy

=

∫
Rn

∫
Rn
∂αxκ(x, y)g(x)dxf(y)dy.

Applying the Fubini’s theorem to the right-hand side we see that the continuous
operator ∂αS : S(Rn)→ S ′(Rn), induced by the bounded extension ∂αS : L2(Rn)→
L2(Rn), is associated with the Calderón–Zygmund standard kernel ∂αxκ. Hence
∂αS ∈ SK(δ′) and the T1 theorem of David and Journé, Theorem 1.12, shows that
∂αS ∈ L (Lp(Rn)) if 1 < p <∞. Because S ∼ T , we also have ∂αT ∈ L (Lp(Ω)) if
1 < p <∞. �
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6.3. T1 theorem on admissible domains. We come to the formulation and proof
of our main result: a T1 theorem for WSIO’s on admissible domains.

Let us first set up the stage. Fix n ≥ 2 and m ∈ N, 0 < m < n. Fix (m + 1)-
regular wavelets {ψεQ} that are defined in Appendix B. Let Ω ⊂ Rn be an admissible
domain and let T ∈ SK−mΩ (δ), 0 < δ < 1, be associated with a kernel K ∈ K−mΩ (δ),
that is,

Tf(x) =

∫
Ω

K(x, y)f(y)dy, x ∈ Ω and f ∈ C0(Ω).

The adjoint operator T ∗ ∈ SK−mΩ (δ) is associated with the kernel (x, y) 7→ K(y, x).
See Introduction for further details about the classes K−mΩ (δ) and SK−mΩ (δ).

Extension of the operator. Our strategy is to apply boundedness results obtained in
Section 3. For this purpose we need to extend the operator T and establish various
compatibility results. To begin with, we extend the associated kernel K ∈ K−mΩ (δ)
that is defined in Ω×Ω\{(x, x)}. This extension is obtained by applying Corollary
5.59 which gives a kernel K̂ ∈ K−mRn (δ′) so that

(6.13) K̂|Ω× Ω \ {(x, x)} = K.

Define T̂ ∈ SK−mRn (δ′) to be the corresponding operator such that

T̂ f(x) =

∫
Rn
K̂(x, y)f(y)dy, if x ∈ Rn and f ∈ C0(Rn).

The adjoint operator T̂ ∗ = (T̂ )∗ is associated with the adjoint kernel (x, y) 7→
K̂(y, x). The estimate (3.6) shows that T̂ and T̂ ∗ induce linear operators C0(Rn)→
(C0(Rn))∗. Let id : C0(Ω) ↪→ C0(Rn) and id∗ : (C0(Rn))∗ ↪→ (C0(Ω))∗ denote the
canonical inclusions. Fix f, g ∈ C0(Ω). Then, applying (6.13) and the relation
supp f ∪ supp g ⊂ Ω, we get∫

Ω

Tf(x)g(x)dx =

∫
Ω

∫
Ω

K(x, y)f(y)dyg(x)dx = 〈id∗ ◦ T̂ ◦ id(f) | g〉.(6.14)

This identifies T as the operator id∗ ◦ T̂ ◦ id : C0(Ω) → (C0(Ω))∗ and T ∗ as the
operator id∗ ◦ T̂ ∗ ◦ id : C0(Ω) → (C0(Ω))∗. Hence, if |α| = m, then according to
Definition (3.59) we have ∂αT ∈ L (Lp(Ω)) if, and only if, ∂αT̂ ∈ L (Lp(Ω)). Same
holds for T ∗ and T̂ ∗.

WSIO’s and the space BMO(Ω). We extend the domain of definition of T to the
space BMO(Ω), see Definition 3.48. Then we establish compatibility relations to
the extended operator which is already defined in the space BMO(Rn).

First recall Definition 3.45 for the cubes DmI (Ω) ⊂ D. We define Tb : D×E → C
for b ∈ BMO(Ω) by the rule Tb(Q, ε) = 0 if Q ∈ D \ DmI (Ω) and

Tb(Q, ε) =

∫
Ω

b(x)T ∗ψεQ(x)dx =

∫
Ω

b(x)

∫
Ω

K(y, x)ψεQ(y)dydx, Q ∈ DmI (Ω).

(6.15)
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The sequence T ∗b : D × E → C is defined similarly. The definition (6.15) induces a
linear operator

T : BMO(Ω)→ {τ : D × E → C}
given that the integrals in (6.15) are defined. To verify this, let b ∈ BMO(Ω) and
(Q, ε) ∈ DmI (Ω) × E . Then T̂ (bχΩ) : D × E → C is defined in connection with
(3.61). Remark 3.55 implies that suppψεQ ⊂⊂ Ω. Therefore, using also (6.13) and
the definition (6.15), we get

(6.16) Tb(Q, ε) = T̂ (bχΩ)(Q, ε), if (Q, ε) ∈ DmI (Ω)× E .

As a consequence (6.15) is well defined. Another implication of (6.16) is that Tb =

T̂ (bχΩ) and T ∗b = T̂ ∗(bχΩ) in ḟm,2∞ (Ω) if b ∈ BMO(Ω).
We denote T ∈ L (L∞(Ω), ḟm,2∞ (Ω)) if

(6.17) ||Tb||ḟm,2∞ (Ω) ≤ C||b||L∞(Ω)

with C independent of b ∈ L∞(Ω). Also, we denote T ∈ L (BMO(Ω), ḟm,2∞ (Ω)) if

(6.18) ||Tb||ḟm,2∞ (Ω) ≤ C||b||BMO(Ω)

holds with C independent of b ∈ BMO(Ω). The identity TχΩ = 0 in ḟm,2∞ (Ω) is nec-
essary for (6.18) to hold because ||χΩ||BMO(Ω) = 0. Comparing definitions (3.60) and
(6.17), we see that T ∈ L (L∞(Ω), ḟm,2∞ (Ω)) if, and only if, T̂ ∈ L (L∞(Ω), ḟm,2∞ (Ω)).
Comparing definitions (6.18) and (3.61), we also have T ∈ L (BMO(Ω), ḟm,2∞ (Ω)) if,
and only if, T̂ ∈ L (BMO(Ω), ḟm,2∞ (Ω)).

Main results and an application. Combining the preparations above with Theorem
3.118 and Theorem 6.12 we reach our main result in this monograph.

Theorem 6.19. Let Ω ⊂ Rn, n ≥ 2, be an admissible domain and T ∈ SK−mΩ (δ),
where 0 < m < n and 0 < δ < 1. Then the following conditions are equivalent

• TχΩ, T
∗χΩ ∈ ḟm,2∞ (Ω),

• ∂αT, ∂αT ∗ ∈ L (L2(Ω)) if α ∈ Nn
0 satisfies |α| = m,

• ∂αT, ∂αT ∗ ∈ L (Lp(Ω)) if 1 < p <∞ and α ∈ Nn
0 satisfies |α| = m.

We also record the following asymmetric endpoint boundedness result, which
follows by combining the preparations above with Theorem 3.68 and Theorem 3.76.

Theorem 6.20. Let Ω ⊂ Rn, n ≥ 2, be an admissible domain, 0 < m < n, and
0 < δ < 1. Let T ∈ SK−mΩ (δ) be such that ∂αT ∈ L (L2(Ω)) if |α| = m. Then

• T ∈ L (L∞(Ω), ḟm,2∞ (Ω)),
• TχΩ = 0 in ḟm,2∞ (Ω) if, and only if, T ∈ L (BMO(Ω), ḟm,2∞ (Ω)).

There are other results based on Corollary 3.117 but we omit their formulation
here. We finish our treatment with a simple application related to potential theory.
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Example 6.21. Recall the operator G ∈ SK−2
B (δ) in the ball B = B(0, 1) ⊂ Rn,

n ≥ 3, which is an admissible domain. This operator is defined in (1.4) and its basic
properties are also established in that connection. The purpose of this example is
to show that the T1 theorem combined with the Hölder regularity estimate
(6.22) G1 = GχB ∈ C2,δ(B̄), if 0 < δ < 1,

which is proven in the Introduction, can be used to deduce certain boundedness
properties of ∂αG for |α| = 2. Estimate (6.22), combined with Corollary 5.34,
shows that

G1 = GχB ∈ C2,δ(B̄) ⊂ Ḟ 2,2
∞ (B).

The operator G is associated with a symmetric and real-valued standard kernel
so that we also have G∗1 ∈ Ḟ 2,2

∞ (B). Then, using Fubini’s theorem and defini-
tion (6.15), we see that the weak versions of these inclusions hold true so that
G1,G∗1 ∈ ḟ 2,2

∞ (B). Theorem 6.19 and Theorem 6.20 imply the following bounded-
ness properties

• {∂αG : |α| = 2} ⊂ L (Lp(B)) if 1 < p <∞,
• G ∈ L (L∞(B), ḟ 2,2

∞ (B)).
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Appendix A. Notation

• N = {1, 2, . . .}, the natural numbers,
• N0 = N ∪ {0},
• a ∧ b = min{a, b},
• a ∨ b = max{a, b},
• B(x, r), the open ball in Rn with radius r > 0 and center at x ∈ Rn,
• B̄(x, r), the closed ball in Rn,
• E = {0, 1}n \ {(0, 0, . . . , 0)}, indices associated with wavelets,
• `(Q), the side-length of a cube Q ⊂ Rn,
• Q(x, r), the open cube centered at x ∈ Rn and with `(Q(x, r)) = 2r > 0,
• Qνk = {x ∈ Rn : ki ≤ 2νxi < ki + 1 if i = 1, . . . , n} a dyadic cube indexed by
ν ∈ Z and k ∈ Zn,
• xQ, the centerpoint of a cube Q ⊂ Rn,
• xQ, the lower left-corner 2−νk of a dyadic cube Q = Qνk,
• Qs, reflection of a dyadic cube Q = Qνk in a Whitney coplump domain,
• D =

{
Qνk : ν ∈ Z and k ∈ Zn

}
, the family of all dyadic cubes in Rn,

• Dν = {Qνk : k ∈ Zn}, the family of dyadic cubes Q ∈ D satisfying `(Q) = 2−ν ,
• DI(α,Ω) = {Q ∈ D : Q ⊂ Ω and dist(Q, ∂Ω) ≥ α diam(Q)}, α-interior cubes,
• DmI (Ω) = DI(Cm+1,Ω), where Cm+1 > 0 is the constant defined in Appendix B
for which B4)–B5) holds true in the case of (m+ 1)-regular wavelets {ψεQ},
• DB(α,Ω) = {Q ∈ D : Q ∩ Ω 6= ∅} \ DI(α,Ω), α-boundary cubes,
• DE(Ω) = D \ (DI(α,Ω) ∪ DB(α,Ω)) = {Q ∈ D : Q ∩ Ω = ∅}, exterior cubes,
• ∂α = ∂α1

x1
· · · ∂αnxn , partial differential operator associated with the multi-index

α = (α1, α2, . . . , αn) ∈ Nn
0 of order |α| =

∑n
j=1 αj,

• supp f , the support of a function f : Rn → C,
• fν(x) = 2νnf(2νx), the L1-normalization of a function f : Rn → C,
• τh, the h-translation operator acting on functions f : Rn → C so that τhf(x) =
f(x− h). We also denote τh(x) = τh id(x) = x− h,
• ∆m

h (f, ·) = (τ−h − id)mf =
∑m

k=0(−1)m+k
(
m
k

)
f(·+ kh), the difference operator of

order m in Rn. If f ∈ Cm(Rn) and x, h ∈ Rn, then we have the representation

∆m
h (f, x) =

n∑
j1=1

· · ·
n∑

jm=1

hj1 · · ·hjm×

×
∫ 1

0

· · ·
∫ 1

0

(∂j1 · · · ∂jmf)(x+ (θ1 + · · ·+ θm)h)dθ1 · · · dθm,

(A.1)

• ∆m
h (f,Ω, ·), the difference operator of order m in a domain Ω ⊂ Rn is acting on

functions f : Ω→ C so that, if x ∈ Rn,

∆m
h (f,Ω, x) =

{∑m
k=0(−1)m+k

(
m
k

)
f(x+ kh), if {x, x+ h, . . . , x+mh} ⊂ Ω,

0, otherwise.

Notice that ∆m
h (f,Rn, ·) = ∆m

h (f, ·),
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• Pm(Rn) =
{∑

|α|≤m cαx
α : cα ∈ C

}
, the vector space of multivariate polynomials

of total degree at most m ∈ N0. We also denote P−1 = {0},
• Pαf(·, y), the Taylor approximation of ∂αf with basepoint y,
• Rαf(·, y), the error in Taylor approximation of ∂αf with basepoint y,
• 〈Λ, ϕ〉, the linear form defined by

∫
Rn Λ(x)ϕ(x)dx if Λ, ϕ ∈ L2(Rn),

• 〈Λ | ϕ〉, the sesquilinear form defined by
∫

Rn Λ(x)ϕ(x)dx if Λ, ϕ ∈ L2(Rn),
• S = S(Rn), the Schwartz class of test functions equipped with the usual locally
convex vector space topology,
• S ′ = S ′(Rn), the space of tempered distributions, that is, the vector space of
linear and continuous functionals Λ : S → C equipped with the weak*-topology,
• Sk = Sk(Rn), the closed subspace of the Schwartz class consisting of functions
ϕ ∈ S satisfying

∫
Rn x

αϕ(x)dx = 0 if |α| ≤ k ∈ N0 ∪ {∞},
• S ′/P = S ′/P(Rn), the tempered distributions modulo polynomials, that is, the
topological dual space of S∞ equipped with the weak*-topology,
• Ḃα,q

p (Rn), the homogeneous Besov space in Rn,
• H1(Rn), the real Hardy space in Rn,
• Lp(Ω), the space of p-integrable, 1 ≤ p ≤ ∞, functions in a domain Ω ⊂ Rn

equipped with the norm ||f ||Lp(Ω) = (
∫

Ω
|f(x)|pdx)1/p (modification if p =∞),

• BMO(Ω), the space of bounded mean oscillation in a domain Ω ⊂ Rn, consisting
of those f ∈ L1

loc(Ω) that satisfy

sup
Q⊂⊂Ω

{
1

|Q|

∫
Q

|f(x)− fQ|dx
}
<∞, where fQ =

1

|Q|

∫
Q

f(x)dx,

• Ḟm,2
∞ (Ω), the homogeneous BMO-type Sobolev space on a domain Ω ⊂ Rn,

• ḟm,2∞ (Ω), the space of sequences τ : D × E → C satisfying

||τ ||2
ḟm,2∞ (Ω)

= sup
P∈DmI (Ω)

{
1

|P |
∑
Q⊂P

∑
ε∈E

|Q|−2m/n|τ(Q, ε)|2
}
<∞,

• Cm(Ω), the space of functions f : Ω→ C which have continuous (partial) deriva-
tives ∂αf : Ω→ C for |α| ≤ m ∈ N0 ∪ {∞},
• C(Ω) = C0(Ω), the space of continuous functions in Ω,
• Cm(Ω), the space of continuous functions f : Ω→ C such that f |Ω ∈ Cm(Ω) and
the derivatives ∂α(f |Ω) extend to continuous functions Ω→ C for |α| ≤ m,
• C∞P (Rn), the space of polynomially bounded smooth functions, that is, functions
f ∈ C∞(Rn) satisfying |f | ≤ C(1 + | · |)N for some C,N > 0,
• Cm

0 (Ω), the space of functions f ∈ Cm(Ω) with compact support contained in Ω,
• C0(Ω) = C0

0(Ω), the space of continuous compactly supported functions in Ω,
• (Cm

0 (Ω))∗, the algebraic dual of Cm
0 (Ω) consisting of conjugate-linear functionals

Λ : Cm
0 (Ω)→ C : ϕ 7→ Λ(ϕ) = 〈Λ | ϕ〉,

• Cm,δ(Ω), the space of functions f ∈ Cm(Ω) satisfying
∑
|α|≤m ||∂αf ||L∞(Ω) < ∞

and whose order m derivatives satisfy a Hölder estimate in Ω with exponent
δ ∈ (0, 1),
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• Cm,δ
loc (Ω), the space of functions f ∈ Cm(Ω) satisfying

∑
|α|≤m ||∂αf ||L∞(Ω) < ∞

and whose order m derivatives satisfy a uniform Hölder estimate in every open
cube Q ⊂⊂ Ω with exponent δ ∈ (0, 1),
• Lipm+δ(Ω), the space of (m+ δ)-Lipschitz functions in Ω,
• Em(f,Q) = infP∈Pm(Rn)

{ ∫
Q
|f(x)−P (x)|dx

}
if f ∈ L1(Q) and Q ⊂ Rn is a cube,

• Cm+δ
∞ (Ω), the local smoothness space consisting of f ∈ L1

loc(Ω) for which

||f ||L∞(Ω) + sup
{
|Q|−(1+(m+δ)/n)Em(f,Q)

}
<∞,

where the supremum is taken over all cubes Q ⊂⊂ Ω,
• D(δ) =

{
b ∈ L1

loc(Rn) :
∫

Rn |b(x)|(1 + `(Q)−1|x− xQ|)−n−δdx <∞ if Q ∈ D
}
,

• SK−mΩ (δ), the space of weakly singular integral operators of order −m, consisting
of linear integral operators T of the form

Tf(x) =

∫
Ω

K(x, y)f(y)dy, x ∈ Rn and f ∈ C0(Ω),

where K ∈ K−mΩ (δ),
• K−mΩ (δ), the space of standard kernels K ∈ C(Ω×Ω \ {(x, x)}) which satisfy the
estimates |K(x, y)| ≤ CK |x− y|m−n, if x, y ∈ Ω, and

sup
|h|≤diam(Q)

{
1

|Q|1+(m+δ)/n

∫
Q

|∆m+1
h (K(x, ·), Q, y)|dy

}
≤ CK |x− xQ|−n−δ,

if x ∈ Ω and Q ⊂⊂ Ω is a cube, CK diam(Q) ≤ |x − xQ|. The integral estimate
is also assumed with K(x, ·) replaced by K(·, x),
• km+δ

loc (Ω), the space of Hölder–Zygmund kernels K ∈ C(Ω × Ω \ {(x, x)}) which
satisfy |K(x, y)| ≤ CK |x− y|m−n, if x, y ∈ Ω, and

|∆m+1
h (K(x, ·), Q, y)| ≤ CK |h|m+δ|x− y|−n−δ,

if x, y ∈ Ω, Q ⊂⊂ Ω is a cube, and 2(m + 1)|h| ≤ |x − y|. The estimate on
differences is also assumed also with K(x, ·) replaced by K(·, x),
• K−mΩ (δ), the space of smooth kernels K ∈ Cm(Ω× Ω \ {(x, x)}) which satisfy

|∂αx∂βyK(x, y)| ≤ CK |x− y|m−n−|α|−|β|,
if x, y ∈ Ω and |α|+ |β| ≤ m, and

|∂αx∂βyK(x+ h, y)− ∂αx∂βyK(x, y)| ≤ CK |h|δ|x− y|−n−δ

if |α|+|β| = m and x, y, x+h ∈ Ω satisfy 2|h| ≤ |x−y|. This is also assumed with
h-difference placed to the y-variable and x, y, y + h ∈ Ω satisfying 2|h| ≤ |x− y|,
• L (X, Y ), the space of bounded linear operators from X to Y , where X and Y
are normed vector spaces,
• L (X) = L (X,X).
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Appendix B. Compactly supported wavelets

We describe the relevant properties of compactly supported wavelets of regularity
r ∈ N. Here we follow [Mey92] but other useful references are [Dau92, Woj97].

A compactly supported r-regular basic wavelet is a function ψ : R→ C satisfying
the conditions 1)–3) below

1) ψ ∈ Cr
0(R) so that ψ is compactly supported and it has continuous deriva-

tives up to order r,
2)
∫

R x
kψ(x)dx = 0 if 0 ≤ k ≤ r,

3) the set {2j/2ψ(2j · −k) : j, k ∈ Z} is an orthonormal basis of L2(R).
We assume that ψ is associated with a so called r-regular multiresolution analysis.
The details are not important here but this implies that there is an r-regular scaling
function, that is, a function ϕ : R→ C satisfying 1) above, with ψ replaced with ϕ,
and also 3’) below

3’) the set

{ϕ(· − k) : k ∈ Z} ∪ {2j/2ψ(2j · −k) : j ∈ N0, k ∈ Z}
is an orthonormal basis of L2(R).

Multi-dimensional compactly supported wavelets are obtained from the functions
above via tensor products. Let E denote the set of 2n − 1 sequences

ε = (ε1, ε2, . . . , εn) ∈ {0, 1}n \ {0, 0, . . . , 0}.
Then, if x ∈ Rn and ε ∈ E , define

ψε(x) = ψε1(x1) · · ·ψεn(xn) = (ψε1 ⊗ · · · ⊗ ψεn)(x),

where ψ0 = ϕ and ψ1 = ψ are the one-dimensional r-regular scaling function and
basic wavelet. By scaling and translating these tensor products we obtain r-regular
compactly supported wavelets in Rn. For this purpose we denote

ψεQ(x) = (ψε)Q(x) = |Q|−1/2ψε(`(Q)−1(x− xQ)) = 2jn/2ψε(2jx− k)

if x ∈ Rn and (Q, ε) ∈ Djk ×E . These functions satisfy B1)–B5) and the properties
described in Lemma B.2 below. The constant Cr > 0 occuring in B4)–B5) is chosen
so that Lemma B.2 holds also true with the same constant.

B1) the set {ψεQ : (Q, ε) ∈ D × E} is an orthonormal basis of L2(Rn). If
f ∈ L2(Rn), then

(B.1) f =
∑
Q∈D

∑
ε∈E

〈f | ψεQ〉ψεQ, ||f ||2L2(Rn) =
∑
Q∈D

∑
ε∈E

|〈f | ψεQ〉|2,

where the first series converges unconditionally in L2(Rn),
B2) if 1 < p <∞ and f ∈ Lp(Rn), then

f =
∑
Q∈D

∑
ε∈E

〈f | ψεQ〉ψεQ

so that the series converges unconditionally in Lp(Rn) [Woj97, p. 196],
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B3) ψεQ’s have vanishing moments,∫
Rn
xαψεQ(x)dx = 0

if (Q, ε) ∈ D × E and α ∈ Nn
0 satisfies |α| ≤ r,

B4) suppψεQ ⊂ CrQ, where CrQ is the cube with the same midpoint xQ as Q
but whose sidelength is Cr`(Q),

B5) ψεQ ∈ Cr
0(Rn) and ||∂αψεQ||L∞(Rn) ≤ Cr|Q|−1/2−|α|/n if α ∈ Nn

0 , |α| ≤ r.
We also record the following lifting property which is useful in many occasions.

Lemma B.2. Let ε ∈ E and 0 ≤ m ≤ r, m ∈ N0. There exists a canonical
multi-index α = α(ε,m) ∈ Nn

0 , |α| = m, and a function ψε,m : Rn → C, depending
on ψε, ε,m, so that ψε = ∂α(ψε,m). Furthermore, if Q ∈ D, then ψε,mQ = (ψε,m)Q
satisfies the moment conditions∫

Rn
xαψε,mQ (x)dx = 0, |α| ≤ r −m,

and also the properties B4)–B5) above with ψεQ replaced by ψε,mQ .

Proof. Consider the case n = 1. First we define functions ψ1,k : R → C, k =
0, 1, . . . ,m, inductively so that ψ1,0 = ψ1 = ψ and

ψ1,k(x) =

∫ x

−∞
ψ1,k−1(y)dy, k = 1, 2, . . . ,m.

Now (ψ1,k)′ = ψ1,k−1 and (ψ1,k)(k) = ψ, k = 1, 2, . . . ,m. Induct on k ∈ {0, 1, . . . ,m}
and apply 2) with integration by parts at each step to show that the support of ψ1,k

is contained in the convex hull of suppψ and that∫ ∞
−∞

x`ψ1,k(x)dx = 0, k = 0, 1, . . . ,m and ` = 0, 1, . . . , r − k.

The one-dimensional result follows from these considerations. Then assume that
n > 1. Due to the definition of E there is the smallest j ∈ {1, 2, . . . , n} so that
εj = 1. Choose α = mej, where ej is the j’th base vector in Rn. Then the function

ψε,m = ψε1 ⊗ · · · ⊗ ψεj ,m ⊗ · · · ⊗ ψεn

satisfies the desired properties, where ψεj ,m = ψ1,m is placed in the j’th position. �
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Appendix C. Whitney decomposition

We collect the basic properties of the so called Whitney decomposition of an open
set ∅ 6= Ω ( Rn. In addition to this, we invoke the partition of unity that is related
to this decomposition. We follow the treatment in [Ste70, 167–171].

There is a a Whitney decomposition of Ω, that is, a family F of closed dyadic
cubes in Rn satisfying C1)–C3) below

C1)
⋃
Q∈F Q = Ω,

C2) the family of open cubes {intQ : Q ∈ F} is disjoint,
C3) diam(Q) ≤ dist(Q, ∂Ω) ≤ 4 diam(Q) if Q ∈ F .
We expand the cubes in F twice. We will construct a partition of unity which

is subordinate to the first family {Q∗} of expanded cubes. The second family of
larger expanded cubes {Q∗∗} will serve as a starting point for certain reproducing
functions. Let Q ∈ F and fix ε > 0 be such that 1 + ε < (1 + ε)2 < 5/4. Denote by
Q∗ the cube which has the same center as Q and side-length (1 + ε)`(Q),

Q∗ = (1 + ε)(Q− xQ) + xQ

where xQ is the center of the cube Q. Also, denote by Q∗∗ the cube with the center
xQ and side-length (1+ε)2`(Q). In C4)–C8) below we collect the properties of these
expansions of a cube Q ∈ F

C4) Q ⊂ intQ∗ ⊂ Q∗ ⊂ intQ∗∗ ⊂ Q∗∗,
C5) diam(Q∗∗) ≤ 5 diam(Q)/4,
C6) 3 diam(Q∗∗)/5 ≤ dist(Q∗∗, ∂Ω) ≤ 5 diam(Q∗∗),
C7) supx∈Q∗∗ dist(x, ∂Ω) ≤ 10 dist(Q∗∗, ∂Ω),
C8) for every x ∈ Ω there is at most Cn cubes R ∈ F such that x ∈ R∗∗.
Next we construct a partition of unity. Let Q0 = [−1/2, 1/2]n. Fix Φ ∈ C∞(Rn)

so that 0 ≤ Φ ≤ 1, Φ(x) = 1 if x ∈ Q0, and supp Φ ⊂ int(Q∗0). Let ΦQ denote the
function Φ but adjusted to the cube Q ∈ F so that

ΦQ(x) = Φ

(
x− xQ

`(Q)

)
, x ∈ Rn.

Notice that ΦQ(x) = 1, if x ∈ Q, and supp ΦQ ⊂ int(Q∗). We also have

||∂αΦQ||∞ ≤ Cn,α diam(Q)−|α|, α ∈ Nn
0 .

Define ϕQ ∈ C∞0 (Rn), Q ∈ F , by

ϕQ(x) =

{
ΦQ(x)

(∑
Q∈F ΦQ(x)

)−1
, x ∈ Ω,

0, x ∈ Rn \ Ω.

Then ||∂αϕQ||∞ ≤ Cn,α diam(Q)−|α|, suppϕQ ⊂ int(Q∗). The identity∑
Q∈F

ϕQ(x) = 1, x ∈ Ω,

is a justification for that {ϕQ} is a partition of unity subordinate to {Q∗}.
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The properties of this partition of unity are collected in C9)–C12) below
C9) 0 ≤ ϕQ ≤ 1 if Q ∈ F ,
C10)

∑
Q∈F ϕQ(x) = 1 if x ∈ Ω,

C11) suppϕQ ⊂ int(Q∗) if Q ∈ F ,
C12) ||∂αϕQ||∞ ≤ Cn,α diam(Q)−|α| if α ∈ Nn

0 .
We also use the following reproducing functions. Fix a function ψ ∈ C∞0 (Rn) so

that 0 ≤ ψ ≤ 1, ψ(x) = 1 if x ∈ Q∗0, and suppψ ⊂ int(Q∗∗0 ). Let ψQ ∈ C∞0 (Rn)
denote the function ψ but adjusted to the cube Q ∈ F so that

ψQ(x) = ψ

(
x− xQ

`(Q)

)
, x ∈ Rn.

Then, if Q ∈ F , we have C13)–C14) below
C13) ψQ(x) = 1 if x ∈ Q∗ and suppψQ ⊂ int(Q∗∗),
C14) ||∂αψQ|| ≤ Cn,α diam(Q)−|α| if α ∈ Nn

0 .
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142. Bingham, Kenrick, The Blagoveščenskĭı identity and the inverse scattering problem (86

pp.) 2005
143. Piiroinen, Petteri, Statistical measurements, experiments and applications (89 pp.)

2005
144. Goebel, Roman, The group of orbit preserving G-homeomorphisms of an equivariant

simplex for G a Lie group (63 pp.) 2005
145. Xiaonan Li, On hyperbolic Q classes (66 pp.) 2005
146. Lindén, Henri, Quasihyperbolic geodesics and uniformity in elementary domains (50 pp.)

2005
147. Ravaioli, Elena, Approximation of G-equivariant maps in the very-strong-weak topology

(64 pp.) 2005
148. Ramula, Ville, Asymptotical behaviour of a semilinear diffusion equation (62 pp.) 2006
149. Vänskä, Simopekka, Direct and inverse scattering for Beltrami fields (99 pp.) 2006
150. Virtanen, Henri, On the mean square of quadratic Dirichlet L-functions at 1 (50 pp.)

2008
151. Kangaslampi, Riikka, Uniformly quasiregular mappings on elliptic riemannian mani-

folds (69 pp.) 2008
152. Klén, Riku, On hyperbolic type metrics (49 pp.) 2009

5 e

Distributed by

Bookstore Tiedekirja
Kirkkokatu 14
FI-00170 Helsinki
Finland
http://www.tsv.fi

ISBN 978-951-41-1034-4


